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On m-ovoids of regular near polygons

John Bamberg, Jesse Lansdown, and Melissa Lee

Abstract. We generalise the work of Segre (1965), Cameron – Goethals – Seidel
(1978), and Vanhove (2011) by showing that nontrivial m-ovoids of the dual polar spaces
DQ(2d, q), DW(2d− 1, q) and DH(2d− 1, q2) (d > 3) are hemisystems. We also provide
a more general result that holds for regular near polygons.

1. Introduction

Near polygons are a large class of point-line incidence geometries that contain the
generalised 2d-gons introduced by J. Tits [17], and the dual polar spaces of P. J. Cameron
[3]. A near polygon, as defined by E. Shult and A. Yanushka [15], is a point-line geometry
such that for every point P and line ℓ, there exists a unique point on ℓ nearest to P .
If d is the diameter of the collinearity graph of the near polygon, then we call the near
polygon a near 2d-gon. A near 2d-gon is said to be regular if its collinearity graph is
distance regular. Generalised 2d-gons are examples of near polygons, and the regular
near 4-gons are precisely the finite generalised quadrangles (with an order). However,
there exist regular near polygons that are not generalised 2d-gons; for example, every
finite dual polar space (of rank at least 3) is an example of a regular near polygon.

An m-ovoid of a near 2d-gon is a set of points O such that every line is incident with
exactly m points of O. The trivial m-ovoids are the empty set (m = 0) and the full set
of points (m = s+1; the number of points on a line). For dual polar spaces (that are not
generalised quadrangles), the existence of 1-ovoids is mostly resolved, however, in rank
3, it is still not known whether DQ

−(7, q) or DH(6, q2) can contain 1-ovoids. It follows
from [13, 3.4.1] that there are no 1-ovoids of DW(5, q) for q even, and the q odd case was
settled by Thomas [16, Theorem 3.2] (see [5] and [8, Appendix] for alternative proofs).
De Bruyn and Vanhove reproved this result [9, Corollary 3.14] and extended it to other
regular near hexagons by showing that a finite generalised hexagon of order (s, s3) with
s > 2 has no 1-ovoids [9, Corollary 3.19].

Another interesting case arises in the study of m-ovoids when m is exactly half of
the number of points on a line. Such an m-ovoid is called a hemisystem. In 1965, Segre
[14] showed that the only nontrivial m-ovoids of DH(3, q2), for q odd, are hemisystems.
Cameron, Goethals and Seidel [4] extended Segre’s result to all generalised quadrangles of
order (q, q2), q odd. This was then extended further to regular near 2d-gons of order (s, t)
by Vanhove [18], which also provided a generalisation of the so-called Higman bound : if
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s > 1 then the intersection number ci for all i ∈ {1, . . . , d} obeys the following inequality,

ci 6
s2i − 1

s2 − 1
.

Furthermore, if the bound is sharp for some ci with i ∈ {2, . . . , d} then any nontrivial
m-ovoid is a hemisystem [18, Theorem 3].

Vanhove showed that for q odd if DH(2d − 1, q2) has a hemisystem then it induces a
distance regular graph with classical parameters [18, Theorem 4]. Hence the question of
the existence of hemisystems in DH(2d−1, q2) is of great interest. Now, DW(2d−1, q) can
be embedded in DH(2d− 1, q), and lines in both geometries contain the same number of
points. This implies that the intersection of an m-ovoid of DH(2d− 1, q) with the points
of DW(2d− 1, q) is an m-ovoid of DW(2d− 1, q). See also [7]. Therefore, the existence of
a hemisystem in DH(2d − 1, q2) implies the existence of a hemisystem in DW(2d − 1, q),
and the existence question can be reframed for DW(2d − 1, q). In this paper, we extend
the work of Segre, Cameron – Goethals – Seidel, and Vanhove by showing that the only
nontrivial m-ovoids of certain dual polar spaces are hemisystems.

Theorem 1.1. The only nontrivial m-ovoids that exist in DQ(2d, q), DW(2d − 1, q)
and DH(2d− 1, q2), for d > 3, are hemisystems (i.e., m = (q + 1)/2).

Theorem 1.1 follows from a more general, but perhaps more technical result, on m-
ovoids of regular near polygons. Our main theorem is:

Theorem 1.2. Let S be a regular near 2d-gon of order (s, t2, t3, . . . , td−1, t) satisfying

ti + 1 =
(si + (−1)i)(ti−1 + 1 + (−1)isi−2)

si−2 + (−1)i

for some 3 6 i 6 d. If a nontrivial m-ovoid of S exists, then it is a hemisystem.

De Bruyn and Vanhove [9, Theorem 3.2] prove that a regular near 2d-gon (with
s, d > 2) satisfies

(1)
(si − 1)(ti−1 + 1− si−2)

si−2 − 1
6 ti + 1 6

(si + 1)(ti−1 + 1 + si−2)

si−2 + 1

for all i ∈ {3, . . . , d}, and that a finite regular near 2d-gon with s > 2 and d > 3
which attains the lower bound for i = 3 is isomorphic to DQ(2d, s), DW(2d − 1, s) or
DH(2d − 1, s2), where s is a prime power [9, Theorem 3.5]. Note that the hypothesis of
Theorem 1.2 is valid when the the upper bound is met for i even, or when the lower bound
is met for i odd, in the De Bruyn–Vanhove bounds (1). Theorem 1.1 follows directly from
[9, Theorem 3.5] and Theorem 1.2.

2. Background

This section contains information on some of the key facts about regular near 2d-gons
and m-ovoids, which will be useful later in the paper. For greater depth, we refer the
reader to Brouwer, Cohen and Neumaier’s book [2].

Let Γ be a connected, undirected graph without loops. The distance between two
vertices x and y, denoted d(x, y), is the shortest path length from x to y, and the maximum
distance between any two given points is the diameter d of Γ. The set of all vertices at
distance i from x is denoted by Γi(x). A graph Γ of diameter d is said to be distance
regular if there exist numbers bi for i ∈ {0, . . . , d− 1} and ci for i ∈ {1, . . . , d} such that
bi = |Γi+1(x) ∩ Γ1(y)| and ci = |Γi−1(x) ∩ Γ1(y)| for all x and y at distance i in Γ. If a
graph is distance regular then there also exist constants ai = |Γi(x) ∩ Γ1(y)| for all x and
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y at distance i with i ∈ {1, . . . , d − 1}. We call ai, bi and ci the intersection numbers of
Γ.

Given x and y at distance l, there are pli,j vertices that are at distance i from x

and distance j from y. Furthermore, pi−1
1,i = bi−1, pi1,i = ai, pi+1

1,i = ci+1 and pli,j =

plj,i. Therefore, combining [2, Lemma 4.1.7] and [2, §4.1 (10)], we may calculate pli+1,j

recursively using the following formula.

pli+1,j =
pl−1
i,j cl + pli,jal + pl+1

i,j bl − pli−1,jbi−1 − pli,jai

ci+1

.

We also define the i-distance valencies of the graph, ki := p0i,i for i ∈ {0, 1, . . . , d} (and so
k1 = s(t+ 1)).

Given a graph Γ of diameter d, for any distance i, the adjacency matrix Ai is the
matrix indexed by the vertices of Γ, with entries

(Ai)xy =

{

1 if d(x, y) = i

0 otherwise.

The set of adjacency matrices {A0, A1, . . . , Ad} forms a basis for the Bose–Mesner algebra
for Γ which also has a unique basis of minimal idempotents {E0, E1, . . . , Ed} (see [2,
§2.6]). As a result, the Bose–Mesner algebra can be decomposed into mutually orthogonal
subspaces corresponding to the image of each minimal idempotent. By convention, E0 has
rank 1, that is, E0 =

1
n
J where J is the ‘all ones’ matrix and n is the number of vertices

of Γ. The dual degree set of a vector v is the set of indices of the minimal idempotents
Ei such that vEi 6= 0 and i 6= 0. Two vectors are called design-orthogonal when their
dual degree sets are disjoint. The following lemma about design-orthogonal vectors will
be useful in the proof of the main theorem. It can be found in [10, Theorem 6.7], and is
given here with a proof for completeness.

Lemma 2.1. If f and g are design-orthogonal vectors, then f · g = (f ·1)(g·1)
n

, where 1
is the ‘all-ones’ vector.

Proof. Let α = f ·1

1·1
and β = g·1

1·1
. So (f − α1) · 1 = 0 and (g − β1) · 1 = 0. Since

f and g are design-orthogonal, (f − α1) and (g − β1) belong to a pair of direct sums of
eigenspaces that intersect trivially and hence (f − α1) · (g − β1) = 0. Thus

f · g = α(g · 1) + β(f · 1)− αβ1 · 1

=
(f · 1)(g · 1)

1 · 1
+

(f · 1)(g · 1)

1 · 1
−

(f · 1)(g · 1)

1 · 1

=
(f · 1)(g · 1)

n
. �

A near polygon, or near 2d-gon (d > 2) is an incidence geometry such that

(1) every two points lie on at most one line,
(2) any two points are at most at distance d in the collinearity graph, and
(3) given a line ℓ and a point P there is a unique point Q on ℓ which is nearest to P

with respect to distance in the collinearity graph.

A near polygon that has t+1 lines on each point and s+1 points on each line is said
to have order (s, t). If in a near polygon of order (s, t) there also exist constants ti for
i ∈ {0, . . . , d} such that there are ti + 1 lines on y containing a point at distance i − 1
from x whenever two points x and y are at distance i, then such a near polygon is called
regular, with parameters (s, t2, t3, . . . , td−1, t). Examples of regular near 2d-gons include
the finite dual polar spaces; the point-line geometries obtained by taking the maximal
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totally isotropic subspaces of a finite polar space for the points, and the next-to-maximal
subspaces for the lines. We refer the reader to [6, §1.9.5] for more on the definition of a
dual polar space. In this paper, we will only be concerned with DW(2d− 1, s), DQ(2d, s),
and DH(2d− 1, s2).

The finite regular near polygons are exactly the near polygons with distance regular
collinearity graphs. Moreover, for all i ∈ {0, . . . , d}

ai = (s− 1)(ti + 1), bi = s(t− ti), ci = ti + 1.

By definition, t0 = −1 and t1 = 0. In a regular near 2d-gon with parameters (s, t2, t3, . . . , td−1, d),
we have the following relations.

Lemma 2.2. [2, §4.1 (7); (9); (1c)]

ki = ki−1
bi−1

ci
= ski−1

t− ti−1

ti + 1
(1 6 i 6 d),

pli,jkl = pil,jki (0 6 i, j, ℓ, d),

pi+1
1,i = ci+1 (1 6 i 6 d).

Lemma 2.2 gives the following corollary.

Corollary 2.3. Let 1 6 i 6 d. Then

p1i,i−1 =
kici
k1

=
ki(ti + 1)

s(t+ 1)
.

The following lemma follows directly from the definition of an m-ovoid and the fact
that there are s+1 points on every line of a finite regular near 2d-gon S with parameters
(s, t2, . . . , td−1, t).

Lemma 2.4. The complement of an m-ovoid of S is a (s+ 1−m)-ovoid.

Lemma 2.5 ([18, Lemma 5]). If O is an m-ovoid of S, then for every i ∈ {0, 1, . . . , d}
and x ∈ O,

|Γi(x) ∩ O| = ki

(

m

s+ 1
+

(

−
1

s

)i(

1−
m

s+ 1

))

.

By Lemmas 2.4 and 2.5, we have the following:

Corollary 2.6. If O is an m-ovoid of S, then for every i ∈ {0, 1, . . . , d} and x /∈ O,

|Γi(x) ∩O| = ki
m

s+ 1

(

1−

(

−1

s

)i
)

.

3. Proof of the main result

We now prove Theorem 1.2. Recall that we are assuming that

ci = ti + 1 =
(si + (−1)i)(ci−1 + (−1)isi−2)

si−2 + (−1)i

for some 3 6 i 6 d.

Proof. Let O be a nontrivial m-ovoid of S. Throughout this proof, we will let χO

denote the characteristic vector of O with respect to the set of points P:

(χO)y =

{

1 if y ∈ O

0 otherwise.
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A simple double counting argument shows that |O| is equal to m|L|/(t + 1) where
L is the set of lines of S. If we also count flags (i.e., point-line incident pairs), then
|P|(t+ 1) = |L|(s+ 1) where P is the set of points of S, and hence

|O| =
mn

s+ 1
,

where n = |P|.
Recall that 3 6 i 6 d. Now we fix an element x /∈ O and count pairs (y, z) of elements

of O such that d(x, y) = i and either d(y, z) = i − 1 and d(x, z) = 1, or d(y, z) = 1 and
d(x, z) = i− 1.

Let x and y be two points at distance i. Define vx,y as in [9, Theorem 3.2(b)],

vx,y := s(ci−1 + (−1)isi−2)(χx + χy) + χΓ1(x)∩Γi−1(y) + χΓi−1(x)∩Γ1(y).

Note that

vx,y · 1 = 2(s(ci−1 + (−1)isi−2) + pi1,i−1) = 2(s(ci−1 + (−1)isi−2) + ci)

and furthermore that vx,y and χO are design-orthogonal [9, Theorem 3.2] and hence by
Lemma 2.1,

µ := vx,y · χO = 2(s(ci−1 + (−1)isi−2) + ci)m/(s+ 1).

Let Γ be the collinearity graph of S.
Counting first y and then z, the number of pairs is

∑

y∈O∩Γi(x)

(|Γ1(x) ∩ Γi−1(y) ∩O|+ |Γi−1(x) ∩ Γ1(y) ∩O|)

=
∑

y∈O∩Γi(x)

(vx,y − s(ci−1 + (−1)isi−2)(χx + χy)) · χO

=|O ∩ Γi(x)|(µ− s(ci−1 + (−1)isi−2))

=|O ∩ Γi(x)|

(

2 (s(ci−1 + (−1)isi−2) + ci)m

s+ 1
− s(ci−1 + (−1)isi−2)

)

=|O ∩ Γi(x)|

(

2cims− (s+ 1− 2m) (ci−1s
2 + (−1)isi)

s(s+ 1)

)

.

Now, by Corollary 2.6 and Lemma 2.2,

|O ∩ Γi(x)|ci = kici
m

s+ 1

(

1−

(

−
1

s

)i
)

= ski−1(t− ti−1)
m

s+ 1

(

1−

(

−
1

s

)i
)

and hence the number of pairs (y, z) is

(2)
mki−1(t− ti−1)

s+ 1

(

1−

(

−
1

s

)i
)

2cims− (s + 1− 2m)
(

ci−1s
2 + (−1)isi

)

ci(s+ 1)
.

Now we consider the pairs the opposite way, namely counting z then y. The number
of pairs (z, y) is equal to

∑

z∈O∩Γ1(x)

|Γi−1(z) ∩ Γi(x) ∩O|+
∑

z∈O∩Γi−1(x)

|Γ1(z) ∩ Γi(x) ∩O|.

Suppose d(z, x) = i − 1. There are t + 1 lines on z, and the set of points incident with
these lines, other than the point z itself, form Γ1(z). There are ti−1+1 lines on z incident
with a unique point at distance i − 2 from x, and the remaining points on these lines
are at distance i − 1 from x. Moreover, z is the unique nearest point to x with distance
i− 1 for the remaining t− ti−1 lines, and hence any other point on these lines must have
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distance i from x. Since z is in O, there are m − 1 additional points of O on each such
line. Therefore,

|Γ1(z) ∩ Γi(x) ∩ O| = (t− ti−1)(m− 1).

Now suppose d(z, x) = 1. We will compute |Γi−1(z) ∩ Γi(x) ∩O|. Take z ∈ O ∩ Γ1(x)
and consider a point w ∈ Γi−2(z) ∩ Γi−1(x). Note that any point y is collinear with some
such point w, giving rise to the following equation:

∑

y∈Γi−1(z)∩Γi(x)∩O

|Γi−2(z) ∩ Γi−1(x) ∩ Γ1(y)| =
∑

w∈Γi−2(z)∩Γi−1(x)∩O

|Γi−1(z) ∩ Γi(x) ∩ O ∩ Γ1(w)|(3)

+
∑

w∈Γi−2(z)∩Γi−1(x)∩Oc

|Γi−1(z) ∩ Γi(x) ∩ O ∩ Γ1(w)|

where Oc is the complement of O within the set of points of S.
Let ℓ be a line through w. There is a point on ℓ which is the unique closest point to

x. If this point is w, then every other point must be at distance i from x. If this point
is not w, then it must be distance i − 2 from x, and every other point on ℓ is distance
i− 1 from x. There are ti−1 + 1 lines on w with a unique point at distance i− 2 from x.
Hence there are t − ti−1 lines ℓ′ for which w is the unique nearest point to x and every
other point on ℓ′ is at distance i from x. Moreover, note that if a point y is at distance
i from x, then it cannot be distance i − 2 from z, since d(x, z) = 1, and thus any point
other than w on any line ℓ′ is in Γi−1(z) ∩ Γi(x) ∩ Γ1(w). There are m− 1 such points in
O when w ∈ O, otherwise there are m such points in O.

There are ti−1 lines on any point y which have a unique point at distance i− 2 from
z, and hence also at distance i − 1 from x. Recalling that |Γi−2(z) ∩ Γi−1(x)| = p1i−1,i−2,
our Equation (3) becomes:

|Γi−1(z) ∩ Γi(x) ∩O|(ti−1 + 1) = |Γi−2(z) ∩ Γi−1(x) ∩O|(t− ti−1)(m− 1)

+ |Γi−2(z) ∩ Γi−1(x) ∩ Oc|(t− ti−1)m

= |Γi−2(z) ∩ Γi−1(x) ∩O|(t− ti−1)(m− 1)

+ (p1i−1,i−2 − |Γi−2(z) ∩ Γi−1(x) ∩ O|)(t− ti−1)m

= p1i−1,i−2(t− ti−1)m− |Γi−2(z) ∩ Γi−1(x) ∩O|(t− ti−1).

Hence we obtain an iterative formula,

|Γi−1(z) ∩ Γi(x) ∩ O| = p1i−1,i−2

t− ti−1

ti−1 + 1
m−

t− ti−1

ti−1 + 1
|Γi−2(z) ∩ Γi−1(x) ∩O|,

which, with the help of Lemma 2.2 and Corollary 2.3, we can write as a recurrence relation

sfi = m− fi−1, f1 = 1

where fi :=
1

p1
i,i−1

|Γi−1(z) ∩ Γi(x) ∩ O| for all i > 1. (Note: |Γ0(z) ∩ Γ1(x) ∩ O| = 1 and

p11,0 = 1). Therefore, by the elementary theory of recurrence relations, we have

fi =
m− s

(

−1
s

)i
(−m+ s+ 1)

s+ 1
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for all i > 1. Hence, by Corollary 2.3,

|Γi−1(z) ∩ Γi(x) ∩ O| = p1i,i−1

(

m− s
(

−1
s

)i
(−m+ s + 1)

s+ 1

)

=
ki−1(t− ti−1)

t + 1

(

m− s
(

−1
s

)i
(−m+ s+ 1)

s+ 1

)

=
ki−1(t− ti−1)

si−1(t+ 1)

(

m

s+ 1

(

si−1 + (−1)i−2
)

+ (−1)i−1

)

.

Now, making use of Corollary 2.6, we sum our two terms together:

∑

z∈O∩Γ1(x)

|Γi−1(z) ∩ Γi(x) ∩ O|+
∑

z∈O∩Γi−1(x)

|Γ1(z) ∩ Γi(x) ∩O|

=|O ∩ Γ1(x)||Γi−1(z) ∩ Γi(x) ∩ O|+ |O ∩ Γi−1(x)||Γ1(z) ∩ Γi(x) ∩ O|

=s(t+ 1)
m

s+ 1

(

1 +
1

s

)

ki−1(t− ti−1)

si−1(t+ 1)

(

m

s+ 1

(

si−1 + (−1)i−2
)

+ (−1)i−1

)

+ ki−1
m

s+ 1

(

1−

(

−
1

s

)i−1)

(t− ti−1)(m− 1)

=
mki−1(t− ti−1)

s + 1

(

m

(

1−

(

−
1

s

)i−1
)

+

(

−1

s

)i−1

(s+ 1) + (m− 1)

(

1−

(

−
1

s

)i−1
))

and therefore, the number of pairs (z, y) is

(4)
mki−1(t− ti−1)

s+ 1

(

2m− 1 +

(

−1

s

)i−1

(s− 2m+ 2)

)

.

Equating the two counts, (2) and (4) yields

(

1−

(

−
1

s

)i
)

2cims− (s+ 1− 2m) (ci−1s
2 + (−1)isi)

ci(s+ 1)

= 2m− 1 +

(

−1

s

)i−1

(s− 2m+ 2).

Taking the difference of each side of the above equation and factoring gives

s−i(s+ 1− 2m) (ci (s
i + (−1)i(s+ 2)s) + ((−1)i − si) (ci−1s

2 + (−1)isi))

ci(s+ 1)
= 0

and hence

(5) (s+ 1− 2m)
(

ci
(

si + (−1)i(s+ 2)s
)

+
(

(−1)i − si
) (

ci−1s
2 + (−1)isi

))

= 0

Now by assumption,

ci−1s
2 + (−1)isi = ci

si + (−1)is2

si + (−1)i
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and hence

ci
(

si + (−1)i(s+ 2)s
)

+
(

(−1)i − si
) (

ci−1s
2 + (−1)isi

)

= ci

(

si + (−1)i(s+ 2)s+
(

(−1)i − si
) si + (−1)is2

si + (−1)i

)

= ci
2(−1)i(s+ 1) (si + (−1)is)

si + (−1)i
.

Since i > 1, we have si + (−1)is 6= 0, and therefore, Equation (5) becomes m = (s +
1)/2. �

4. Further results and computation

Theorem 1.1 leaves open the natural question of whether there exist hemisystems of
DQ(6, q), DW(5, q) and DH(5, q2). Firstly, De Bruyn and Vanhove announced in confer-
ence presentations that there are no hemisystems of DW(5, 3), and that there is a unique
example for DQ(6, 3). We thank the referee and Michel Lavrauw for mentioning these
results to us. For small values of (odd) q, we have found examples for DQ(6, q), and
we have listed the known examples in Table 1. In particular, we could show by using
the computer algebra system GAP [11], a package FinInG [1], and the mixed-integer
programming software Gurobi [12] that there is a unique example up to equivalence in
DQ(6, 3). For DQ(6, 5), there were numerous examples found admitting an element of
order 5 or 9, but we were unable to enumerate them all.

q Stabiliser Number up to equivalence

3 2× A5 1
5 D60 4

D20 16

Table 1. Some known examples of hemisystems of DQ(6, q), for small q.

For DW(5, q), it seems the situation is different, despite its combinatorial parame-
ters being identical to those of DQ(6, q). By computer, we showed that there are no
hemisystems of DW(5, q) for q ∈ {3, 5}. We make the following conjectures:

Conjecture 4.1. There are no hemisystems of DW(5, q), for all prime powers q.

If true, this would also imply that there are no hemisystems of DH(5, q2), for all prime
powers q, answering a problem posed by Vanhove [19, Appendix B, Problem 7].

Conjecture 4.2. For each odd prime power q, there exists a hemisystem of DQ(6, q).
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