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AN ASSMUS–MATTSON THEOREM FOR CODES OVER

COMMUTATIVE ASSOCIATION SCHEMES

JOHN VINCENT S. MORALES AND HAJIME TANAKA

Abstract. We prove an Assmus–Mattson-type theorem for block codes where
the alphabet is the vertex set of a commutative association scheme (say, with s

classes). This in particular generalizes the Assmus–Mattson-type theorems for
Z4-linear codes due to Tanabe (2003) and Shin, Kumar, and Helleseth (2004),
as well as the original theorem by Assmus and Mattson (1969). The weights
of a code are s-tuples of non-negative integers in this case, and the conditions
in our theorem for obtaining t-designs from the code involve concepts from
polynomial interpolation in s variables. The Terwilliger algebra is the main
tool to establish our results.

1. Introduction

We begin by recalling the famous Assmus–Mattson theorem which relates linear
codes and combinatorial designs:

Theorem 1.1 (Assmus and Mattson [1, Theorem 4.2]). Let C be a linear code of
length n over Fq with minimum weight δ. Let C⊥ denote the dual code of C, with
minimum weight δ∗. Suppose that an integer t (1 6 t 6 n) is such that there are at
most δ − t weights of C⊥ in {1, 2, . . . , n− t}, or such that there are at most δ∗ − t
weights of C in {1, 2, . . . , n− t}. Then the supports of the words of any fixed weight
in C form a t-design (with possibly repeated blocks).

We remark that [1, Theorem 4.2] also includes a criterion for obtaining simple t-
designs, but we will not pay much attention in this paper to the simplicity of the
resulting designs. There are several proofs and strengthenings of Theorem 1.1; see,
e.g., [11, 10, 31, 2, 35, 23, 37]. The purpose of this paper is to establish a theorem
which unifies many of the known generalizations and extensions of Theorem 1.1.

Constructing t-designs from codes received renewed interest when Gulliver and
Harada [17] and Harada [18] found new 5-designs by computer from the lifted Golay
code of length 24 over Z4 (among others). Their constructions were later explained
and generalized further by Bonnecaze, Rains, and Solé [6]. Motivated by these
results, Tanabe [34] obtained an Assmus–Mattson-type theorem for Z4-linear codes
with respect to the symmetrized weight enumerator. Tanabe’s theorem can indeed
capture the 5-designs from the lifted Golay code over Z4, but the conditions in his
theorem involve finding the ranks of matrices having quite complicated entries, so
that it is hard to verify the conditions without the help of a computer. Tanabe
[36] then presented a simpler version of his theorem, and we can easily check its
conditions by hand for the lifted Golay code over Z4.
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To be somewhat concrete, by an Assmus–Mattson-type theorem, we mean in this
paper a theorem which enables us to find t-designs by just looking at some kind
of weight enumerator of a code (plus a bit of extra information in some cases, e.g.,
linearity). Such a theorem is not always the best way to estimate the parameter t
of the resulting designs as it does not take into account the structure of the code
at all (cf. Remark 5.5), but instead it has a great advantage in its wide range of
applicability.

When working with the Hamming weight enumerator as in Theorem 1.1, we are
dealing with codes in the Hamming association schemes. (Formal definitions will
begin in Section 2.) Hamming association schemes are examples of metric and
cometric association schemes, and Theorem 1.1 can be interpreted and generalized
from this point of view; cf. [37]. On the other hand, in situations where we focus
on a more complicated type of weight enumerator of a block code as in [34, 36], we
think of the code in question (say, of length n) as lying in a structure much finer
than a Hamming association scheme; that is to say, the alphabet itself naturally
becomes the vertex set of a commutative association scheme with s classes where
s > 2, and we consider its extension of length n. Hamming association schemes
are the same thing as extensions of 1-class (i.e., trivial) association schemes, but if
s > 2 then its extensions are no longer metric nor cometric.

In this paper, we prove a general Assmus–Mattson-type theorem for codes in
extensions of arbitrary commutative association schemes. Our main results are
Theorem 3.1 and Supplements 3.2–3.4. In general, the weights of a code take
the form α = (α1, α2, . . . , αs), where the αi are non-negative integers such that
∑s

i=1 αi 6 n. We count the number of weights in a given interval when s = 1 as in
Theorem 1.1, but if s > 2 then instead we speak of the minimal degree of subspaces
of the polynomial ring R[ξ1, ξ2, . . . , ξs] which allow unique Lagrange interpolation
with respect to those weights (which are lattice points in Rs) contained in a given
region. When specialized to the case of Z4-linear codes with the symmetrized weight
enumerator as in [34, 36], the association scheme on the alphabet Z4 has 2 classes
R1 and R2, together with the identity class R0, defined by

(x, y) ∈ Ri ⇐⇒ y − x = ±i (mod4) (x, y ∈ Z4)

for i ∈ {0, 1, 2}, and our results give a slight extension of Tanabe’s theorem in [36].
The Assmus–Mattson-type theorem for Z4-linear codes with the Hamming weight
enumerator due to Shin, Kumar, and Helleseth [30] can also be recovered. To prove
our results, we make heavy use of the representation theory of the Terwilliger algebra
[40, 41, 42], which is a non-commutative semisimple matrix C-algebra attached to
each vertex of an association scheme. See, e.g., [29, 15, 37, 3] for more applications
of the Terwilliger algebra to coding theory and design theory.

The layout of this paper is as follows. Section 2 collects necessary notation,
definitions, and results concerning commutative association schemes. In Section 3,
we state our main results. Section 4 is devoted to their proofs. Finally, we discuss
a number of examples in Section 5.

2. Preliminaries

We refer the reader to [12, 4, 9, 13, 25] for more background information. In this
paper, N will denote the set of non-negative integers:

N = {0, 1, 2, . . .}.
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2.1. Commutative association schemes and their Terwilliger algebras. Let
X be a finite set, and let V be a complex vector space with a distinguished basis
{x̂ : x ∈ X} and a Hermitian inner product 〈x̂, ŷ〉 = δxy (x, y ∈ X). For every

subset C of X , we let Ĉ =
∑

x∈C x̂ ∈ V denote its characteristic vector. We will
naturally identify End(V ) with the C-algebra of complex matrices with rows and
columns indexed by X . The adjoint (or conjugate-transpose) of A ∈ End(V ) will
be denoted by A†. Let R = {R0, R1, . . . , Rs} be a set of non-empty binary relations
on X . For each i, let Ai ∈ End(V ) be the 0-1 adjacency matrix of the graph (X,Ri)
(directed, in general). The pair (X,R) is called a commutative association scheme
with s classes if

(AS1) A0 = I, the identity matrix;
(AS2)

∑s
i=0 Ai = J , the all ones matrix;

(AS3) A†
i ∈ {A0, A1, . . . , As} for 0 6 i 6 s;

(AS4) AiAj = AjAi ∈ M :=
∑s

k=0 CAk for 0 6 i, j 6 s.

For the rest of this paper, we will always assume that (X,R) is a commutative
association scheme with s classes. It follows from (AS1), (AS2), and (AS4) that
the linear subspace M of End(V ) is an (s+1)-dimensional commutative C-algebra,
called the Bose–Mesner algebra of (X,R). By (AS3), M is closed under †, so that
it is semisimple and has a basis {Ei}si=0 consisting of the primitive idempotents,
i.e., EiEj = δijEi,

∑s
i=0 Ei = I. We will always set

E0 = |X |−1J.

We note that the Ei are Hermitian positive semidefinite matrices. By (AS2), M
is also closed under entrywise (or Hadamard or Schur) multiplication, denoted ◦.
The Ai are the primitive idempotents of M with respect to this multiplication, i.e.,
Ai ◦Aj = δijAi,

∑s
i=0 Ai = J .

The intersection numbers pkij and the Krein parameters qkij (0 6 i, j, k 6 s) of
(X,R) are defined by the equations

AiAj =

s
∑

k=0

pkijAk, Ei ◦ Ej = |X |−1
s
∑

k=0

qkijEk.

Clearly, the pkij are non-negative integers. On the other hand, since Ei ◦ Ej (being

a principal submatrix of Ei⊗Ej) is positive semidefinite, it follows that the qkij are
real and non-negative.

The change-of-basis matrices P and Q are defined by

Ai =
s
∑

j=0

PjiEj , Ei = |X |−1
s
∑

j=0

QjiAj . (1)

In particular,

PQ = QP = |X |I. (2)

We refer to P and Q as the first and the second eigenmatrix of (X,R), respectively.
Note that P0i is the degree (both in and out) of the regular graph (X,Ri), and that
Q0i is the rank of Ei. Moreover, we have

Pi0 = Qi0 = 1 (0 6 i 6 s). (3)
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We recall the Terwilliger algebra. Fix a “base vertex” x0 ∈ X , and define the
diagonal matrices E∗

i = E∗
i (x0), A

∗
i = A∗

i (x0) (0 6 i 6 s) in End(V ) by

(E∗
i )xx = (Ai)x0x, (A∗

i )xx = |X |(Ei)x0x (x ∈ X).

Note that E∗
i E

∗
j = δijE

∗
i ,
∑s

i=0 E
∗
i = I, and moreover

A∗
iA

∗
j =

s
∑

k=0

qkijA
∗
k, A∗

i =

s
∑

j=0

QjiE
∗
j .

The E∗
i and the A∗

i are called the dual idempotents and the dual adjacency matrices
of (X,R) with respect to x0, respectively. They form two bases of the dual Bose–
Mesner algebra M∗ = M∗(x0) of (X,R) with respect to x0. The Terwilliger (or
subconstituent) algebra T = T (x0) of (X,R) with respect to x0 is the C-subalgebra
of End(V ) generated by M and M∗ [40, 41, 42]. The following are relations in T
(cf. [40, Lemma 3.2]):

E∗
i AjE

∗
k = 0 ⇐⇒ pkij = 0; EiA

∗
jEk = 0 ⇐⇒ qkij = 0. (4)

Since T is closed under †, it is semisimple and any two non-isomorphic irreducible
T -modules in the standard module V are orthogonal. Define a partition

X = X0 ⊔X1 ⊔ · · · ⊔Xs (5)

by

Xi = {x ∈ X : (x0, x) ∈ Ri} (0 6 i 6 s).

Then, since X̂i = A†
i x̂0 = E∗

i X̂ for every 0 6 i 6 s, it is immediate to see that the
(s+ 1)-dimensional subspace

s
∑

i=0

CX̂i = Mx̂0 = M∗X̂

is an irreducible T -module, called the primary T -module. It is the unique irreducible
T -module in V containing the 1-dimensional subspaces E0V and E∗

0V .
Let C be a subset of X . To avoid triviality, we call C a code if 1 < |C| < |X |.

For the moment, assume that C is a code. The inner distribution of C is the vector
a = (a0, a1, . . . , as) ∈ Rs+1 defined by

ai = |C|−1〈Ĉ, AiĈ〉 = |C|−1 · |Ri ∩ (C × C)| (0 6 i 6 s).

Observe that (cf. (2), (3))

a0 = 1,
s
∑

i=0

ai = |C|, (aQ)0 = |C|,
s
∑

i=0

(aQ)i = |X |.

Clearly, the ai are non-negative. On the other hand, from (1) it follows that

〈Ĉ, EiĈ〉 = |X |−1|C| (aQ)i (0 6 i 6 s). (6)

Since the Ei are positive semidefinite, it follows that the (aQ)i are also non-negative.
Delsarte’s famous linear programming bound [12] on the sizes of codes is based
on this simple observation. The vector aQ ∈ Rs+1 is often referred to as the
MacWilliams transform of a. We remark the following:

(aQ)i = 0 ⇐⇒ EiĈ = 0.
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2.2. Translation association schemes. Suppose that X is endowed with the
structure of an abelian group (written additively) with identity element 0. We call
(X,R) a translation association scheme [9, §2.10] if for all 0 6 i 6 s and z ∈ X ,
(x, y) ∈ Ri implies (x+ z, y + z) ∈ Ri.

For the rest of this section, assume that (X,R) is a translation association
scheme. In this context, we will always choose 0 as the base vertex. (Note that the
automorphism group of (X,R) is transitive on X .) Observe that

Ri = {(x, y) ∈ X ×X : y − x ∈ Xi} (0 6 i 6 s).

Let X∗ be the character group of X with identity element ι. To each ε ∈ X∗ we
associate the vector

ε̂ = |X |−1/2
∑

x∈X

ε(x) x̂ ∈ V,

so that

〈x̂, ε̂〉 = |X |−1/2ε(x) (x ∈ X, ε ∈ X∗). (7)

Note that the ε̂ form an orthonormal basis of V by the orthogonality relations for
the characters. Moreover, it follows that

Aiε̂ =

(

∑

x∈Xi

ε(x)

)

ε̂ (0 6 i 6 s, ε ∈ X∗).

This shows that each of the ε̂ is an eigenvector for M , and hence belongs to one of
the EiV . Thus, we have a partition

X∗ = X∗
0 ⊔X∗

1 ⊔ · · · ⊔X∗
s ,

given by

X∗
i = {ε ∈ X∗ : ε̂ ∈ EiV } (0 6 i 6 s).

Note that X∗
0 = {ι}, and that

Ei =
∑

ε∈X∗
i

ε̂ ε̂† (0 6 i 6 s). (8)

Define the set R∗ = {R∗
0, R

∗
1, . . . , R

∗
s} of non-empty binary relations on X∗ by

R∗
i = {(ε, η) ∈ X∗ ×X∗ : ηε−1 ∈ X∗

i } (0 6 i 6 s).

Then it follows from the orthogonality relations and (8) that

A∗
i =

∑

(ε,η)∈R∗
i

ε̂ η̂† (0 6 i 6 s).

In other words, the matrix representing A∗
i with respect to the orthonormal basis

{ε̂ : ε ∈ X∗} of V is precisely the 0-1 adjacency matrix of the graph (X∗, R∗
i ). It

turns out that the pair (X∗,R∗) is again a translation association scheme, called the
dual of (X,R). In particular, the qkij are the intersection numbers of (X∗,R∗), so
that these are again non-negative integers in this case. We also note that (X∗,R∗)
has eigenmatrices P ∗ = Q and Q∗ = P , and that

Pji =
∑

x∈Xi

ε(x) (ε ∈ X∗
j ), Qji =

∑

ε∈X∗
i

ε(x) (x ∈ Xj).

We will view V together with the basis {ε̂ : ε ∈ X∗} as the standard module for
(X∗,R∗), and choose ι as the base vertex.



6 JOHN VINCENT S. MORALES AND HAJIME TANAKA

A code C in X is called an additive code if it is a subgroup of X . Assume for
the moment that C is an additive code, and let a = (a0, a1, . . . , as) be its inner
distribution. Observe that

ai = |Xi ∩ C| (0 6 i 6 s),

and hence a is also called the weight distribution of C in this case. The dual code
of C is the subgroup C⊥ in X∗ defined by

C⊥ = {ε ∈ X∗ : ε(x) = 1 for all x ∈ C}.

From (7) it follows that

Ĉ = |X |−1/2 |C|
∑

ε∈C⊥

ε̂. (9)

In other words, Ĉ is a scalar multiple of the characteristic vector of C⊥ with respect
to the basis {ε̂ : ε ∈ X∗}. We now observe that

〈Ĉ, EiĈ〉 = |X |−1|C|2 · |X∗
i ∩ C⊥| (0 6 i 6 s). (10)

In particular, combining this with (6), we have

|X∗
i ∩ C⊥| = |C|−1(aQ)i (0 6 i 6 s),

so that |C|−1(aQ) gives the weight distribution of C⊥.
The group operation on X∗ is multiplicative. In many cases (cf. Section 5), we

fix a (non-canonical) isomorphism X → X∗ (x 7→ εx) such that

εx(y) = εy(x) (x, y ∈ X). (11)

Then the dual code of an additive code in X becomes again an additive code in X .
See [12, Chapter 6], [9, §2.10], and [25, §6] for more details about translation

association schemes.

2.3. Extensions of commutative association schemes and Hamming asso-
ciation schemes. For the rest of this paper, we will fix an integer n at least 2. Del-
sarte [12, §2.5] gave a construction of a new commutative association scheme from
(X,R) with vertex set Xn as follows. For a sequence α = (α1, α2, . . . , αs) ∈ Ns, let
|α| =

∑s
i=1 αi. For any two vertices x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Xn,

define the composition of x,y to be the vector c(x,y) = (c1, c2, . . . , cs) ∈ N
s, where

ci = |{ℓ : (xℓ, yℓ) ∈ Ri}| (1 6 i 6 s).

It is clear that |c(x,y)| 6 n. For every α ∈ N
s with |α| 6 n, define the binary

relation Rα on Xn by

Rα = {(x,y) ∈ Xn ×Xn : c(x,y) = α}.

Let

Symn(R) = {Rα : α ∈ N
s, |α| 6 n}.

Then it follows that the pair (Xn, Symn(R)) is a commutative association scheme,
called the extension of (X,R) of length n. We will identify its standard module
with V ⊗n, so that x̂ := x̂1 ⊗ x̂2 ⊗ · · · ⊗ x̂n for x = (x1, x2, . . . , xn) ∈ Xn. For every
α = (α1, α2, . . . , αs) ∈ Ns with |α| 6 n, the 0-1 adjacency matrix Aα ∈ End(V ⊗n)
of the graph (Xn,Rα) is then given by

Aα =
∑

i1,i2,...,in

Ai1 ⊗Ai2 ⊗ · · · ⊗Ain , (12)
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where the sum is over i1, i2, . . . , in ∈ N such that

{i1, i2, . . . , in} = {0n−|α|, 1α1 , 2α2 , . . . , sαs}

as multisets. In particular, the Bose–Mesner algebraM of (Xn, Symn(R)) coincides
with the nth symmetric tensor space ofM . Similar expressions hold for the primitive
idempotents, dual idempotents, and the dual adjacency matrices of (Xn, Symn(R)),
denoted henceforth by the Eα,E

∗
α, and the A∗

α, respectively. For simplicity, we
will always choose x0 := (x0, x0, . . . , x0) ∈ Xn as the base vertex. We denote the
corresponding dual Bose–Mesner algebra and the Terwilliger algebra by M∗ and
T , respectively. We also consider the partition

Xn =
⊔

α∈N
s

|α|6n

(Xn)α

corresponding to (5), i.e.,

(Xn)α = {x ∈ Xn : (x0,x) ∈ Rα}.

Let {ei : 1 6 i 6 s} be the standard basis of Rs. Then in view of (3), we have

Aei
=
∑

α∈N
s

|α|6n





s
∑

j=0

αjPji



Eα, A∗
ei

=
∑

α∈N
s

|α|6n





s
∑

j=0

αjQji



E∗
α, (13)

where α0 := n−|α|. More generally, Mizukawa and Tanaka [27] described the eigen-
matrices of (Xn, Symn(R)) in terms of certain s-variable hypergeometric orthogo-
nal polynomials which generalize the Krawtchouk polynomials. See also [22, 21].
Let p

γ
αβ (resp. qγ

αβ) denote the intersection numbers (resp. Krein parameters) of

(Xn, Symn(R)). Then, for all 1 6 i 6 s and β, γ ∈ Ns with |β|, |γ| 6 n, we have

p
γ
eiβ

6= 0 ⇐⇒ γ ∈
{

β − ej + ek : pkij 6= 0
}

, (14)

where we set e0 := 0. A similar result holds for the q
γ
eiβ

.

Let ξ = (ξ0, ξ1, . . . , ξs) be a sequence of s + 1 variables. For every α ∈ Ns with
|α| 6 n, we let

ξα = ξ
n−|α|
0 ξα1

1 ξα2

2 . . . ξαs

s . (15)

Then it follows from (12) that
(

s
∑

i=0

ξiAi

)⊗n

=
∑

α∈N
s

|α|6n

ξαAα,

and similarly for the Eα. Observe that
s
∑

i=0

ξiEi = |X |−1
s
∑

i=0

(ξQT)iAi.

Combining these comments, we have (cf. [39, 16])
∑

α∈N
s

|α|6n

ξαEα = |X |−n
∑

α∈N
s

|α|6n

(ξQT)αAα. (16)

(Here, we extend the notation (15) to the sequence ξQT as well.)
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Now, let C be a code in Xn with inner distribution a = (aα)α∈Ns, |α|6n. Consider
the polynomial wC(ξ) in R[ξ] = R[ξ0, ξ1, . . . , ξs] defined by

wC(ξ) =
∑

α∈N
s

|α|6n

aαξ
α.

Note that wC(ξ) is homogeneous of degree n. From (16) it follows that

|C|−1
∑

α∈N
s

|α|6n

〈Ĉ,EαĈ〉ξα = |X |−nwC(ξQ
T). (17)

Hence we can read which of the EαĈ vanish from the expansion of wC(ξQ
T).

Suppose for the moment that (X,R) is a translation association scheme, and that
C is an additive code in Xn. In this case, wC(ξ) is called the weight enumerator of
C. It should be remarked that (Xn, Symn(R)) and (X∗n, Symn(R∗)) are dual to
each other. By (10) and (17) we have (cf. [16])

wC⊥(ξ) = |C|−1 wC(ξQ
T).

This generalizes the well-known MacWilliams identity.
In proving our results, we also need to consider a special fusion of (Xn, Symn(R))

called the Hamming association scheme H(n, |X |), which is defined to be the exten-
sion of length n of the 1-class association scheme (X, {R0, (X ×X)\R0}). Observe
thatH(n, |X |) has n classes, and that the associated matrices as well as the partition
of the vertex setXn are parametrized by the integers 0, 1, . . . , n, i.e., Ai,Ei,E

∗
i ,A

∗
i ,

and also (Xn)i (0 6 i 6 n). We denote the corresponding Bose–Mesner algebra,
the dual Bose–Mesner algebra, and the Terwilliger algebra by MH ,M∗

H , and TH ,
respectively. Note that

A1 =

n
∑

i=0

θiEi, A∗
1 =

n
∑

i=0

θ∗iE
∗
i , (18)

where

θi = θ∗i = n(|X | − 1)− |X |i (0 6 i 6 n).

Below we collect important facts about the irreducible TH-modules, most of
which can be found in Terwilliger’s lecture notes [44]. See also [38, §5.1]. (Some of
the results hold in the wider class of metric and cometric association schemes.)

Lemma 2.1. Let W be an irreducible TH-module.

(i) A1E
∗
i W ⊂ E∗

i−1W +E∗
i W +E∗

i+1W (0 6 i 6 n), where E∗
−1 = E∗

n+1 = 0.
(ii) A∗

1EiW ⊂ Ei−1W +EiW +Ei+1W (0 6 i 6 n), where E−1 = En+1 = 0.
(iii) There are non-negative integers r and d such that

n− 2r 6 d 6 n− r, (19)

and

dimE∗
i W = dimEiW =

{

1 if r 6 i 6 r + d,

0 otherwise,
(0 6 i 6 n).

(iv) E∗
i A1E

∗
jW 6= 0 if |i− j| = 1 (r 6 i, j 6 r + d).

(v) EiA
∗
1EjW 6= 0 if |i− j| = 1 (r 6 i, j 6 r + d).
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The integers r and d in (iii) above are called the endpoint and the diameter of W ,
respectively. The integer 2r+d−n is called the displacement [43] of W . From (19)
it follows that

0 6 2r + d− n 6 n.

For every 0 6 c 6 n, let Uc be the span of the irreducible TH -modules in V ⊗n with
displacement c. Then we have

V ⊗n =

n
⊕

c=0

Uc.

This is called the displacement decomposition of V ⊗n. Terwilliger [44] showed that

U0 = (Cx̂0 + CX̂)⊗n. (20)

3. Main results

We recall some concepts from polynomial interpolation; cf. [14]. Let S be a finite
set of points in Rs. A linear subspace L of the polynomial ring R[ξ1, ξ2, . . . , ξs]
is called an interpolation space with respect to S if, for every f ∈ R[ξ1, ξ2, . . . , ξs],
there exists a unique g ∈ L such that f(z) = g(z) for all z = (z1, z2, . . . , zs) ∈ S.
It is called a minimal degree interpolation space if, moreover, this g always satisfies
deg f > deg g.

Let M (S) denote a minimal degree interpolation space with respect to S, and
let

µ(S) = max{deg f : f ∈ M (S)}.

We note that M (S) exists; see Theorem 3.5 below. Observe also that µ(S) is
well-defined, i.e., it is independent of the choice of M (S).

We retain the notation of Section 2. For x = (x1, x2, . . . , xn) ∈ Xn, let

supp(x) = {ℓ : xℓ 6= x0} ⊂ {1, 2, . . . , n}.

We call supp(x) the support of x (with respect to x0 = (x0, x0, . . . , x0)).

Theorem 3.1. Let C be a code in Xn. Let

Sr = {α ∈ N
s : r 6 |α| 6 n− r, E∗

αĈ 6= 0} (1 6 r 6 ⌊n/2⌋),

and let

δ∗ = min{i 6= 0 : EiĈ 6= 0}.

Suppose that an integer t (1 6 t 6 n) is such that

µ(Sr) < δ∗ − r (1 6 r 6 t). (21)

Then the multiset

{supp(x) : x ∈ (Xn)α ∩ C} (22)

is a t-design (with block size |α|) for every α ∈ Ns with |α| 6 n.

We use Theorem 3.1 together with the following “supplements”.

Supplement 3.2. Let C be a code in Xn. Assume that we are given in advance
a set K ⊂ Ns such that the multiset (22) is a t-design for every α ∈ K. Then the
condition (21) in Theorem 3.1 may be replaced by

µ(Sr\K) < δ∗ − r (1 6 r 6 t).
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We call a subset C of Xn a weakly t-balanced array1 over (X,R) (with respect
to x0) if, for any Λ ⊂ {1, 2, . . . , n} and γ ∈ Ns such that |γ| 6 |Λ| 6 t, the number

∣

∣

{

x ∈ C : (xℓ)ℓ∈Λ ∈ (X |Λ|)γ
}∣

∣

depends only on |Λ| and γ.
Recall that, when considering a translation association scheme, we always choose

the identity as the base vertex.

Supplement 3.3. Suppose that (X,R) is a translation association scheme, and
that C is an additive code in Xn. Assume that we are given in advance a set
L ⊂ Ns such that, for every α ∈ L, (X∗n)α ∩ C⊥ is a weakly t-balanced array over
(X∗,R∗). Then the scalar δ∗ in Theorem 3.1 may be replaced by

min{|α| : 0 6= α ∈ N
s\L, EαĈ 6= 0}. (23)

We note that, in the particular case where α ∈ Ns is of the form α = hei for
some h > 0, the condition that (X∗n)α ∩ C⊥ is a weakly t-balanced array over
(X∗,R∗) is equivalent to saying that the multiset

{supp(ε) : ε ∈ (X∗n)α ∩ C⊥}

is a t-design.
Supplement 3.4 below was inspired by [36, Theorem 2], and allows us to estimate

µ(S), and hence t, by geometrical considerations; see Section 5. It is a general result
about minimal degree interpolation spaces, so that we give a proof right after the
statement.

Supplement 3.4. Let S be a finite set of points in Rs. Suppose that there are real
scalars ziℓ (1 6 i 6 s, ℓ ∈ N), a positive integer m, and a linear automorphism
σ ∈ GL(Rs) such that zik 6= ziℓ whenever k 6= ℓ, and that

σ(S) ⊂ {(z1α1
, z2α2

, . . . , zsαs
) ∈ R

s : α ∈ N
s, |α| 6 m} . (24)

Then µ(S) 6 m.

Proof. We abbreviate zα := (z1α1
, z2α2

, . . . , zsαs
). Let Σ denote the RHS in (24).

It suffices to show that µ(Σ) 6 m. To this end, we construct an interpolation space
with respect to Σ with maximum degree at most m as follows. Let α ∈ Ns be given
with |α| 6 m, and assume that we have constructed polynomials

fβ ∈ R[ξ1, ξ2, . . . , ξs] (β ∈ N
s, |α| < |β| 6 m)

such that deg fβ 6 m and

fβ(zγ) = δβγ (γ ∈ N
s, |γ| 6 m).

Define gα ∈ R[ξ1, ξ2, . . . , ξs] by

gα =

s
∏

i=1

αi−1
∏

ℓ=0

ξi − ziℓ
ziαi

− ziℓ
,

and let

fα = gα −
∑

β∈N
s

|α|<|β|6m

gα(zβ)fβ .

1This term is meant as only provisional; cf. [33].
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Then deg fα 6 m, and it is easy to see that

fα(zγ) = δαγ (γ ∈ N
s, |γ| 6 m). (25)

Thus, by induction we obtain polynomials fα with deg fα 6 m satisfying (25) for
all α ∈ Ns with |α| 6 m. It is clear that the subspace

∑

α∈N
s

|α|6m

Rfα ⊂ R[ξ1, ξ2, . . . , ξs]

is an interpolation space with respect to Σ, and the proof is complete. �

We end this section by recalling a construction of a minimal degree interpolation
space M (S) due to de Boor and Ron [7, 8]. See also [14, §3]. For every non-zero
element f =

∑∞
i=0 fi in the ring of formal power series R[[ξ1, ξ2, . . . , ξs]] where fi is

homogeneous of degree i, let

f↓ = fi0 ,

where i0 = min{i : fi 6= 0}. We conventionally set 0↓ := 0.

Theorem 3.5 ([7, 8]). Let S be a finite set of points in R
s. Let E be the subspace

of R[[ξ1, ξ2, . . . , ξs]] spanned by the exponential functions

exp

(

s
∑

i=1

ziξi

)

((z1, z2, . . . , zs) ∈ S).

Then the subspace
∑

f∈E

Rf↓ ⊂ R[ξ1, ξ2, . . . , ξs]

is a minimal degree interpolation space with respect to S.

Theorem 3.5 immediately leads to the following formula for µ(S) which is well
suited for computer calculations:

Supplement 3.6. For every finite set S of points in Rs, the scalar µ(S) equals the
smallest m ∈ N for which the polynomials

m
∑

k=0

(

s
∑

i=1

ziξi

)k

((z1, z2, . . . , zs) ∈ S)

are linearly independent.

(Note that we just discarded the irrelevant factors 1/(k!) in the Taylor polynomials
of these exponential functions.)

4. Proofs

We begin by proving a few preliminary lemmas. Recall the space U0 spanned by
the irreducible TH -modules in V ⊗n with displacement 0. We let πU0

: V ⊗n → U0

denote the orthogonal projection onto U0. Note that πU0
is a TH -homomorphism.

Lemma 4.1. The primary T -module Mx̂0 is orthogonal to every non-primary
irreducible TH-module in U0.
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Proof. Let u0 = x̂0 and u1 = X̂ − x̂0. For every τ = (τ1, τ2, . . . , τn) ∈ {0, 1}n, let

uτ = uτ1 ⊗ uτ2 ⊗ · · · ⊗ uτn ∈ E∗
|τ |U0,

where |τ | =
∑n

ℓ=1 τℓ denotes the weight of τ . The uτ form an orthogonal basis of
U0 by (20), and we have

||uτ ||
2 = (|X | − 1)|τ |. (26)

For every α ∈ Ns with |α| 6 n, using (12) we routinely have

〈Aαx̂0,uτ 〉 = δ|τ |,|α|

(

|α|

α1, α2, . . . , αs

) s
∏

i=1

(P0i)
αi , (27)

where we recall that P0i is the degree of (X,Ri). Since

πU0
Aαx̂0 =

∑

τ∈{0,1}n

||uτ ||
−2〈Aαx̂0,uτ〉uτ ,

it follows from (26) and (27) that πU0
Aαx̂0 is a scalar multiple of

∑

τ∈{0,1}n

|τ |=|α|

uτ = A|α|x̂0 ∈ MHx̂0.

It follows that πU0
Mx̂0 = MH x̂0, as desired. �

Lemma 4.2. Let C be a non-empty subset of (Xn)k for some 0 6 k 6 n. Then
the following are equivalent:

(i) The multiset {supp(x) : x ∈ C} is a t-design.

(ii) EiπU0
Ĉ is a scalar multiple of Eix̂0 for every 0 6 i 6 t.

(iii) Ĉ is orthogonal to every non-primary irreducible TH-module in U0 with end-
point at most t.

Proof. First, we show (i)⇔ (ii). To this end, we introduce another orthogonal basis
of U0 as follows. Define v0, v1 ∈ V by

v0 = E0x̂0 = |X |−1X̂, v1 = (I − E0)x̂0 = x̂0 − |X |−1X̂. (28)

Note that

||v0||
2 = |X |−1, ||v1||

2 = 1− |X |−1, 〈v0, v1〉 = 0.

For every τ = (τ1, τ2, . . . , τn) ∈ {0, 1}n, let

vτ = vτ1 ⊗ vτ2 ⊗ · · · ⊗ vτn ∈ E|τ |U0,

where |τ | =
∑n

ℓ=1 τℓ. The vτ form an orthogonal basis of U0 by (20), and we have

||vτ ||
2 = |X |−n (|X | − 1)|τ |.

Moreover, observe that
∑

τ∈{0,1}n

|τ |=i

vτ = Eix̂0.

By these comments and since

EiπU0
Ĉ =

∑

τ∈{0,1}n

|τ |=i

||vτ ||
−2〈Ĉ,vτ 〉vτ ,

it follows that (ii) holds if and only if 〈Ĉ,vτ 〉 depends only on |τ | whenever |τ | 6 t.
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Assume that (i) holds. Let τ ∈ {0, 1}n with |τ | 6 t. From (28) it follows that

〈Ĉ,vτ 〉 = |X |−n

|τ |
∑

i=0

(−1)i(|X | − 1)|τ |−i

×
∣

∣

{

x ∈ C : | supp(τ) ∩ supp(x)| = i
}∣

∣,

which is indeed a constant depending only on |τ |, and hence (ii) holds.
Conversely, assume that (ii) holds. Let τ ∈ {0, 1}n with |τ | = t, and let

wτ = wτ1 ⊗ wτ2 ⊗ · · · ⊗ wτn ,

where w0 = X̂ = |X |v0 and w1 = x̂0 = v0 + v1. On the one hand, we have

〈Ĉ,wτ 〉 = |{x ∈ C : supp(τ) ∩ supp(x) = ∅}|. (29)

On the other hand, observe that

wτ = |X |n−t
∑

ρ

vρ,

where the sum is over ρ ∈ {0, 1}n with supp(ρ) ⊂ supp(τ). It follows that the
common value in (29) is independent of the choice of τ , and hence (i) holds.

Next, we show (ii)⇔ (iii). Observe that

EiU0 = CEix̂0 ⊥
∑

W

EiW (0 6 i 6 t), (30)

where the sum is over the non-primary irreducible TH -modules W in U0 with end-
point at most i. If (iii) holds, then the vectors EiĈ (0 6 i 6 t) are also orthogonal
to every non-primary irreducible TH -module in U0 with endpoint at most t, and
hence the vector πU0

EiĈ ∈ EiU0 vanishes on the second term of the RHS in (30)
for every 0 6 i 6 t; in other words, (ii) holds.

Conversely, let W be a non-primary irreducible TH -module in U0 with endpoint
r 6 t, and assume that Ĉ is not orthogonal to W . Let πW : V ⊗n → W be the
orthogonal projection onto W . Then we have πW Ĉ 6= 0. Let

ℓ = min{i : EiπW Ĉ 6= 0}.

By Lemma 2.1 (iii), EℓπW Ĉ spans EℓW . In view of Lemma 2.1 (ii), (v), we have

Er(A
∗
1)

ℓ−rπW Ĉ = Er(A
∗
1)

ℓ−rEℓπW Ĉ 6= 0.

Since πW is a TH-homomorphism and since Ĉ ∈ E∗
kV

⊗n, it follows from (18) that

0 6= ErπW (A∗
1)

ℓ−rĈ = (θ∗k)
ℓ−rErπW Ĉ,

i.e., we must have ℓ = r. It follows that EiπU0
Ĉ does not vanish on the second

term of the RHS in (30) when i = r, and hence (ii) fails to hold. We have now
shown (ii)⇔ (iii), and the proof is complete. �

Lemma 4.3. Let C be a non-empty subset of (Xn)α for some α ∈ Ns with |α| 6 n.
Suppose that C is a weakly t-balanced array over (X,R). Then

E∗
i πU0

M Ĉ = CAix̂0 (0 6 i 6 t).
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Proof. We fix β ∈ Ns with |β| 6 n, and consider the vector AβĈ ∈ M Ĉ. We use
the notation in the proof of Lemma 4.1. Let τ ∈ {0, 1}n with |τ | 6 t. We will use ′

and ′′ to denote objects associated with the extensions of (X,R) of lengths |τ | and
n − |τ |, respectively; e.g., A′

γ (γ ∈ Ns, |γ| 6 |τ |), A′
i (0 6 i 6 |τ |), x′

0 ∈ X |τ | for

the former. We understand that the coordinates of X |τ | and Xn−|τ | are indexed
by supp(τ) and {1, 2, . . . , n}\ supp(τ), respectively. With this notation established,
we have

Aβ =
∑

ν

A′
ν ⊗A′′

β−ν ,

where the sum is over ν ∈ Ns such that β− ν ∈ Ns, |ν| 6 |τ |, and |β− ν| 6 n− |τ |.
Observe also that

uτ = A′
|τ |x̂

′
0 ⊗ x̂′′

0 .

Hence we have

〈AβĈ,uτ 〉 =
∑

ν,ρ

gνρ ·
〈

Ĉ, (A′
ρ)

†x̂′
0 ⊗ (A′′

β−ν)
†x̂′′

0

〉

=
∑

ν,ρ

gνρ ·
∣

∣

{

x ∈ C : (xℓ)ℓ∈supp(τ) ∈ (X |τ |)ρ
}∣

∣, (31)

where the sums are over ν, ρ ∈ Ns such that |ν|, |ρ| 6 |τ |, β − ν = α− ρ ∈ Ns, and
|β − ν| 6 n− |τ |, and where we write

A′
νA

′
|τ | = A′

|τ |A
′
ν =

∑

ρ∈N
s

|ρ|6|τ |

gνρA
′
ρ.

By the assumption, the RHS in (31) depends only on |τ | 6 t, and hence it follows

that E∗
i πU0

AβĈ is a scalar multiple of Aix̂0 for every 0 6 i 6 t as in the proof

of Lemma 4.1. We have now shown that E∗
i πU0

M Ĉ is a subspace of CAix̂0 for
0 6 i 6 t. That it is non-zero and hence agrees with CAix̂0 follows from

E∗
i πU0

J⊗nĈ = |C|Aix̂0.

This completes the proof. �

4.1. Proof of Theorem 3.1. Define D∗
1 ,D

∗
2 , . . . ,D

∗
s ∈ M∗ by

D∗
i =

∑

α∈N
s

|α|6n

αiE
∗
α (1 6 i 6 s).

Observe that the D∗
i generate M∗. By (2), (3), and (13), for 1 6 j 6 s we have

s
∑

i=1

PijA
∗
ei

=
∑

α∈N
s

|α|6n

(

s
∑

h=0

αh

s
∑

i=1

QhiPij

)

E∗
α

=
∑

α∈N
s

|α|6n

(

s
∑

h=0

αh

(

|X |δhj −Qh0P0j

)

)

E∗
α

= |X |D∗
j − nP0j I

⊗n, (32)

where we have used α0 = n− |α|. In particular, the A∗
ei

also generate M∗.
Now, fix α ∈ Ns with |α| 6 n. We invoke Lemma 4.2 to show that the multiset

(22) is a t-design. Let W be a non-primary irreducible TH -module in U0 with
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endpoint r 6 t. Recall that W has diameter n− 2r. It suffices to show that E∗
αĈ is

orthogonal to W . Let πW : V ⊗n → W be the orthogonal projection onto W . First,
we show that

πWE∗
αĈ ∈

n−r
∑

i=δ∗−µr

EiW, (33)

where µr := µ(Sr). To this end, let f ∈ M (Sr) be such that

f(β) = δαβ (β ∈ Sr).

Observe that

f(D∗
1 ,D

∗
2 , . . . ,D

∗
s )−E∗

α ∈
∑

β/∈Sr

RE∗
β .

Since

W ⊂
n−r
∑

i=r

E∗
i V

⊗n

by Lemma 2.1 (iii), we have

πWE∗
βĈ = 0 unless β ∈ Sr, (34)

from which it follows that

πWE∗
αĈ = πW f(D∗

1 ,D
∗
2 , . . . ,D

∗
s)Ĉ. (35)

Let U be the orthogonal complement of the primary T -moduleMx̂0 in V ⊗n, and let
πU : V ⊗n → U be the orthogonal projection onto U . Note that πUE0 = E0πU = 0
since E0V

⊗n ⊂ Mx̂0, so that

πU Ĉ ∈
n
∑

i=δ∗

EiV
⊗n. (36)

Moreover, since πU is a T -homomorphism and since W ⊂ U by Lemma 4.1, we
have

πWB∗Ĉ = πWπUB
∗Ĉ = πWB∗πU Ĉ (B∗∈ M∗). (37)

By the definition of µr and (32), f(D∗
1 ,D

∗
2 , . . . ,D

∗
s) is written as a polynomial in

the A∗
ei

with degree at most µr. For any β, γ ∈ Ns with |β|, |γ| 6 n, we also have

EβA
∗
ei
Eγ = 0 if

∣

∣|β| − |γ|
∣

∣ > 1

by virtue of (4) and (the dual of) (14). Hence it follows from (35), (36), and (37)
that

πWE∗
αĈ ∈ πW

n
∑

i=δ∗−µr

EiV
⊗n =

n−r
∑

i=δ∗−µr

EiW.

This proves (33).

Assume now that E∗
αĈ is not orthogonal to W , i.e., πWE∗

αĈ 6= 0. Let

ℓ = min{i : EiπWE∗
αĈ 6= 0}.

By Lemma 2.1 (iii), EℓπWE∗
αĈ spans EℓW . In view of Lemma 2.1 (ii), (v), we have

Er(A
∗
1)

ℓ−rπWE∗
αĈ = Er(A

∗
1)

ℓ−rEℓπWE∗
αĈ 6= 0.

Since πW is a TH-homomorphism, it follows from (18) that

0 6= ErπW (A∗
1)

ℓ−rE∗
αĈ = (θ∗|α|)

ℓ−rErπWE∗
αĈ,
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i.e., we must have ℓ = r. However, this contradicts (33) since δ∗−µr > r. It follows

that πWE∗
αĈ = 0, and the proof is complete.

4.2. Proof of Supplement 3.2. The most important step in the proof of Theorem
3.1 was to establish (33), and the first key observation (35) in this process was based
on (34). By Lemma 4.2, (34) can now be improved as follows:

πWE∗
βĈ = 0 unless β ∈ Sr\K.

Hence it suffices to interpolate on Sr\K, as desired.

4.3. Proof of Supplement 3.3. At the end of the proof of Theorem 3.1, we used
(33) and the assumption δ∗ − µr > r to show that πWE∗

αĈ = 0. Observe that we
arrive at the same conclusion if we can instead prove that

πWE∗
αĈ ∈

n−r
∑

i=r+1

EiW. (38)

Let δ∗L denote the scalar in (23), and recall that we are assuming that δ∗L − µr > r.
Then (36) becomes

πU

(

Ĉ −
∑

β∈L

EβĈ

)

∈
n
∑

i=δ∗
L

EiV
⊗n,

from which it follows in the same manner that

πWF ∗
α

(

Ĉ −
∑

β∈L

EβĈ

)

∈
n−r
∑

i=δ∗
L
−µr

EiW ⊂
n−r
∑

i=r+1

EiW, (39)

where we abbreviate

F ∗
α = f(D∗

1 ,D
∗
2 , . . . ,D

∗
s ).

On the other hand, recall that the roles of M and M∗ are interchanged when
we work with the basis {ε̂ : ε ∈ X∗n} of V ⊗n, and observe that EβĈ is a scalar
multiple of the characteristic vector of (X∗n)β ∩ C⊥ with respect to this basis;
cf. (9). Hence, for any β ∈ L and 0 6 i 6 t, it follows from Lemma 4.3 (applied to
the dual) that

EiπWF ∗
αEβĈ = EiπWπU0

F ∗
αEβĈ

= πWEiπU0
F ∗
αEβĈ

∈ CπWA∗
i ι̂

= 0,

where ι = (ι, ι, . . . , ι) is the identity of X∗n, since A∗
i ι̂ = |X |n/2Ei0̂ belongs to the

primary TH-module MH 0̂. (Recall that x0 = 0 = (0, 0, . . . , 0) in this context.)
Hence we have

πWF ∗
αEβĈ ∈

n−r
∑

i=t+1

EiW ⊂
n−r
∑

i=r+1

EiW (β ∈ L). (40)

Combining (35), (39), and (40), we obtain (38), and this completes the proof.
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5. Examples

In this section, we mainly discuss additive codes over various translation associ-
ation schemes (so that x0 = 0).

5.1. Codes with Hamming weight enumerators. Recall that the Hamming
weight of x = (x1, x2, . . . , xn) ∈ Xn is defined by

wt(x) = |{ℓ : xℓ 6= 0}|.

The Hamming weight enumerator of an additive code C in Xn is then defined by

hweC(ξ0, ξ1) =
∑

x∈C

ξ
n−wt(x)
0 ξ

wt(x)
1 .

Thus, when working with the Hamming weight enumerator, we are considering
codes over the 1-class association scheme (X, {R0, (X×X)\R0}) with eigenmatrices

P = Q =

[

1 |X | − 1
1 −1

]

,

whose extension of length n is the Hamming association scheme H(n, |X |). In
particular, we have T = TH in this case. Tanaka [37] showed the following:

Theorem 5.1 ([37, Theorem 5.2, Example 5.5]). Let C be a code in Xn. Let

δ = min{i 6= 0 : E∗
i Ĉ 6= 0}, δ∗ = min{i 6= 0 : EiĈ 6= 0}.

Suppose that an integer t (1 6 t 6 n) is such that, for every 1 6 r 6 t, at least one
of the following holds:

|{i : r 6 i 6 n− r, E∗
i Ĉ 6= 0}| 6 δ∗ − r, (41)

|{i : r 6 i 6 n− r, EiĈ 6= 0}| 6 δ − r. (42)

Then the multiset

{supp(x) : x ∈ (Xn)i ∩ C}

is a t-design for every 0 6 i 6 n.

Observe that Theorem 5.1 strengthens the original Assmus–Mattson theorem
(Theorem 1.1). In particular, it does not require that C be linear nor additive.
The condition (41) agrees with (21) when s = 1. Indeed, the proof of Theorem 3.1
reduces to that of Theorem 5.1 for (41). The dual argument shows the result for
the case (42). (It seems that the condition dual to (21) does not necessarily lead to
the same conclusion as Theorem 3.1 when s > 1.) On the other hand, Supplements
3.2 and 3.3 refine [37, Remark 7.1], and prove useful as we will see below.

Example 5.2. The Assmus–Mattson-type theorem for additive codes over F4 given
by Kim and Pless [23, Theorem 2.7] follows from Theorem 5.1, except their comment
on the simplicity of the designs obtained from minimum weight codewords. The
additive group of F4 is isomorphic to the Klein four-group Z2 × Z2, and additive
codes over F4 are the same thing as linear Kleinian codes studied by Höhn [20]. It
should be noted that giving an (appropriate) inner product on Fn

4
∼= (Z2×Z2)

n, on
which concepts like self-orthogonality and self-duality depend, amounts to choosing
a group isomorphism Z2×Z2 → (Z2×Z2)

∗ satisfying the symmetry (11). This last
remark applies to all examples that follow.
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Example 5.3. Let C be an extremal binary Type II code of length n ≡ 8ℓ (mod 24)
where ℓ ∈ {0, 1, 2}. From Theorem 1.1 (or Theorem 5.1) it follows that the words
of any fixed weight in C support a t-design with t = 5− 2ℓ. Using Bachoc’s results
on harmonic weight enumerators [2], Bannai, Koike, Shinohara, and Tagami [5,
Theorem 6, Remark 5] showed that if one of these (non-trivial) designs is a (t+1)-
design then so are the others. This observation is also immediate from Supplement
3.2. We note that similar observations hold for extremal Type III codes over F3

and extremal Type IV codes over F4. See also [26].

Example 5.4. Additive codes over Z4 are also referred to as Z4-linear codes. For
a Z4-linear code C in Zn

4 , let

C2 = (2Zn
4 ) ∩ C,

which may also be viewed as a binary linear code (called the torsion code of C) since
2Z4

∼= Z2. We note that hweC2
is derived immediately from either the complete or

the symmetrized weight enumerators of C; cf. Subsection 5.2. Shin, Kumar, and
Helleseth [30, Theorem 10] proved an Assmus–Mattson-type theorem for Z4-linear
codes, and we now claim that Theorem 5.1, together with Supplements 3.2 and 3.3,
always gives at least as good estimate on t as their theorem. First, they assume that
C2 and (C⊥)2 both satisfy the conclusion of Theorem 5.1. If a (Hamming) weight
of C is not a weight of C\C2, then the corresponding words of C must all belong
to C2, and hence by Supplement 3.2 we can exclude that weight from the weights
of C. The same comment applies to C⊥. Second, they assume that the number
of non-zero weights of the shortened code of C⊥\(C⊥)2 at some t coordinates is
bounded above by δ− t. However, the conclusion of their theorem shows in the end
that this number is equal to that of non-zero weights at most n− t in C⊥\(C⊥)2.
Hence it follows that this second condition is not weaker than (42).

Remark 5.5. From the Assmus–Mattson-type theorem by Shin et al. mentioned
above (or Theorem 5.1) it follows that the words of any fixed weight in the Goethals
code or its dual (a Delsarte–Goethals code) over Z4 of length 2m with m odd,
support a 2-design. However, Shin et al. [30, Corollaries 7 and 8] showed that it is
in fact a 3-design, based on what they call an Assmus–Mattson-type approach. See
also [24].

5.2. Codes with complete/symmetrized weight enumerators. Let C be an
additive code over the ring Zk. Besides hweC , it is also important to consider the
complete and the symmetrized weight enumerators defined respectively by

cweC(ξ0, ξ1, . . . , ξk−1) =
∑

x∈C

ξ
n0(x)
0 ξ

n1(x)
1 . . . ξ

nk−1(x)
k−1 ,

sweC(ξ0, ξ1, . . . , ξe) =
∑

x∈C

ξ
n0(x)
0 ξ

n±1(x)
1 . . . ξn±e(x)

e ,

where e = ⌊k/2⌋,

ni(x) = |{ℓ : xℓ = i}| (0 6 i 6 k − 1),

n±i(x) = ni(x) + nk−i(x) (1 6 i 6 ⌊(k − 1)/2⌋),

and we understand that n±e(x) = ne(x) if k is even. Thus, for cweC , the initial
association scheme (X,R) is the group association scheme of Zk, which is the
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translation association scheme on Zk defined by the partition (cf. (5))

Zk = {0} ⊔ {1} ⊔ · · · ⊔ {k − 1},

and has eigenmatrices

P =
[

ζijk
]k−1

i,j=0
, Q =

[

ζ−ij
k

]k−1

i,j=0
,

where ζk ∈ C is a primitive kth root of unity. For sweC , (X,R) is the association
scheme of the ordinary k-cycle, which is defined similarly by the partition

Zk = {0} ⊔ {±1} ⊔ · · · ⊔ {±e},

and has eigenmatrices

P = Q =
[

(1 + δ0,2j)
−1(ζijk + ζ−ij

k )
]e

i,j=0
,

where δ0,2j is evaluated in Zk. Extensions of the ordinary k-cycle are referred to as
Lee association schemes [39, 32]. We note that

sweC(ξ0, ξ1, . . . , ξe) = cweC(ξ0, ξ1, ξ2, ξ3, . . . , ξ2, ξ1),

hweC(ξ0, ξ1) = sweC(ξ0, ξ1, . . . , ξ1),

and that
hweC2

(ξ0, ξ1) = sweC(ξ0, 0, ξ1) when k = 4.

Example 5.6. Our main results are in fact modeled after the Assmus–Mattson-
type theorem due to Tanabe [36, Theorem 2] for Z4-linear codes with respect to the
symmetrized weight enumerator, so that the latter is a special case of the former.
In particular, we can easily find 5-designs from the lifted Golay code over Z4 of
length 24 as discussed in [36]. See also [6]. On the other hand, it is unclear at
present whether or not Tanabe’s original version of his theorem [34, Theorem 3] is
a consequence of our results. It would be an interesting problem to understand [34,
Theorem 3] in terms of the irreducible T -modules; cf. [28].

See [19] for a survey on t-designs constructed from Z4-linear codes.
Below we discuss the extended quadratic residue codes XQ11 of length 12 over

small finite fields. That these codes support 3-designs follows from the fact that
their automorphism groups contain PSL(F2

11) and hence are 3-homogeneous on the
12 coordinates, but we include these examples in order to demonstrate the use of
our results further. Recall again that we only look at the weight enumerators (and
linearity) of these self-dual codes. We aim at doing the relevant computations by
hand. The first example is a warm-up:

Example 5.7. Consider C = XQ11 over F3 = Z3, which is the extended ternary
Golay code. We have hweC and cweC as follows:

wt n1 n2 #words

0 0 0 1

6 6 0 22

0 6 22

3 3 220

9 6 3 220

3 6 220

12 12 0 1

0 12 1

6 6 22
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As is well known, the words of fixed (Hamming) weight 6 or 9 support 5-designs
by Theorem 1.1. (The one with block size 9 is the non-simple trivial design with
constant multiplicity 2.) Set t = 3. We have δ∗ = 6 and

S1 = S2 = S3 = {(6, 0), (0, 6), (3, 3), (6, 3), (3, 6)}.

Observe that the words with (n1, n2) = (6, 3) and those with (n1, n2) = (3, 6) come
in pairs by the correspondence x 7→ −x, so that the words with each of these
two complete weight types support the (simple!) trivial design. Hence we may
disregard them by Supplement 3.2, i.e., we set K = {(6, 3), (3, 6)}. Then S3\K
consists of three collinear points in R2, and thus we have µ(S3\K) = 2. Since
2 < 6− 3, it follows from Theorem 3.1 that the non-trivial 5-design with block size
6 is partitioned into two 3-designs (after discarding repeated blocks).

Example 5.8. Consider C = XQ11 over F5 = Z5. We have hweC and sweC as
follows:

wt n±1 n±2 #words

0 0 0 1

6 3 3 440

7 6 1 264

1 6 264

8 4 4 2640

9 7 2 1320

2 7 1320

10 5 5 5544

11 8 3 1320

3 8 1320

12 11 1 24

1 11 24

6 6 1144

We have δ∗ = 6. Observe that Theorem 1.1 nor Theorem 5.1 cannot find designs
from the supports of the codewords in this case. On the other hand, set t = 3, and
take σ ∈ GL(R2) such that σ(i, j) = (1/5)(2i+ 3j, i− j). Then we have

σ(S1) =















(6,−1),
(5,−1), (5, 0), (5, 1),
(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)















,

σ(S2) =







(5,−1), (5, 0),
(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)







,

σ(S3) =







(5,−1),
(4,−1), (4, 0), (4, 1),

(3, 0), (3, 1)







.

From Supplement 3.4 it follows that µ(S1) 6 4 and µ(S2) 6 3. If we apply Sup-
plement 3.4 directly to σ(S3) then we would only obtain µ(S3) 6 3, but indeed it
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follows that µ(S3) = 2. To see this, let

f(5,−1) = (ξ1 − 3)(ξ1 − 4)/2,

f(4,−1) = −(ξ1 + ξ2 − 4)(ξ1 − ξ2 − 3)/2,

f(4,1) = (ξ1 + ξ2 − 3)(ξ1 + ξ2 − 4)/2,

f(3,0) = (ξ1 − 4)(ξ1 + ξ2 − 4),

f(3,1) = −(ξ1 − 4)(ξ1 + 2ξ2 − 3)/2,

f(4,0) = 1− f(5,−1) − f(4,−1) − f(4,1) − f(3,0) − f(3,1).

Then we have

fα(β) = δαβ (α, β ∈ σ(S3)),

from which it follows that the linear span of the fα (α ∈ σ(S3)) is an interpolation
space with respect to σ(S3). This shows µ(S3) = 2, as desired. Thus, the condition
(21) is satisfied for r ∈ {1, 2, 3}. Theorem 3.1 now shows that the codewords of
any fixed symmetrized weight type support 3-designs. This example tells us that
looking at sweC may sometimes give a better estimate on t than hweC , even when
Supplement 3.2 is not applicable.

Finally, we consider C = XQ11 over F4 = {0, 1, ω, ω2}. Note that cweC makes
sense by defining nω(x) and nω2(x) in the same manner as above. The eigenma-
trices of the group association scheme of F4 are given by

P = Q =









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1









.

Example 5.9. Consider C = XQ11 over F4. We have hweC and cweC as follows:

wt n1 nω n
ω
2 #words

0 0 0 0 1

6 2 2 2 330

7 5 1 1 132

1 5 1 132

1 1 5 132

8 4 4 0 165

4 0 4 165

0 4 4 165

9 3 3 3 1320

10 6 2 2 330

2 6 2 330

2 2 6 330

11 5 5 1 132

5 1 5 132

1 5 5 132

12 12 0 0 1

0 12 0 1

0 0 12 1

4 4 4 165
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We have δ∗ = 6. Again, Theorem 1.1 cannot find designs from the supports of the
codewords. Take σ ∈ GL(R3) such that

σ(i, j, k) = (1/4)(2i+ j + k, i+ 2j + k, i+ j + 2k).

Then we have

σ(S3) =

{

(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3),
(3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3)

}

,

σ(S2) = σ(S3) ⊔ {(4, 3, 3), (3, 4, 3), (3, 3, 4)},

σ(S1) = σ(S2) ⊔ {(4, 4, 3), (4, 3, 4), (3, 4, 4)}.

We claim that µ(S1) 6 4 and that µ(S2) = µ(S3) = 3. First, it is easy to see that
µ(S3) = 3 as σ(S3) forms a cube. Next, let

f(4,3,3) = (ξ1 − 2)(ξ1 − 3)/2.

Then we have
f(4,3,3)(α) = δ(4,3,3),α (α ∈ σ(S2)).

We similarly define f(3,4,3) and f(3,3,4). Recall that M (σ(S3)) denotes a minimal
degree interpolation space with respect to σ(S3). Then it is immediate to see that

M (σ(S3)) + Rf(4,3,3) + Rf(3,4,3) + Rf(3,3,4)

is an interpolation space with respect to σ(S2). Since µ(S3) 6 µ(S2), we have
µ(S2) = 3. Finally, let for example

f(4,4,3) = (ξ1 + ξ2 − 4)(ξ1 + ξ2 − 5)(ξ1 + ξ2 − 6)(ξ1 + ξ2 − 7)/24,

so that we have
f(4,4,3)(α) = δ(4,4,3),α (α ∈ σ(S1)),

and a similar argument establishes µ(S1) 6 4, as desired. Thus, the condition (21)
is satisfied for r ∈ {1, 2} but fails for r = 3. Theorem 3.1 now shows that the
codewords of any fixed complete weight type support 2-designs. Though this is not
the best estimate (i.e., t = 3), Theorem 3.1 still outperforms Theorem 1.1 for this
example.
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