Skip to main content
Log in

A recursive construction for simple t-designs using resolutions

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

This work presents a recursive construction for simple t-designs using resolutions of the ingredient designs. The result extends a construction of t-designs in our recent paper van Trung (Des Codes Cryptogr 83:493–502, 2017). Essentially, the method in van Trung (Des Codes Cryptogr 83:493–502, 2017) describes the blocks of a constructed design as a collection of block unions from a number of appropriate pairs of disjoint ingredient designs. Now, if some pairs of these ingredient t-designs have both suitable s-resolutions, then we can define a distance mapping on their resolution classes. Using this mapping enables us to have more possibilities for forming blocks from those pairs. The method makes it possible for constructing many new simple t-designs. We give some application results of the new construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajoodani-Namini S.: Extending large sets of \(t\)-designs. J. Comb. Theory A 76, 139–144 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. Alltop W.O.: An infinite class of 4-designs. J. Comb. Theory A 6, 320–322 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  3. Alltop W.O.: An infinite class of 5-designs. J. Comb. Theory A 12, 390–395 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker R.D.: Partitioning the planes of \(\text{ AG }_{2m}(2)\) into 2-designs. Discret. Math. 15, 205–211 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  5. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  6. Betten A., Kerber A., Kohnert A., Laue R., Wassermann A.: The discovery of simple 7-designs with automorphism group \(\text{ P }\Gamma \text{ L }(2,32)\). In: Cohen G., Giusti M., Mora T. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 131–145. Springer, New York (1995).

    Chapter  Google Scholar 

  7. Betten A., Kerber A., Laue R., Wassermann A.: Simple 8-designs with small parameters. Des. Codes Cryptogr. 15, 5–27 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. Betten A., Laue R., Wassermann A.: A Steiner 5-design on 36 points. Des. Codes Cryptogr. 17, 181–186 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bierbrauer J.: A family of 4-designs with block size 9. Discret. Math. 138, 113–117 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bierbrauer J.: A family of 4-designs. Graphs Comb. 11, 209–212 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. Bose R.C.: A note on the resolvability of balanced incomplete block designs. Sankhyā 6, 105–110 (1942).

    MATH  Google Scholar 

  12. Colbourn C.J., Dinitz J.H. (eds.): Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Rotan (2007).

    MATH  Google Scholar 

  13. Dehon M.: On the existence of 2-designs \(S_{\lambda }(2,3, v)\) without repeated blocks. Discret. Math. 43, 155–171 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  14. Denniston R.H.F.: Some new 5-designs. Bull. Lond. Math. Soc. 8, 263–267 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  15. Driessen L.H.M.E.: \(t\)-designs, \(t\ge 3\). Technical Report, Department of Mathematics, Technische Hogeschool Eindhoven, The Netherlands (1978).

  16. Hartman A.: Halving the complete design. Ann. Discret. Math. 34, 207–224 (1987).

    MathSciNet  MATH  Google Scholar 

  17. Jimbo M., Kunihara Y., Laue R., Sawa M.: Unifying some infinite families of combinatorial 3-designs. J. Comb. Theory A 118, 1072–1085 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. Khosrovshahi G.B., Ajoodani-Namini S.: Combining \(t\)-designs. J. Comb. Theory Ser. A 58, 26–34 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. Khosrovshahi G.B., Tayfeh-Rezaie B.: Large sets of \(t\)-designs through partitionable sets: A survey. Discret. Math. 306, 2993–3004 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kramer E.S., Mesner D.M.: \(t\)-designs on hypergraphs. Discret. Math. 15, 263–296 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  21. Kramer E.S., Magliveras S.S., O’Brien E.A.: Some new large sets of \(t\)-designs. Australas. J. Comb. 7, 189–193 (1993).

    MathSciNet  MATH  Google Scholar 

  22. Kreher D.L.: An infinite family of (simple) 6-designs. J. Comb. Des. 1, 277–280 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. Kreher D.L., Chee Y.M., de Caen D., Colbourn C.J., Kramer E.S.: Some new simple \(t\)-designs. J. Comb. Math. Comput. 7, 53–90 (1990).

    MathSciNet  MATH  Google Scholar 

  24. Laue R., Magliveras S.S., Wassermann A.: New large sets of \(t\)-designs. J. Comb. Des. 9, 40–59 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. Laue R., Omidi G.R., Tayfeh-Rezaie B., Wassermann A.: New large sets of \(t\)-designs with prescribed groups of automorphisms. J. Comb. Des. 15, 210–220 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  26. Magliveras S.S., Leavitt D.M.: Simple \(6-(33,8,36)\)-Designs from \(\text{ P }\Gamma \text{ L }_2(32)\), Computational Group Theory. Academic Press, New York (1984).

    Google Scholar 

  27. Magliveras S.S., Plambeck T.E.: New infinite families of simple 5-designs. J. Comb. Theory A 44, 1–5 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  28. Qui-rong W.: A note on extending \(t\)-designs. Australas. J. Comb. 4, 229–235 (1991).

    MathSciNet  MATH  Google Scholar 

  29. Schmalz B.: The \(t\)-designs with prescribed automorphism group, new simple 6-designs. J. Comb. Des. 1, 125–170 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  30. Sebille M.: There exists a simple non-trivial \(t\)-design with an arbitrarily large automorphism group for every \(t\). Des. Codes Cryptogr. 22, 203–206 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  31. Shrikhande S.S., Raghavarao D.: Affine \(\alpha \)-resolvable incomplete block designs, In: Contributions to Statistics, (Presented to Prof. P. C. Mahalanobis on his 70th Birthday), Pergamon Press, 471–480 (1963).

  32. Teirlinck L.: On lage sets of disjoint quadruple systems. Arcs. Comb. 12, 173–176 (1984).

    MathSciNet  MATH  Google Scholar 

  33. Teirlinck L.: Non-trivial \(t\)-designs without repeated blocks exist for all \(t\). Discret. Math. 65, 301–311 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  34. Teirlinck L.: Locally trivial \(t\)-designs and \(t-\)designs without repeated blocks. Discret. Math. 77, 345–356 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  35. Teirlinck L.: Some new 2-resolvable Steiner quadruple systems. Des. Codes Cryptogr. 4, 5–10 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  36. Tuan N.D.: Simple non-trivial designs with an arbitrary automorphism group. J. Comb. Theory A 100, 403–408 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  37. van Trung T.: The existence of an infinite family of simple 5-designs. Math. Zeitschr. 187, 285–287 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  38. van Trung T.: On the construction of \(t\)-designs and the existence of some new infinite families of simple 5-designs. Arch. Math. 47, 187–192 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  39. van Trung T.: Recursive constructions for 3-designs and resolvable 3-designs. J. Stat. Plann. Infer. 95, 341–358 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  40. van Trung T.: Construction of 3-designs using \((1,\sigma )\)-resolution. Adv. Math. Commun. 10, 511–524 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  41. van Trung T.: Simple \(t\)-designs: a recursive construction for arbitrary \(t\). Des. Codes Cryptogr. 83, 493–502 (2017). doi:10.1007/s10623-016-0238-z.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for their careful reading of the manuscript and their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran van Trung.

Additional information

Communicated by L. Teirlinck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Trung, T. A recursive construction for simple t-designs using resolutions. Des. Codes Cryptogr. 86, 1185–1200 (2018). https://doi.org/10.1007/s10623-017-0389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0389-6

Keywords

Mathematics Subject Classification

Navigation