
ar
X

iv
:1

70
7.

04
34

2v
1 

 [
cs

.I
T

] 
 1

3 
Ju

l 2
01

7

Constructions of cyclic constant dimension codes

Bocong Chen1, Hongwei Liu2

1 School of Mathematics, South China University of Technology, Guangzhou, Guangdong, 510641, China
2School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei, 430079, China

Abstract

Subspace codes and particularly constant dimension codes have attracted much attention in recent
years due to their applications in random network coding. As a particular subclass of subspace
codes, cyclic subspace codes have additional properties that can be applied efficiently in encoding
and decoding algorithms. It is desirable to find cyclic constant dimension codes such that both the
code sizes and the minimum distances are as large as possible. In this paper, we explore the ideas of
constructing cyclic constant dimension codes proposed in

(

[2], IEEE Trans. Inf. Theory, 2016
)

and
(

[17], Des. Codes Cryptogr., 2016
)

to obtain further results. Consequently, new code constructions
are provided and several previously known results in [2] and [17] are extended.
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1 Introduction

Let Fq be the finite field of size q and let FqN be the field extension of degree N over Fq; FqN can be
viewed as an N -dimensional vector space over Fq. The set of all subspaces of FqN , denoted by Pq(N),
is called the projective space of order N over Fq (see [9]). For any U, V ∈ Pq(N), the subspace distance
between U and V is defined to be

d(U, V ) = dim
(

U + V
)

− dim
(

U
⋂

V
)

= dim
(

U
)

+ dim
(

V
)

− 2 dim
(

U
⋂

V
)

.

It turns out that the set Pq(N) equipped with the subspace distance is indeed a metric space (see [13]).
A subspace code C is simply a nonempty subset of Pq(N); if, in addition, all the elements of C have the
same dimension k, then C is called a k-dimensional subspace code (or constant dimension code for short).
The minimum (subspace) distance of any subspace code C is defined to be

d(C) = min
U 6=V ∈C

d(U, V ).

Subspace codes and particularly constant dimension codes have attracted much attention in recent
years due to their applications in random network coding for correction of errors and erasures [13].
Subspace codes are also of interest from mathematical viewpoints (see, for example, [1], [7], [16], [18]
and [22]). One of the main research problems on constant dimension codes is to find systematic methods
to produce good k-dimensional subspace codes with a large code size and a large minimum distance
when q,N, and k are fixed. The seminal works [13, 19] presented novel constructions of large constant
dimension codes through linearized polynomials.

As a particular subclass of subspace codes, cyclic subspace codes have additional properties that
can be applied efficiently in encoding and decoding algorithms (e.g., see [20]). For a given subspace
U ∈ Pq(N) and α ∈ F

∗
qN

(where F
∗
qN

= FqN \ {0}), the cyclic shift of U is defined by αU = {αu |u ∈ U},
where the product αu is taken in FqN . It is clear that αU is a vector space over Fq having the same
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dimension as U . Two cyclic shifts are called distinct if they form two different subspaces. A subspace
code C is said to be cyclic if αU ∈ C for any α ∈ F

∗
qN

and any U ∈ C. Several optimal cyclic subspace

codes with small dimensions were found in [9] and [14]. A thorough analysis of the algebraic structure
of cyclic subspace codes was given in [20]. In [5], an optimal code which also forms a q-analog of Steiner
system was presented.

We tacitly assume k > 1, as the case k = 1 is uninteresting. The biggest possible value for the
minimum distance of any k-dimensional cyclic subspace code is 2k. However, it is not hard to see that
if the size of a k-dimensional cyclic subspace code is greater than or equal to (qN − 1)/(q − 1) then its
minimum distance cannot achieve 2k. In other words, the best minimum distance of a k-dimensional
cyclic subspace code whose size is greater than or equal to (qN − 1)/(q − 1) can attain is thus 2k − 2.
By virtue of this fact and using computer searches, [20] and [12] raised the following conjecture: For
any positive integers N and k with k < N/2, there exists a k-dimensional cyclic subspace code of size
(qN − 1)/(q − 1) and of minimum distance 2k − 2. As mentioned at the end of [12], it would also be
interesting to find systematic methods to produce k-dimensional cyclic subspace codes whose sizes exceed
(qN − 1)/(q − 1) and whose minimum distances remain exactly 2k − 2.

Recently, Ben-Sasson et al. [2] used subspace polynomials to generate k-dimensional cyclic subspace
codes with size (qN − 1)/(q − 1) and minimum distance 2k − 2: Let V denote the set of roots of the

trinomial Xqk + Xq + X ∈ Fq[X ] (suppose V is contained in FqN ). Then {αV |α ∈ F
∗
qN

} is a cyclic

subspace code of which the size is (qN − 1)/(q − 1) and the minimum distance is 2k− 2. The conclusion
of this result reveals that the aforementioned conjecture holds true for any given k and infinitely many
values of N . Furthermore, in the same paper the authors provided a construction of k-dimensional cyclic

subspace codes of size r qN−1
q−1 and minimum distance 2k− 2, which is the first systematic construction of

cyclic constant dimension codes of size greater than (qN − 1)/(q− 1). Otal and Özbudak [17] generalized

and improved the construction in [2] by studying the roots of the trinomials Xqk + θiX
q +γiX ∈ Fqn [X ],

where θi and γi are nonzero elements of Fqn for 1 ≤ i ≤ r. As a consequence, some constraint conditions
in [2] are relaxed, the density of the length parameter N is increased, and the size of k-dimensional cyclic

subspace codes can be increased up to (qn − 1) q
N−1
q−1 without decreasing the minimum distance 2k − 2.

The present paper is to extend the previous works [2] and [17] by proposing a different approach. We
explore the ideas of constructing cyclic constant dimension codes proposed in [2] and [17] to obtain further
results; consequently, new code constructions are provided and several previously known results in [2] and

[17] are extended. More explicitly, we show that if the set of roots of the trinomial Xqk + aℓX
qℓ + a0X ∈

Fqn [X ] is denoted by V (suppose V is contained in FqN ), where 1 ≤ ℓ < k is a positive integer relatively
prime to k, n is an arbitrary positive integer and a0, aℓ are nonzero elements of Fqn , then {αV |α ∈ F

∗
qN

}

is a cyclic subspace code of which the size is (qN − 1)/(q − 1) and the minimum distance is 2k − 2 (see
Lemma 3.1). Moreover, unions of such cyclic constant dimension codes from the roots of trinomials
and binomials are also discussed (see Theorem 3.10 and its corollaries). Several examples are provided to
illustrate our results. We mention that we can produce an infinite family of k-dimensional cyclic subspace

codes with size (qn − 1) (q
N−1)
q−1 + qN−1

qk−1
and minimum distance 2k − 2 (see Corollary 3.11).

The remainder of this paper is organized as follows. Section 2 establishes some notations that will be
used throughout, and reviews some basic results that will be needed in subsequent sections, including the
notions of linearized polynomials and subspace polynomials. Section 3 contains our main results. Section
4 summarizes this paper.

2 Preliminaries

A class of polynomials that plays an important role in the study of subspace codes is the so-called
linearized polynomials (e.g., see [15, P. 107]). In this section we will briefly review the definitions and
some basic properties about linearized polynomials.

Throughout this paper, Fq denotes the finite field of size q. Let n ≥ 1 be a positive integer and let
Fqn be the field extension of degree n over Fq. Recall that Pq(N) denotes the set of all subspaces of FqN ,
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where N ≥ 1 is an integer. A linearized polynomial over Fqn is a polynomial of the form

f(X) = αkX
qk + αk−1X

qk−1

+ · · ·+ α1X
q + α0X ∈ Fqn [X ],

where αi are elements of Fqn for 0 ≤ i ≤ k. If αk 6= 0 then k is called the q-degree of f . Linearized
polynomials have the following properties (see [15]):

Proposition 2.1. The roots of any linearized polynomial form a subspace in some extension field over
Fqn . Conversely, for any subspace V ∈ Pq(N), the polynomial

∏

v∈V

(X − v)

is a linearized polynomial.

It is well known that a linearized polynomial has no multiple roots if and only if the coefficient of X is
nonzero (see [15, Theorem 3.50]). We will be particulary interested in such linearized polynomials, which
merit a special name: A monic linearized polynomial is called a subspace polynomial if it has no multiple
roots (see [3], [4], [6] or [21]). We remark that a subspace polynomial with respect to Fqn can be defined
alternatively as the annihilator polynomial of a subspace of Fqn , in order to make sense into using the
term “subspace”. There is an obvious one-to-one correspondence between the k-dimensional subspaces
of Pq(N) and the subspace polynomials with q-degree k whose splitting fields are FqN . In particular,
two subspaces are identical if and only if their corresponding subspace polynomials are identical. This
suggests that the resolution of vector space problems can be converted into the resolution of polynomial
problems.

Given a k-dimensional subspace V ∈ Pq(N) and a nonzero element α ∈ FqN , the subspace polynomial
corresponding to the subspace αV = {αv | v ∈ V } has been characterized in [2, Lemma 5]:

Lemma 2.2. Let V be a k-dimensional subspace of FqN and let α be a nonzero element of FqN . If

T (X) =
∏

v∈V

(X − v) = Xqk +

k−1
∑

i=0

aiX
qi

is the subspace polynomial corresponding to V , then the subspace polynomial corresponding to αV is given
by

Tα(X) =
∏

v∈V

(X − αv) = Xqk +
k−1
∑

i=0

αqk−qiaiX
qi .

3 Constructions of cyclic constant dimension codes

We first propose a new approach to generalize [2, Theorem 3], which can be seen as the ℓ = 1 case of the
following lemma.

Lemma 3.1. Let k and ℓ be positive integers with 1 ≤ ℓ < k and gcd(ℓ, k) = 1. Let a0 and aℓ be nonzero
elements of Fqn , where n is a positive integer. Suppose that the set V of roots of the subspace polynomial

T (X) = Xqk + aℓX
qℓ + a0X ∈ Fqn [X ]

is contained in FqN . Then

C =
{

αV
∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code with size qN−1
q−1 and minimum distance 2k − 2.

3



Proof. It is a known fact that if C has size (qN − 1)/(q − 1) then C cannot have minimum distance 2k;

this is simply because if it were 2k then F
∗
qN

= FqN \ {0} would contain (qN−1)(qk−1)
(q−1) elements, which is

impossible. Therefore, to obtain the desired result, it suffices to prove that

dim
(

V
⋂

αV
)

≤ 1 for any α ∈ F
∗
qN

\ F∗
q . (3.1)

Fix an element α ∈ F
∗
qN

\ F∗
q . By Lemma 2.2, the subspace polynomial corresponding to αV is

Tα(X) = Xqk + aℓα
qk−qℓXqℓ + a0α

qk−1X.

Suppose now a and b are any nonzero elements of V
⋂

αV . We aim to show that an element λ ∈ F
∗
q can

be found such that a = λb; we then conclude that (3.1) is achieved, and thus the proof is complete. To

this end, we first claim that if exactly one of αqk−qℓ − 1 and αqk−1 − 1 is equal to 0, then we arrive at
(3.1) at once. Indeed, observe that

Tα(X)− T (X) = aℓ

(

αqk−qℓ − 1
)

Xqℓ + a0

(

αqk−1 − 1
)

X.

If αqk−qℓ −1 6= 0 and αqk−1−1 = 0 (or, αqk−qℓ −1 = 0 and αqk−1−1 6= 0), then the subspace polynomials
Tα(X) and T (X) have a unique common root 0, proving the claim. If both

αqk−qℓ − 1 = 0 and αqk−1 − 1 = 0,

then α = αqk = αqℓ , which implies that α ∈ Fqk and α ∈ Fqℓ . However, our assumption gcd(ℓ, k) = 1

forces α ∈ F
∗
q . This is a contradiction. Thus, it cannot occur simultaneously that αqk−qℓ − 1 = 0 and

αqk−1 − 1 = 0. We can assume, therefore, that αqk−qℓ − 1 6= 0 and αqk−1 − 1 6= 0. Since a and b are
contained in V

⋂

αV , we have
T (a) = T (b) = Tα(a) = Tα(b) = 0.

This leads to
Tα(a)− T (a) = aℓ

(

αqk−qℓ − 1
)

aq
ℓ

+ a0

(

αqk−1 − 1
)

a = 0

and
Tα(b)− T (b) = aℓ

(

αqk−qℓ − 1
)

bq
ℓ

+ a0

(

αqk−1 − 1
)

b = 0.

It follows that

aq
ℓ−1 =

−a0(α
qk−1 − 1)

aℓ(αqk−qℓ − 1)
= bq

ℓ−1,

or, equivalently,
a

b
=

(a

b

)qℓ

which gives a/b ∈ Fqℓ . Let a/b = λ ∈ Fqℓ , namely a = bλ. By T (a) = 0 and a = λb, we have

0 = T (a) = aq
k

+ aℓa
qℓ + a0a = λqkbq

k

+ aℓλ
qℓbq

ℓ

+ a0bλ = λqkbq
k

+ aℓλb
qℓ + a0bλ,

where the last equality holds because λ is an element of Fqℓ . Combining with

λT (b) = λbq
k

+ λaℓb
qℓ + λa0b = 0,

we have λ = λqk . By gcd(ℓ, k) = 1 again, we finally conclude that λ ∈ Fq, as wanted. The proof is
complete.

As pointed out by [17, Section 2.2], the value of N in Lemma 3.1 cannot be chosen freely; it is
depending on the values of k, ℓ, n and the nonzero elements aℓ, a0. We include the following example to
illustrate Lemma 3.1.
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Example 3.2. We adopt the notation in Lemma 3.1. Take q = 3, n = 1, and k = 5. Consider the

degree N ′ of the splitting field of the polynomial X35 + aℓX
3ℓ + a0X ∈ F3[X ], where 1 ≤ ℓ ≤ 4 and

aℓ, a0 ∈ {1,−1}; the values of N ′ can be determined easily by using the computer algebra system GAP
[11], as exhibited in Table 3.1. Lemma 3.1 ensures that there exists a 5-dimensional cyclic subspace code

of size 3N−1
2 and minimum distance 8 in F3N when N is a multiple of N ′. For instance, the first row of

Table 3.1 implies that the set of roots of the subspace polynomial X35 +X3 +X forms a 5-dimensional

cyclic subspace code of size 3N−1
2 and minimum distance 8 in F3N when N is a multiple of 78. We

then compare among the last column of Table 3.1 to pick out the minimal elements with respect to the
partially ordered by divisibility (for positive integers a, b, a ≤ b precisely when a divides b). After a bit
of simple calculations, the minimal elements are 78, 121, 80 and 104. From the first four rows of Table
3.1, one sees that [2, Theorem 3] and [17, Theorem 3] only produce the first two values 78 and 121. This
example suggests that Lemma 3.1 indeed could provide subspace codes for more various values of N .

Table 3.1: The degrees of the splitting fields of the polynomials X35 + aℓX
3ℓ + a0X

Values of ℓ (aℓ, a0) Polynomials The degrees N ′ of the splitting fields over F3

1 (1, 1) X35 +X3 +X 78

1 (1,−1) X35 +X3 −X 78

1 (−1, 1) X35 −X3 +X 242

1 (−1,−1) X35 −X3 −X 121

2 (1, 1) X35 +X32 +X 80

2 (1,−1) X35 +X32 −X 104

2 (−1, 1) X35 −X32 +X 312

2 (−1,−1) X35 −X32 −X 80

3 (1, 1) X35 +X33 +X 80

3 (1,−1) X35 +X33 −X 80

3 (−1, 1) X35 −X33 +X 312

3 (−1,−1) X35 −X33 −X 104

4 (1, 1) X35 +X34 +X 78

4 (1,−1) X35 +X34 −X 121

4 (−1, 1) X35 −X34 +X 242

4 (−1,−1) X35 −X34 −X 78

Some cyclic constant dimension codes produced by Lemma 3.1 can be put together to form a larger
code, but without reducing the minimum distance. The following lemma is a generalization of [17,
Theorem 3], which considers the case ℓ = 1.

Lemma 3.3. Let k and ℓ be positive integers with 1 ≤ ℓ < k and gcd(ℓ, k) = 1, and let

T (i)(X) = Xqk + θiX
qℓ + γiX ∈ Fqn [X ]

be r subspace polynomials over Fqn with θi and γi being nonzero elements of Fqn for 1 ≤ i ≤ r. Suppose
that Vi is the set of roots of the subspace polynomial T (i)(X) and that Vi (1 ≤ i ≤ r) are contained in
FqN . If

( γi
γj

)

qℓ−1
q−1

6=
( γi
γj

( θi
θj

)−1
)

qk−1
q−1

for any 1 ≤ i 6= j ≤ r, (3.2)

then

C =

r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code of size r qN−1
q−1 and minimum distance 2k − 2.
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Proof. Using Lemma 3.1, it is enough to prove that

dim
(

Vi

⋂

αVj

)

≤ 1 for any α ∈ F
∗
qN

and 1 ≤ i 6= j ≤ r. (3.3)

The proof is similar to that of Lemma 3.1, with a few modifications. Let α ∈ F
∗
qN

and let 1 ≤ i 6= j ≤ r
be two distinct integers. The subspace polynomial corresponding to αVj is

T (j)
α (X) = Xqk + θjα

qk−qℓXqℓ + γjα
qk−1X,

and thus
T (j)
α (X)− T (i)(X) =

(

θjα
qk−qℓ − θi

)

Xqℓ +
(

γjα
qk−1 − γi

)

X.

As we did in the proof of Lemma 3.1, we are done if exactly one of θjα
qk−qℓ − θi and γjα

qk−1 − γi is
equal to 0. If

θjα
qk−qℓ − θi = 0 and γjα

qk−1 − γi = 0

then

αqℓ−1 =
γi
γj

( θi
θj

)−1

and αqk−1 =
γi
γj

.

This leads to

α
(qℓ−1)(qk−1)

q−1 =
( γi
γj

( θi
θj

)−1
)

qk−1
q−1

and

α
(qℓ−1)(qk−1)

q−1 =
( γi
γj

)

qℓ−1
q−1

.

Therefore, one has
( γi
γj

( θi
θj

)−1
)

qk−1
q−1

= α
(qℓ−1)(qk−1)

q−1 =
( γi
γj

)

qℓ−1
q−1

,

which contradicts our assumption (3.2). We can assume, therefore, that

θjα
qk−qℓ − θi 6= 0 and γjα

qk−1 − γi 6= 0.

At this point, taking arguments similar to those used in the proof of Lemma 3.1, we obtained the desired
result.

The following corollaries are direct consequence of Lemma 3.3. We first specialize Lemma 3.3 to the
case of ℓ = 1 and θi = γi.

Corollary 3.4. Let r be an integer with 1 ≤ r ≤ qn − 1 and let

T (i)(X) = Xqk + θiX
q + θiX ∈ Fqn [X ]

be r subspace polynomials over Fqn , where θi are distinct nonzero elements of Fqn for 1 ≤ i ≤ r. Suppose
that Vi is the set of roots of the subspace polynomial T (i)(X) and that Vi (1 ≤ i ≤ r) are contained in
FqN . Then

C =
r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code of size r (qN−1)
q−1 and minimum distance 2k − 2.

Proof. Take ℓ = 1 and θi = γi for each 1 ≤ i ≤ r in Lemma 3.3. The right-hand side of inequality (3.2) is
equal to 1; however, the left-hand side of (3.2) is certainly not equal to 1. It follows that inequality (3.2)
holds true, and we get the desired result by applying Lemma 3.3.
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The following corollary aims to provide an example of large codes for the ℓ 6= 1 case; however, in order
to state the conditions compactly, we restrict ourself to the case where q = 2 and n = k.

Corollary 3.5. Let k, ℓ, and r be positive integers with 1 ≤ ℓ < k, gcd(ℓ, k) = 1 and 1 ≤ r ≤ 2k − 1. Let

T (i)(X) = X2k + θiX
2ℓ + θiX ∈ F2k [X ]

be r subspace polynomials over F2k with θi being distinct nonzero elements of F2k for 1 ≤ i ≤ r. Suppose
that Vi is the set of roots of the subspace polynomial T (i)(X) and that Vi (1 ≤ i ≤ r) are contained in
F2N . Then

C =

r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
2N

}

is a k-dimensional cyclic subspace code of size r(2N − 1) and minimum distance 2k − 2.

Proof. Taking q = 2, n = k and θi = γi for each 1 ≤ i ≤ r in Lemma 3.3, we are left to show that

( θi
θj

)2ℓ−1

6= 1 for any 1 ≤ i 6= j ≤ r.

Since θi are distinct nonzero elements of F2k for 1 ≤ i ≤ r, we have

θi
θj

6= 1 and
( θi
θj

)2k−1

= 1

for any 1 ≤ i 6= j ≤ r. If (θi/θj)
2ℓ−1 were equal to 1, we would have θi/θj = 1 since gcd(2k−1, 2ℓ−1) = 1.

This is a contradiction. We are done.

Here is an example to illustrate Corollary 3.5.

Example 3.6. Take k = 5 and r = 5 in Corollary 3.5. Let θ be a generator of the cyclic group F
∗
25

given by the computer algebra system GAP [11]. Set θ1 = θ3, θ2 = θ6, θ3 = θ12, θ4 = θ17, and
θ5 = θ24. Fix a value ℓ, 1 ≤ ℓ ≤ 4. Let N ′

ℓ denote the degree of the splitting field of the polynomials

T (i)(X) = X25 + θiX
2ℓ + θiX ∈ F25 [X ], 1 ≤ i ≤ 5. With ℓ ranging from 1 to 4, Corollary 3.5 then

permits us to produce 4 constant cyclic subspace codes in F2N having size 5(2N − 1) and minimum
distance 2k − 2 = 8, where N is a multiple of N ′

ℓ. Using GAP [11], the values of N ′
ℓ are listed in Table

3.2.

Table 3.2: The values of N ′
ℓ

Values of ℓ Values of N ′
ℓ

1 30
2 70
3 75
4 60

Gluesing-Luerssen et al. studied constant cyclic subspace codes having full minimum distances in [12];
it is well known that the set of all cyclic shifts of Fqk (as a subfield of FqN ) forms a cyclic subspace code
of full minimum distance 2k. To insert such codes into those produced in Lemma 3.3 (where codes are
characterized through subspace polynomials), the codes having full minimum distance are also described
by subspace polynomials for consistency, as we show below.

Proposition 3.7. Let k > 1 be a positive integer and let a0 be a nonzero element of Fqn . Suppose that
the set U of roots of the subspace polynomial

T (X) = Xqk − a0X ∈ Fqn [X ]

7



is contained in FqN . Then

C =
{

αU
∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code of size qN−1
qk−1 and minimum distance 2k.

Proof. Let α ∈ F
∗
qN

. The subspace polynomial corresponding to αU is

Tα(X) = Xqk − a0α
qk−1X.

It is readily seen that

Tα(X)− T (X) = a0

(

1− αqk−1
)

X.

Hence, αU = U if and only if αqk−1 = 1, which implies that the size of C is equal to (qN − 1)/(qk − 1).
Finally, it is trivial to see that the minimum distance of C is 2k. We are done.

Remark 3.8. Theoretically, the splitting field of any binomial over a finite field can be determined
easily. Indeed, suppose a0 has order s in the cyclic group F

∗
qn . Then the degree of the splitting field N ′

of T (X) = Xqk − a0X ∈ Fqn [X ] is equal to the multiplicative order of q modulo s(qk − 1), i.e., N ′ is the

smallest positive integer such that s(qk − 1) divides qN
′

− 1. In fact, a primitive s(qk − 1)-th root of unity

ω in the finite field FqN
′ can be found such that ωqk−1 = a0. It is clear that k is a divisor of N ′.

We present the following example to illustrate Proposition 3.7.

Example 3.9. Let k = 5, q = 3, and n = 5 in Proposition 3.7. Let a0 be an element of F∗
35 having

order s = 11. GAP [11] computations show that the multiplicative order of q = 3 modulo s(qk − 1) =
11(35 − 1) = 11× 242 is equal to N ′ = 55. It follows that the splitting field of the subspace polynomial

T (X) = X35 − a0X ∈ F35 [X ]

is F355 . Let U be the set of roots of T (X), and it follows from Proposition 3.7 that

C =
{

αU
∣

∣

∣
α ∈ F

∗
355

}

is a cyclic subspace code of size q55−1
q5−1 = 355−1

35−1 and minimum distance 2k = 10.

At the moment, we derive the following theorem which puts certain cyclic constant dimension codes
generated by Lemma 3.3 and Proposition 3.7 together to form a new code.

Theorem 3.10. Let k and ℓ be positive integers with 1 ≤ ℓ < k and gcd(ℓ, k) = 1. Let

T (X) = Xqk − a0X ∈ Fqn [X ]

and
T (i)(X) = Xqk + θiX

qℓ + γiX ∈ Fqn [X ]

be r + 1 subspace polynomials over Fqn with a0, θi, and γi being nonzero elements of Fqn for 1 ≤ i ≤ r.
Suppose that U and Vi are the sets of roots of the subspace polynomials T (X) and T (i)(X), respectively,
and that U and Vi are contained in FqN for all 1 ≤ i ≤ r. If

( γi
γj

)

qℓ−1
q−1

6=
( γi
γj

( θi
θj

)−1
)

qk−1
q−1

for any 1 ≤ i 6= j ≤ r

then

C =
(

r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
qN

})

⋃

{

αU
∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code of size r qN−1
q−1 + qN−1

qk−1
and minimum distance 2k − 2.
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Proof. By Lemma 3.3 and Proposition 3.7, it is enough to show that

dim
(

αU
⋂

Vi

)

≤ 1 for any α ∈ F
∗
qN

and 1 ≤ i ≤ r.

Fix a nonzero element α ∈ FqN . The subspace polynomial corresponding to αU is

Tα(X) = Xqk − a0α
qk−1X.

Clearly,

T (i)(X)− Tα(X) = θiX
qℓ +

(

γi + a0α
qk−1

)

X ∈ Fqn [X ].

If γi + a0α
qk−1 = 0 then the desired result holds trivially. Suppose γi + a0α

qk−1 6= 0. Let a and b be any
nonzero elements of αU

⋂

Vi. We then have

T (i)(a) = T (i)(b) = Tα(a) = Tα(b) = 0.

Hence,

T (i)(a)− Tα(a) = θia
qℓ +

(

γi + a0α
qk−1

)

a = 0

and
T (i)(b)− Tα(b) = θib

qℓ +
(

γi + a0α
qk−1

)

b = 0.

It follows that

aq
ℓ−1 =

γi + a0α
qk−1

−θi
= bq

ℓ−1.

Therefore,
a

b
=

(a

b

)qℓ

,

which gives a/b ∈ Fqℓ . Let a/b = λ ∈ Fqℓ , or alternatively, a = bλ. As we have done in the proof of
Lemma 3.1, we conclude that λ is, in fact, contained in F

∗
q . The proof is complete.

We end this section with the following two immediate corollaries of Theorem 3.10 and Corollaries 3.4
and 3.5.

Corollary 3.11. Let k > 1 be a positive integer. Let n and r be positive integers with 1 ≤ r ≤ qn − 1.
Let

T (X) = Xqk − a0X ∈ Fqn [X ]

and
T (i)(X) = Xqk + θiX

q + θiX ∈ Fqn [X ]

be r+1 subspace polynomials over Fqn with a0 and θi being nonzero elements of Fqn for 1 ≤ i ≤ r. Suppose
that U and Vi are the sets of roots of T (X) and T (i)(X), respectively, and that U and Vi, 1 ≤ i ≤ r, are
contained in FqN . Then

C =
(

r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
qN

})

⋃

{

αU
∣

∣

∣
α ∈ F

∗
qN

}

is a k-dimensional cyclic subspace code of size r qN−1
q−1 + qN−1

qk−1
and minimum distance 2k − 2.

Here is an example to demonstrate Corollary 3.11.

Example 3.12. Take q = 3, k = 5, n = 1, and r = 2 in Corollary 3.11. Let θ1 = 1 and θ2 = −1. GAP
[11] computations show that the degrees of the splitting fields of T (1)(X) and T (2)(X) are equal to 78
and 121, respectively. We simply take a0 = 1, thus the degree of the splitting field of T (X) is equal to
5. Setting N = 78 × 121 × 5, one knows that the vector spaces U , V1 and V2 are contained in F3N . It
follows from Corollary 3.11 that

C =
(

2
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
3N

})

⋃

{

αU
∣

∣

∣
α ∈ F

∗
3N

}

is a 5-dimensional cyclic subspace code of size 3N − 1 + 3N−1
35−1 and minimum distance 8.
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Corollary 3.13. Let k, ℓ, and r be positive integers with 1 ≤ ℓ < k, gcd(ℓ, k) = 1 and 1 ≤ r ≤ 2k − 1.
Let

T (X) = X2k + a0X ∈ F2k [X ]

and
T (i)(X) = X2k + θiX

2ℓ + θiX ∈ F2k [X ]

be r+1 subspace polynomials over F2k with a0 and θi being nonzero elements of F2k for 1 ≤ i ≤ r. Suppose
that U and Vi are the sets of roots of T (X) and T (i)(X), respectively, and that U and Vi, 1 ≤ i ≤ r, are
contained in F2N . Then

C =
(

r
⋃

i=1

{

αVi

∣

∣

∣
α ∈ F

∗
2N

})

⋃

{

αU
∣

∣

∣
α ∈ F

∗
2N

}

is a k-dimensional cyclic subspace code of size r(2N − 1) + 2N−1
2k−1

and minimum distance 2k − 2.

We present an illustrative example of Corollary 3.13.

Example 3.14. The codes generated by Example 3.6 are enlarged here to produce bigger codes without
compromising the minimum distances. Take k = 5 and r = 5 in Corollary 3.13. Recall from Example 3.6
that we have already obtained four 5-dimensional cyclic subspace codes in F2N , each of which has size
5(2N−1) and minimum distance 8. Take a0 = 1, then F25 is the splitting field for X25+X. Corollary 3.13
thus gives us four 5-dimensional cyclic subspace code in F2N , each of which has size 5(2N−1)+(2N−1)/31
and minimum distance 8.

4 Concluding remarks

In this paper, we study the construction of k-dimensional cyclic subspace codes with minimum distance
2k−2 by exploring further the ideas proposed in [2] and [17]. Lemma 3.1 is the key ingredient in computing
the minimum distance of cyclic subspace codes described by a special class of subspace polynomials. Our
main result, Theorem 3.10, improves [17, Theorem 3] in two directions: First we introduce a parameter ℓ
which is a positive integer small than and coprime to k, thus [2, Theorem 3] and [17, Theorem 3] can bee
seen as the special case ℓ = 1 of our result; second we enlarge the code size by adjoining with a spread
code, without compromising the minimum distance. However, the conjecture raised in [20] and [12] (see
Section 1) is still open. It is interesting to find new tools or combine several tools in the literature in
order to solve this problem. It would also be a happy outcome of this paper if one can generalize the
method to get further results.

Acknowledgments We sincerely thank the Associate Editor and the anonymous referees for their carefully
reading and helpful suggestions which led to significant improvements of the paper. The research of Bocong Chen
is supported by NSFC (Grant No. 11601158) and the Fundamental Research Funds for the Central Universities
(Grant No. 2017MS111). The research of Hongwei Liu is supported by NSFC (Grant No. 11171370) and
self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (Grant No.
CCNU14F01004).

References

[1] R. Ahlswede, H. K. Aydinian and L. H. Khachatrian, “On perfect codes and related concepts,” Des. Codes
Cryptogr., vol. 22, no. 3, pp. 221-237, 2001.

[2] E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv, “Subspace polynomials and cyclic subspace codes,”
IEEE Trans. Inf. Theory, vol. 62, no. 3, pp. 1157-1165, Mar. 2016.

[3] E. Ben-Sasson and S. Kopparty, “Affine dispersers from subspace polynomials,” SIAM J. Comput., vol. 41,
no. 4, pp. 880-914, 2012.

[4] E. Ben-Sasson, S. Kopparty and J. Radhakrishnan, “Subspace polynomials and limits to list decoding of
Reed-Solomon codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 113-120, Jan. 2010.

10



[5] M. Braun, T. Etzion, P. Ostergard, A. Vardy and A. Wasserman, “Existence of q-analogues of Steiner
systems,” Forum Math Pi., vol. 4, no. e7, pp. 1-14, Aug. 2016.

[6] Q. Cheng, S. Gao and D. Wan, “Constructing high order elements through subspace polynomials,” in Proc.
23rd Annu. ACM-SIAM Symp., Discrete Algorithms (SODA), pp. 1463-1547, 2012.

[7] L. Chihara, “On the zeros of the Askey-Wilson polynomials, with applications to coding theory,” SIAM J.
Math. Anal., vol. 18, no. 1, pp. 191-207, 1987.

[8] T. Etzion and L. Storme, “Galois geometries and coding theory,” Des. Codes Cryptogr., vol. 78, no. 1, pp.
311-350, 2016.

[9] T. Etzion and A. Vardy, “Error-correcting codes in projective space,” IEEE Trans. Inf. Theory, vol. 57, no.
2, pp. 1165-1173, Feb. 2011.

[10] T. Etzion and A. Wachter-Zeh, “Vector network coding based on subspace codes outperforms scalar linear
network coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, pp. 1949-1953, Aug. 2016.

[11] GAP, The GAP Groups, Algorithms and Programming, Version 4.7.7, http://www.gapsystem. org, 2015.

[12] H. Gluesing-Luerssen, K. Morrison and C. Troha, “Cyclic orbit codes and stabilizer subfields,” Adv. Math.
Commun., vol. 9, no. 2, pp. 177-197, 2015.
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