Skip to main content
Log in

New upper bounds for parent-identifying codes and traceability codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In the last two decades, parent-identifying codes and traceability codes are introduced to prevent copyrighted digital data from unauthorized use. They have important applications in the scenarios like digital fingerprinting and broadcast encryption schemes. A major open problem in this research area is to determine the upper bounds for the cardinalities of these codes. In this paper we will focus on this theme. Consider a code of length N which is defined over an alphabet of size q. Let \(M_{IPPC}(N,q,t)\) and \(M_{TA}(N,q,t)\) denote the maximal cardinalities of t-parent-identifying codes and t-traceability codes, respectively, where t is known as the strength of the codes. We show \(M_{IPPC}(N,q,t)\le rq^{\lceil N/(v-1)\rceil }+(v-1-r)q^{\lfloor N/(v-1)\rfloor }\), where \(v=\lfloor (t/2+1)^2\rfloor \), \(0\le r\le v-2\) and \(N\equiv r \mod (v-1)\). This new bound improves two previously known bounds of Blackburn, and Alon and Stav. On the other hand, \(M_{TA}(N,q,t)\) is still not known for almost all t. In 2010, Blackburn, Etzion and Ng asked whether \(M_{TA}(N,q,t)\le cq^{\lceil N/t^2\rceil }\) or not, where c is a constant depending only on N, and they have shown the only known validity of this bound for \(t=2\). By using some complicated combinatorial counting arguments, we prove this bound for \(t=3\). This is the first non-trivial upper bound in the literature for traceability codes with strength three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alon N., Fischer E., Szegedy M.: Parent-identifying codes. J. Combin. Theory A 95(2), 349–359 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon N., Stav U.: New bounds on parent-identifying codes: the case of multiple parents. Comb. Probab. Comput. 13(6), 795–807 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. Barg A., Kabatiansky G.: A class of I.P.P. codes with efficient identification. J. Complex. 20(2–3), 137–147 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackburn S.R.: Frameproof codes. SIAM J. Discret. Math. 16(3), 499–510 (2003). (Electronic).

    Article  MathSciNet  MATH  Google Scholar 

  5. Blackburn S.R.: An upper bound on the size of a code with the \(k\)-identifiable parent property. J. Comb. Theory A 102(1), 179–185 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. Blackburn S.R., Etzion T., Ng S.: Traceability codes. J. Comb. Theory A 117(8), 1049–1057 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44(5), 1897–1905 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng M., Miao Y.: On anti-collusion codes and detection algorithms for multimedia fingerprinting. IEEE Trans. Inf. Theory 57(7), 4843–4851 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Advances in Cryptology—CRYPTO94, pp. 257–270. Springer, Berlin (1994)

  10. Chor B., Fiat A., Naor M., Pinkas B.: Tracing traitors. IEEE Trans. Inf. Theory 46(3), 893–910 (2000).

    Article  MATH  Google Scholar 

  11. Hollmann H.D.L., van Lint J.H., Linnartz J.P., Tolhuizen L.M.G.M.: On codes with the identifiable parent property. J. Comb. Theory A 82(2), 121–133 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. Owen S., Ng S.-L.: A note on an upper bound of traceability codes. Australas. J. Comb. 62, 140–146 (2015).

    MathSciNet  MATH  Google Scholar 

  13. Shangguan C., Ge G.: Separating hash hamilies: a Johnson-type bound and new constructions. SIAM J. Discret. Math. 30(4), 2243–2264 (2016).

    Article  MATH  Google Scholar 

  14. Shangguan, C., Wang, X., Ge, G., Miao, Y.: New bounds for frameproof codes. IEEE Trans. Inf. Theory. doi:10.1109/TIT.2017.2745619

  15. Silverberg A., Staddon J., Walker J.L.: Applications of list decoding to tracing traitors. IEEE Trans. Inf. Theory 49(5), 1312–1318 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  16. Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47(3), 1042–1049 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  17. van Trung T.: A tight bound for frameproof codes viewed in terms of separating hash families. Des. Codes Cryptogr. 72(3), 713–718 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research supported by the National Natural Science Foundation of China under Grant Nos. 11431003 and 61571310, Beijing Scholars Program, Beijing Hundreds of Leading Talents Training Project of Science and Technology, and Beijing Municipal Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennian Ge.

Additional information

Communicated by C. J. Colbourn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shangguan, C., Ma, J. & Ge, G. New upper bounds for parent-identifying codes and traceability codes. Des. Codes Cryptogr. 86, 1727–1737 (2018). https://doi.org/10.1007/s10623-017-0420-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0420-y

Keywords

Mathematics Subject Classification

Navigation