
ar
X

iv
:1

70
3.

09
12

5v
1

 [
cs

.I
T

]
 2

7
M

ar
 2

01
7

Noname manuscript No.
(will be inserted by the editor)

Generalized Gabidulin codes over fields of any

characteristic

Daniel Augot · Pierre Loidreau · Gwezheneg

Robert

the date of receipt and acceptance should be inserted later

Abstract We generalist Gabidulin codes to the case of infinite fields, eventually with

characteristic zero. For this purpose, we consider an abstract field extension and any

automorphism in the Galois group. We derive some conditions on the automorphism

to be able to have a proper notion of rank metric which is in coherence with linearized

polynomials. Under these conditions, we generalize Gabidulin codes and provide a

decoding algorithm which decode both errors and erasures. Then, we focus on codes

over integer rings and how to decode them. We are then faced with the problem of the

exponential growth of intermediate values, and to circumvent the problem, it is natural

to propose to do computations modulo a prime ideal. For this, we study the reduction

of generalized Gabidulin codes over number ideals codes modulo a prime ideal, and

show they are classical Gabidulin codes. As a consequence, knowing side information

on the size of the errors or the message, we can reduce the decoding problem over

the integer ring to a decoding problem over a finite field. We also give examples and

timings.

Keywords Gabidulin codes · rank metric · skew polynomials · Ore rings · algebraic

decoding · number fields

1 Introduction

Gabidulin codes and rank metric, introduced in [Del78] from a combinatorial point of

view and in [Gab85] from an algorithmic and algebraic point of view, play an important

role in coding theory as well as in cryptography. From a coding theory point of view

Daniel Augot
INRIA Saclay-Île-de-France, and École polytechnique, Palaiseau, France
E-mail: daniel.augot@inria.fr

Pierre Loidreau
DGA MI and IRMAR, Université de Rennes 1
E-mail: pierre.loidreau@univ-rennes1.fr

Gwezheneg Robert
DGA MI
E-mail: gwezheneg.robert@intradef.gouv.fr

http://arxiv.org/abs/1703.09125v1

2 Daniel Augot et al.

they are adapted to correct errors and erasures that occur, either along lines of a

matrix as could be the case on chip array storage and magnetic tapes [Rot91,BM85],

or operating on vector spaces as in network coding [KK08]. In the field of cryptography,

rank metric and Gabidulin codes have been used in the design of code-based public-key

cryptosystems, see for instance [GPT91,FL06].

The goal of this paper is to generalize the construction of rank metric and Gabidulin

codes, already well established for finite fields, to any type of fields, in particular number

fields, and to study how the algebraic and algorithmic properties are transposed. To

do this we make extensive use of Ore theory of θ-polynomials that are the natural

generalization of linearized polynomials, [Ore34,Ore33b].

In Section 2, we introduce the ring of θ-polynomials as well as a suitable evalu-

ation operator. Then we propose several definitions for the rank metric and provide a

framework in which all the definitions are equivalent, generalizing faithfully the finite

field case. In this framework, we define generalized Gabidulin codes as being evaluation

codes of θ-polynomials of bounded degree on a so-called support consisting of linearly

independent elements. We show in particular that these codes are also optimal. The

reader interested in the applications of θ-polynomials to coding theory and the relations

between the different types of evaluations can refer to [BGU07,BU12].

In Section 3 we deal with the decoding problem of the generalized Gabidulin codes.

We show that in the case where only errors occur, finding an error of rank less than the

error-correcting capability can be done first by solving a system of linear equations,

secondly by computing a Euclidean division on the left in the ring of θ-polynomials.

Concerning decoding in presence of errors and erasures, we recall two known models of

erasures (line erasures and network coding erasures) and show that, using linear alge-

bra and puncturing positions, this amounts to decoding errors in another generalized

Gabidulin code, which again reduces to solving of a linear system.

An efficient way to solve this linear system, inspired by the so-called Welch-Berlekamp

algorithm [BW86,GS92], is presented in Section 4. This algorithm requires a quadratic

number of arithmetic operations. We also give two variants which enable to decrease

the practical complexity.

In Section 5 we address the problem of controlling of the size of coefficients in

infinite fields, especially in number fields. The decoding algorithm involves coefficients

whose size increases exponentially. Focusing on integral codes, which are restriction of

generalized Gabidulin codes to the ring of integral elements, we establish conditions

to reduce the code modulo a prime ideal and prove that reduction and decoding are

compatible: decoding the integral code can be done decoding the code modulo the

prime ideal.

Finally we present examples in Section 6. The first one shows a full run of the

decoding algorithm, with all the intermediate internal values. The second one shows

the benefits of computing in the residue field, by providing several timings.

2 Generalization of Gabidulin codes

In this section, we aim to generalist Gabidulin codes to the case of an algebraic

extension K →֒ L of any field K, in particular infinite. Given a K-automorphism

θ ∈ AutK(L), we first define θ-polynomials which are a natural generalization of q-

polynomials, described in [Ore33a] and which are classically used to design Gabidulin

codes in finite fields. We present their properties and give proofs that these properties

Generalized Gabidulin codes over fields of any characteristic 3

are independent of the underlying field, under some hypothesis Hdim. We give several

possible definitions of the rank metric and prove that they are equivalent under the

hypothesis Lθ = K. Then, the hypotheses Hdim and Lθ = k are equivalent, and hold

for cyclic extensions. When these hypotheses are valid, we have a nice framework for

studying Gabidulin codes and give their main properties.

2.1 Ore rings and θ-polynomials

A q-polynomial in a finite field extension Fq →֒ Fqm is a polynomial of the form∑
i aiX

qi . In the literature related to coding theory, they are also called linearized

polynomial [Ber68,LN97]. When the Frobenius automorphism x 7→ xq is replaced by

an automorphism x 7→ θ(x) of an extension field, these polynomials are called θ-

polynomials. Originally they were introduced by Ore in the 1930’s (see [Ore33b] for

the general theory and [Ore33a] for q-polynomials). In this Section, we recall some

useful facts and we give proofs independent of the finiteness or not of the fields.

Definition 1 (θ-polynomials) Let K →֒ L be a field extension of finite degree m =
[L : K] and let θ ∈ AutK(L) be a K-automorphism. A θ-polynomial with coefficients

in L is an element of the form
∑

i>0

aiX
i, ai ∈ L,

with a finite number of non-zero ai’s.

Definition 2 (θ-degree) The degree of a θ-polynomial A(X) =
∑
aiX

i is

deg(A) =

{
−∞ if A = 0,

max{i : ai 6= 0} if A 6= 0.

Definition 3 (Ring of θ-polynomials) We denote by L[X; θ] the set of θ-polynomials,

provided with the following operations. Let A(X) =
∑
aiX

i, B(X) =
∑
biX

i ∈

L[X; θ] and c ∈ L:

• the addition is defined component-wise: A(X) +B(X) =
∑

i(ai + bi)X
i;

• the (symbolic) product is defined by X · c = θ(c)X and Xi ·Xj = Xi+j .

The product of A(X) and B(X) is then given by A(X) ·B(X) =
∑

i,j aiθ
i(bj)X

i+j .

Remark 1 This product is called the symbolic product (see [Ore33a]) in order to make

a distinction from the classical product in polynomial ring over finite fields.

Then L[X; θ] is a non commutative ring, whose unit element is 1. It admits no zero

divisors and is a left and right Euclidean ring [Ore33b]. A major difference with the

polynomial ring L[X] occurs when defining the evaluation of θ-polynomials on scalars.

In the usual case, the evaluation of A(X) ∈ L[X] at b ∈ L, is simply defined by “replace

X by b”, which is equivalent to computing the remainder of the Euclidean division of

A(X) by X − b. This equivalence does not hold for θ-polynomials.

Concerning θ-polynomials, there are two different types of evaluations. The first

one consists in taking the remainder of the right Euclidean division of A(X) ∈ L[X; θ]
by the θ-polynomial X − b, see [BU12] for instance. The other type is to consider the

evaluation through the use of the automorphism θ of the field L. This is the evaluation

that we consider in the sequel of the paper.

4 Daniel Augot et al.

Definition 4 (Evaluation) LetA(X) =
∑
aiX

i ∈ L[X; θ] and b ∈ L. The (operator)

evaluation of A(X) at b is defined by:

A {b} =
∑

i

aiθ
i(b)

The properties of this evaluation are as follows.

Proposition 1 Let K →֒ L, θ ∈ AutK(L) and let A(X), B(X) ∈ L[X; θ], a, b ∈ L
and λ, µ ∈ K. Then we have

A {λa+ µb} = λA {a}+ µA {b} ,

(AB) {a} = A {B {a}} .

The roots of a θ-polynomial are then naturally defined as follows.

Definition 5 (Roots and root-space) Let A(X) ∈ L[X; θ]. An element b ∈ L is a

root of A(X) if A {b} = 0. We define the root-space of A(X) by

Roots(A(X)) = {b ∈ L : A {b} = 0}.

From Proposition 1, it is obvious that Roots(A(X)) is a K-vector space. For a

classical polynomial in L[X], the number of roots is upper bounded by the degree. In

the case of θ-polynomials, we are looking for a similar property.

Definition 6 (Hypothesis Hdim) Let K →֒ L be a field extension and θ ∈ AutK(L).
We say that L[X; θ] verifies the hypothesis Hdim if for all non-zero θ-polynomial A(X)
we have

dimK Roots(A(X)) 6 degA(X).

We have the following immediate proposition, which paves the way for a Lagrange

interpolation.

Proposition 2 Suppose that L[X; θ] has the property Hdim. Let v1, . . . , vs ∈ L be

K-linearly independent, and A(X) ∈ L[X; θ] such that A {vi} = 0, i = 1, . . . , s. Then

either A(X) = 0, or degA(X) > s.

For a given vector space, there exists a θ-polynomial vanishing on the vector space.

Theorem 1 Let K →֒ L be a field extension of finite degree m, and θ ∈ AutK(L). Let

V ⊂ L be a K-linear subspace of dimension n. There exists a unique monic polynomial

A(X) ∈ L[X; θ] which vanishes on all x ∈ V . If furthermore L[X; θ] verifies Hdim,

A(X) has degree exactly n.

Proof We first prove existence and unicity. Since [L : K] is finite, θ has finite order,

say s, and we have (Xs − 1) {x} = 0, for all x ∈ L. In particular, (Xs − 1) {x} = 0,
for all x ∈ V , and there exists a non zero polynomial vanishing on V . Let A(X)
and B(X) be two non zero monic polynomials both of minimal degree and vanishing

on V . They have the same degree and they are both monic. Then, for all v ∈ V ,

(A(X)−B(X)) {v} = 0, but A(X) − B(X) has lower degree than A(X) or B(X),
which contradicts the minimality of the degree. Thus A(X) = B(X).

Assume that L[X; θ] verifies Hdim. By Proposition 2, the degree of any non-zero

θ-polynomial annihilating V is at least n. Now we give an explicit construction of this

Generalized Gabidulin codes over fields of any characteristic 5

polynomial: let (v1, · · · , vs) be a basis of V and let the sequence Ai(X) ∈ L[X; θ],
i = 0, . . . , n, be recursively defined by

A0(X) = 1, (1)

Ai(X) =

(
X −

θ(Ai−1 {vi})

Ai−1 {vi}

)
·Ai−1(X). (2)

By induction it is easy to show that, for i = 1, . . . , n, Ai(X) is monic of degree i and

that for all 1 6 j 6 i, Ai

{
vj
}
= 0. This also proves that the quotient in (2) above

is well-defined, since Ai−1 {vi} 6= 0 by Hdim. Therefore, A(X) = An(X) is monic of

degree n and its root-space is V . ⊓⊔

Definition 7 (Annihilator polynomial) Let K →֒ L be a field extension, and

θ ∈ AutK(L). Let V ⊂ L be a K-linear subspace of dimension n. The annihilator

polynomial of V is the monic θ-polynomial AV (X) ∈ L[X; θ] of minimal degree such

that for all v ∈ V,AV {v} = 0. Given a family g = (g1, . . . , gn) ∈ Ln, we will use

the notation Ag(X) for the annihilator polynomial AV , where V is the K-linear space

spanned by g.

We can also define interpolating polynomials, and when Hdim holds, interpolating

polynomials have the natural expected degree.

Theorem 2 Let K →֒ L be a field extension of finite degree [L : K] = m and

θ ∈ AutK(L) such that L[X; θ] verifies Hdim. Let g = (g1, . . . , gn) be K-linearly

independent elements in L and y = (y1, . . . , yn) ∈ L
n. There is a unique θ-polynomial

of degree at most n− 1 such that

I {gi} = yi, 1 6 i 6 n.

Proof For i = 1, . . . , n, let ĝi
def
= (g1, . . . , gi−1, gi+1, . . . , gn), and consider

I(X)
def
=

n∑

i=1

yi
Aĝi

(X)

Aĝi
{gi}

.

It is easy to check that I(X) satisfies the conditions of Theorem 2. Suppose now that

there exists B(X) ∈ L[X; θ] of degree n − 1 such that B {gi} = yi, 1 6 i 6 n. Then

I(X)−B(X) has degree 6 n− 1 and (I −B) {gi} = 0 for 1 6 i 6 n. The hypothesis

Hdim implies that that B(X) = I(X) and we have unicity. ⊓⊔

Definition 8 (Interpolating polynomial) The polynomial introduced at Theo-

rem 2 is called the interpolating θ-polynomial of y at g, and is denoted by Ig,y.

2.2 Rank metrics

Over finite field extensions, the rank metric was studied by Delsarte [Del78] from a

combinatorial point of view. Since in this paper our aim is to extend the notion of rank

metric to infinite fields, the definitions introduced here are compatible with the finite

field case.

Given a field K, we letMr,c(K) denote the ring of matrices with r rows, c columns

and coefficients in K. Given K →֒ L a field extension, and a matrix M with coefficients

in L, we write rankL(M) for the maximal number of linearly independent columns over

the field L, which is the usual rank of a matrix, and rankK(M) for the maximal number

of linearly independent columns over the field K.

6 Daniel Augot et al.

Definition 9 (Four rank metrics) Let K →֒ L be a field extension of finite degree

[L : K] = m, and let θ ∈ AutK(L) be an automorphism of order s. Let B = (b1, . . . , bm)
be a K-basis of L, and for x = (x1, . . . , xn) ∈ Ln, let xij ∈ K, i = 1, . . . , n, j =
1, . . . ,m, be the coordinates of the xi’s in the K-basis B as follows:

xi =
m∑

j=1

xijbj , i = 1, . . . , n.

Considering

Bx,B =

x1,1 · · · xn,1

...
. . .

...

x1,m · · · xn,m

 ∈ Mm×n(K),

and

Vx,θ =

x1 · · · xn
...

. . .
...

θs−1(x1) · · · θ
s−1(xn)

 ∈ Ms×n(L),

we define the four following weights for x ∈ Ln:

wA(x) = degAx(X),

wθ,L(x) = rankL Vx,θ,

wθ,K(x) = rankK Vx,θ,

wB(x) = rankK Bx,B.

Definition 10 (Rank distances) We endow Ln with the distances induced by pre-

vious weights:

dA(x,y) = wA(x− y),
dθ,L(x,y) = wθ,L(x− y),
dθ,K(x,y) = wθ,K(x− y),
dB(x,y) = wB(x− y).

These distances are called rank distances.

It is clear that the last three weights induce distance over Ln. We need a proof for dA.

Proposition 3 The metric dA is a distance.

Proof We prove the associated relevant statements for the weight function wA. Let

x ∈ Ln such that wA(x) = 0. This means that the annihilator polynomial of x has

degree 0, and, being monic, it is the polynomial A(X) = 1 ∈ L[X, θ]. Now, for i =
1, . . . , n, we have A{xi} = 1{xi} = xi = 0. Thus wA(x) = 0 implies x = 0. Now we

have easily that wA(−x) = w(x), since, for any A(X) ∈ L[X; θ] which vanishes on x,

we have A{−xi} = −A{xi} = 0, i = 1, . . . , n, and the annihilator polynomials of x

and −x are the same.

Generalized Gabidulin codes over fields of any characteristic 7

We finally have to prove that, given x1,x2 ∈ L
n, wA(x1+x2) 6 wA(x1)+wA(x2).

Let wA(x1) = w1 and wA(x2) = w2, and consider the following elements in Ln, where

addition and θ are applied component-wise:

y0 = x1 + x2,

y1 = θ(x1 + x2) = θ(x1) + θ(x2),

...

yw1+w2
= θw1+w2(x1 + x2) = θ(x1)

w1+w2 + θ(x2)
w1+w2 .

Now using that θi(x1 +x2) = θi(x1)+ θi(x2), i = 1 . . . , w1+w2, and considering the

rest of the right division of Xi by Ax1
(X) and by Ax2

(X), we see that θi(x1)+θi(x2)
belong the L-vector space

Vx1,x2
= VectL

〈
x1, θ(x1), . . . , θ(x1)

w1−1,x2, θ(x2), . . . , θ
w2−1(x2)

〉
.

Now, since dimL Vx1,x2
6 w1 + w2, there exists an L-linear non zero dependency

between the w1 +w2 +1 vectors y0, . . . ,yw1+w2
. Then, by Proposition 2, the anni-

hilator polynomial of x1 + x2 has degree less than or equal to w1 + w2. ⊓⊔

The natural question about the relationship between the different induced metrics is

answered in the following theorems.

Theorem 3 For all x ∈ Ln, wA(x) = wθ,L(x).

Proof The case of x = 0 being trivial, let us consider x = (x1, . . . , xn) 6= 0 ∈ Ln. We

first show that wθ,L(x) 6 wA(x). Let w = wA(x). Let Ax(X) =
∑w

i=0 aiX
i be the

monic annihilator polynomial of x. Then, let Li, i = 0, . . . , s− 1 be the i+1-th row of

Vx,θ. We have Lw = −
∑w−1

i=0 ai−1Li and the (w+ 1)-th row is a linear combination

of the previous ones. Then, applying recursively θ on this relation, we can express any

row of index larger than or equal to w+ 1 as a linear combination of the w first rows.

Thus, Vx,θ has at most wA(x) linearly L-independent rows which is the same as the

number of L-independent columns. Thus wθ,L(x) 6 wA(x).

Conversely, let w = wθ,L(x). Let 1 6 u 6 w be the smallest index such that

L1, . . . , Lu are K-Linearly independent. Since, by construction of Vx,θ, Li+1 = θ(Li)
where θ acts on all the components of the row Li, any row Li, i > u + 1, is a linear

combination of the rows L1, . . . , Lu. Therefore, u = w, and there is a linear combination

such that Lw +
∑w−1

i=0 µiLi = 0, and the polynomial Xw +
∑w−1

i=0 µiX
i annihilates x.

Hence wA(x) 6 w = wθ,L(x). ⊓⊔

For the next inequalities, we have to compare the number of linearly independent

columns of two matrices. For that, we will consider a linear combination of columns of

the first one, and show that it gives a linear combination in the second matrix. Since the

order of the columns, reflecting the ordering of the xi’s in x, does not matter, w.l.o.g.

we can order them such that the r first columns are linearly independent, where r

denotes the rank of the matrix.

Theorem 4 For all x ∈ Ln, wθ,K(x) = wB(x).

8 Daniel Augot et al.

Proof The case of 0 being trivial, let us consider x = (x1, . . . , xn) 6= 0 ∈ Ln. We show

that wθ,K(x) 6 wB(x). Let w = wB(x) = rankK(Bx,B), and w.l.o.g. assume that the

first w columns of Bx,B are linearly independent. Consider the u-th column expressed

as a linear combination of the first w columns of Bx,B:

xu,1

...

xu,m

 = λ1

x1,1

...

x1,m

+ · · ·+ λw

xw,1

...

xw,m

 ,

where λi ∈ K for i = 1, . . . , w. For i = 1, . . . , n, writing

xi =
m∑

j=1

xijbj ,

we have

xu = λ1x1 + · · ·+ λwxw.

By applying the K-automorphism θk, for k = 1, . . . , s, we get

θk(xu) = λ1θ
k(x1) + · · ·+ λwθ

k(xw).

Hence,

xu
...

θs−1(xu)

 = λ1

x1
...

θs−1(x1)

+ · · ·+ λw

xw
...

θs−1(xw)

 ,

and a linear combination in Bx,B implies a linear combination in Vx,θ, thus theK-rank

of Vx,θ is at most the K-rank of Bx,B.

Now, we show that wB(x) 6 wθ,K(x). Let w = wθ,K(x) = rankK(Vx,θ). Consider

the expression of the u-th column as a K-linear combination of the w first columns of

Vx,θ:

xu
...

θs−1(xu)

 = λ1

x1
...

θs−1(x1)

+ · · ·+ λw

xw
...

θs−1(xw)

 ,

where λi ∈ K, for all i = 1, . . . , w. Then, by considering the first row, we have xu =
λ1x1 + · · ·+ λwxw, which can be expanded in the basis B as follows:

xu,j =
w∑

i=1

λixi,j , 1 6 j 6 m.

Thus,

xu,1

...

xu,m

 = λ1

x1,1

...

x1,m

+ · · ·+ λw

xw,1

...

xw,m

so wB(x) = rankK(XB) 6 w. ⊓⊔

Proposition 4 We have the following inequality, for all x ∈ Ln:

wA(x) = wθ,L(x) 6 wθ,K(x) = wB(x).

Generalized Gabidulin codes over fields of any characteristic 9

Proof A linear combination with coefficients in K is also a linear combination with

coefficients in L, so wθ,L(x) 6 wθ,K(x).

⊓⊔

Now we introduce a condition for all these weights to be equal.

Proposition 5 If Lθ = K, where Lθ = {x ∈ L : θ(x) = x} is the fixed field of θ,

then, for all x ∈ Ln,

wA(x) = wθ,L(x) = wθ,K(x) = wB(x).

Proof From previous Theorems, it suffices to show that for all x = (x1, . . . , xn) ∈ L
n,

wθ,K(x) 6 wθ,L(x). Let w = wθ,L(x) = rankL(Vx,θ). Consider the expression of the

u-th column as an L-linear combination of of the w first columns of Vx,θ which form

a basis of the column space of Vx,θ:

xn
...

θs−1(xn)

 = µ1

x1
...

θs−1(x1)

+ · · ·+ µw

xw
...

θs−1(xw)

 , (3)

with µi ∈ L, i = 1, . . . , w. By applying θ, we obtain

θ1(xu)

...

θs(xu)

 = θ(µ1)

θ1(x1)

...

θs(x1)

+ · · ·+ θ(µw)

θ1(xw)

...

θs(xw)

 .

Since s is the order of θ, i.e. θs = Id, by reordering the lines, we obtain

xn
...

θs−1(xn)

 = θ(µ1)

x1
...

θs−1(x1)

+ · · ·+ θ(µw)

xw
...

θs−1(xw)

 .

Since the first w columns form a basis of the column space, the decomposition (3) is

unique. Therefore, µi = θ(µi), i.e. µi ∈ L
θ = K, for i = 1, . . . , n. This implies that

wθ,K(x) = rankK(Vx,θ) 6 wθ,L(x) = rankL(Vx,θ). ⊓⊔

When Lθ = K, the four metrics previously defined are identical. This metric is called

the rank metric, and denoted by w(x).

2.3 A framework for studying Gabidulin codes

From previous Sections, we have seen that when L[X; θ] verifies Hdim, the dimension

of the root-space of a θ-polynomial A(X) is at most equal to the degree of A(X). Also,

when Lθ, the field fixed by θ, is K, we have that all the defined metrics are equal. We

first present two examples, of a bad situation and of a nice situation.

10 Daniel Augot et al.

Example 1 Let K = Q[j] = Q[X]/(X2 +X + 1), which is a field, which contains the

sixth roots of the unity {1, j, j2,−1,−j,−j2} where j3 = 1. We build an extension L

of K by adding a sixth root of 2, denoted by α, and α6 = 2. Since square and cubic

roots of 2 are not in K, we get the following Kummer extension [Neu99, §IV.3]:

L = K[α] = K[Y]/(Y 6 − 2).

Hence [L : K] = 6 and any K-automorphism of L is uniquely defined by the image of

α, which must be a root of Y 6 − 2. Let us consider θ1 : α 7→ jα, which has order 3:
θ31 = IdL. Then Hdim is not verified, as can be seen by considering the θ1-polynomial

A = X − 1. One can check that Roots(X − 1) contains 1 and α3, therefore has K-

dimension 2, which is twice the degree of A. We also have that the fixed field Lθ1 is

spanned by 1 and α3. Therefore K 6= Lθ1 . The rank metrics are clearly different:

wA(1, α, α3, α4) = 2 < wB(1, α, α
3, α4) = 4.

Indeed, we have that j − (j + 1)X +X2 vanishes on (1, α, α3, α4), and thus

wA(1, α, α3, α4) = deg
(
j − (j + 1)X +X2

)
= 2;

while

wB(1, α, α
3, α4) = rank

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

= 4.

Example 2 We consider the field extension of Example 1, and now consider θ2 : α 7→
(j+1)α. The automorphism θ2 has order 6. We have that Roots(X−1) has dimension

1 and Lθ2 = K, which implies the equality of the metrics, for example:

w0(1, α, α
3, α4) = w3(1, α, α

3, α4) = 4.

Indeed, we have:

wA(1, α, α3, α4) = deg
(
j − (j + 1)X2 +X4

)
= 4;

and

wB(1, α, α
3, α4) = rank

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

= 4.

In this case, Hdim is verified.

These examples show that there is a connection between the hypothesis Hdim and

Lθ = K. The following theorem establishes this link.

Theorem 5 Let K →֒ L be a field extension of finite degree [L : K] = m, and let

θ ∈ AutK(L). The following statements are equivalent:

Generalized Gabidulin codes over fields of any characteristic 11

i the subfield Lθ is K,

ii the weights wA and wB are equal,

iii the annihilator polynomial of n K-linearly independent elements of L has degree

exactly n,

iv the dimension of the root-space of any non-zero polynomial is upper-bounded by its

degree.

Proof

i⇒ ii This implication has been proved in Proposition 5.

ii⇒ iii Let v = (v1, . . . , vn) be a vector ofK-linearly elements ofK, meaning that wB(v) =
n. The equivalence is a direct consequence of the definition of wA.

iii⇒ iv Let P (X) be a polynomial of degree n and (v1, . . . , vu) be a basis of its roots

space. Let A(X) denotes the annihilator polynomial of the vi’s. By iii, its degree

is u. We compute the Euclidean division: P (X) = Q(X)A(X) + R(X), where

degR(X) < degA(X). We get that R {vi} = 0, but since the annihilator has

minimal degree, we deduce that R(X) = 0. Thus, P (X) is a multiple of A(X), and

u 6 n.

iv ⇒ i Lθ is the roots space of X − 1, applying Hdim to this polynomial gives that Lθ has

dimension 1 and contains K, so it is K. ⊓⊔

Since θ has a finite order, Artin’s Lemma establishes that Lθ →֒ L is a Galois extension

of Galois group 〈θ〉. Therefore, if the condition i. above (K = Lθ) is satisfied, then

K →֒ L is a Galois extension with Galois group AutK(L) = 〈θ〉. Thus, a proper

framework to design codes in rank metric and the generalization of Gabidulin codes is

to consider a cyclic Galois extension K →֒ L.

Finite fields extensions provided with the Frobenius automorphism are examples

of such extensions. Concerning number fields, cyclotomic and Kummer extensions are

simple cyclic Galois extension, with explicit generators of the Galois group. Similarly,

concerning function fields, Kummer and Artin-Schreier extensions also provide cyclic

Galois extensions which are easy to deal with.

2.4 Generalized Gabidulin codes

Gabidulin codes were defined in 1985 by Gabidulin for finite fields [Gab85]. They

consist in the evaluation of a q-polynomial of bounded degree k at n values. They

are the analogue of Reed-Solomon codes in the rank metric. In this part, we give the

Singleton bound for codes in the rank metric, and we generalized the construction of

Gabidulin codes. Then, we give basic properties of these codes, with proofs that does

not rely on the finiteness of the field.

We consider K →֒ L a cyclic Galois extension of degree [L : K] = m and 〈θ〉 =
AutK(L). From previous considerations, we endow the vector space Ln with the rank

metric w, using any of the four equivalent definitions. A [n, k, d]r code C is an L-linear

subspace of dimension k of the vector space Ln with minimum rank distance d, i.e.

d = minx∈C\0 w(x).

With these parameters, we have

Proposition 6 (Singleton Bound) Let C be a [n, k, d]r-code over L. Then d 6

n− k + 1.

12 Daniel Augot et al.

Proof Consider the projection map π on the first n− d+ 1 coordinates:

π : C → Ln−d+1

(x1, . . . , xn) 7→ (x1, . . . , xn−d+1)

and let x ∈ C be such that π(x) = 0, i.e. x = (0, . . . , 0, xn−d+2, . . . , xn). The number

of non zero coordinates of x is less than or equal to n− (n− d+2)+ 1 = d− 1. Then

Ax(X), the annihilator polynomial of x, right divides the left lowest common multiple

of

X −
θ(xn−d+2)

xn−d+2
, . . . , X −

θ(xn)

xn

which has degree less than or equal to d − 1. Thus w(x) 6 d − 1: since the minimum

distance of C is d, x = 0, and π is injective. As a consequence k 6 n− d+ 1. ⊓⊔

Definition 11 (MRD codes) When d = n− k+1, the code C is a MRD (Maximum

Rank Distance) code.

Now we present the generalization of Gabidulin codes.

Definition 12 (Generalized Gabidulin code) Let K →֒ L be a cyclic Galois ex-

tension of degree [L : K] = m and AutK(L) = 〈θ〉. Let k 6 n 6 m be integers and

g = (g1, . . . , gn) be a vector of K-linearly independent elements of L. The vector g is

called the support of the code. The generalized Gabidulin code Gabθ,k(g) is

Gabθ,k(g) = {(f {g1} , . . . , f {gn}) : f(X) ∈ L[X; θ],deg f(X) < k} . (4)

Remark 2 The case k = n is useful for the theory. This case will appear for decoding

algorithms when there is the maximal number of erasures.

A codeword c = (c1, . . . , cn) of Gabθ,k(g) has coefficient in Ln. The generalized

Gabidulin code Gabθ,k(g) has the following generating matrix

θ0(g1) · · · θ0(gn)
...

. . .
...

θk−1(g1) · · · θ
k−1(gn)

 . (5)

Using a K-basis B = (b1, . . . , bm) of L, writing cj =
∑m

i=1 cijbj , cij ∈ K, i = 1 . . .m,

j = 1 . . . , n, the codeword c can alternatively be written in matrix form:

c =

c11 · · · c1n
...

. . .
...

cm1 · · · cmn

 ∈Mm×n(K).

Example 3 We consider the cyclotomic extension Q →֒ Q[X]/(1+X+· · ·+X6) = Q[α],
where 1 + α + · · · + α6 = 0, and the automorphism defined by θ : α 7→ α3. In this

setting, Q = K and Q[α] = L. Let B = (1, α, . . . , α5) be the considered K-basis of

L. Let the support be g = (1, α, . . . , α5), and we build the corresponding generalized

Gabidulin code of length n = 6, dimension k = 2 and minimum distance d = 5.

Generalized Gabidulin codes over fields of any characteristic 13

To encode the θ-polynomial f = α2 + α5X, we compute the evaluations of f on

the support:
f {1} = α2 + α5,

f {α} = α+ α3,

f
{
α2

}
= 2α4,

f
{
α3

}
= α5 + 1

f
{
α4

}
= α3 + α6

= −1− α− α2 − α4 − α5

f
{
α5

}
= α6 + 1
= −α− α2 − α3 − α4 − α5

Then, the corresponding codeword is the following vector:

c(f) =
(
f {α} , . . . , f

{
α6

})
∈ Q[α]8;

or the following matrix obtain by expanding the components of the vector over the

basis B:

C(f) =

0 0 0 1 −1 0
0 1 0 0 −1 −1
1 0 0 0 −1 −1
0 1 0 0 0 −1
0 0 2 0 −1 −1
1 0 0 1 −1 −1

∈ M6,6(Q).

Proposition 7 Under the conditions of Definition 12, Gabθ,k(g) is an MRD-code.

Proof Let c = (c1, . . . , cn) be a non-zero codeword of rank weight w. From Theorem

1, there is a non-zero θ-polynomial U(X) of degree w which vanishes on all the ci’s.

There also exists a non-zero θ-polynomial f(X) of degree 6 k−1 such that ci = f {gi},

for all i = 1, . . . , n. Therefore, we have

U(X) · f(X) {gi} = U {ci} = 0,1 6 i 6 n.

Thus U(X) · f(X) is a non-zero θ-polynomial of degree 6 w+ k− 1 which vanishes on

the K-vector space of dimension n generated by the gi’s. So we have n 6 w+k−1, i.e.

w > n− k+1. Therefore n− k+1 6 d. From Singleton bound we have d 6 n− k+1:
d = n− k + 1, and the code is MRD. ⊓⊔

Given the usual scalar product, we recall that the dual, or orthogonal, of a code is the

set of vectors orthogonal to all the codewords.

Proposition 8 A parity-check matrix of Gabθ,k(g) has the form

H =

θ0(h1) · · · θ0(hn)
...

. . .
...

θk−1(h1) · · · θ
k−1(hn)

 , (6)

for some h1, . . . , hn ∈ L
n which are K-linearly independent and satisfy

θ−d+2(g1) · · · θ

−d+2(gn)
...

. . .
...

θn−d(g1) · · · θ
n−d(gn)

h1
...

hn

 =

0
...

0

 .

Moreover the vector (h1, . . . , hn) ∈ L
n is unique up to a multiplicative factor in L.

14 Daniel Augot et al.

Proof The equation G · tH = 0, where G denotes the generating matrix of the code

(5) is equivalent to

n∑

i=1

θa(gi)θ
b(hi) = 0, 0 6 a 6 k − 1, 0 6 b 6 d− 2.

By applying, for all b = 0, . . . , k − 1, the automorphism θ−b we obtain

n∑

i=1

θc(gi)hi = 0, −n+ k + 1 6 c 6 k − 1,

which gives the system

θ0(g̃1) · · · θ0(g̃n)
...

. . .
...

θn−2(g̃1) · · · θ
n−2(g̃n)

h1
...

hn

 =

0
...

0

 , (7)

with g̃i = θ−(d−2)(gi). Since the gi’s are K-linearly independent, so are the g̃i’s. There-

fore, wθ,K(g̃), the K-rank weight of g̃ = (g̃1, . . . , g̃n), is equal to n. From Theorem

5 the L-rank of the matrix

θ0(g̃1) · · · θ0(g̃n)
...

. . .
...

θm−1(g̃1) · · · θ
m−1(g̃n)

is also n. Thus, the kernel of equation (7) has L-dimension 1. Let (h1, . . . , hn) 6= 0
belong to the kernel. Now, we prove that the hi’s are K-linearly independent. Consider

a linear dependency
n∑

i=1

λihi = 0, λi ∈ K.

If the matrix, that we call A, consisting in (7) augmented with the row (λ1, . . . , λn),
as a last row, has rank n, then the hi’s are all zero. Since this is not the case, A has

rank at most n− 1 and there exists µ0, . . . , µn−2 ∈ L
n−1 such that

λi = µ0θ
0(g̃i) + · · ·+ µn−2θ

n−2(g̃i), i = 1, . . . , n,

since matrix in (7) has rank n − 1. Let M =
∑n−2

i=0 µiX
i ∈ L[X; θ]. Since for all i,

λi ∈ K, the λi’s are also roots of X−1. Therefore, from the properties of the evaluation

of θ-polynomials in Proposition 1, we have, for i = 1, . . . , n:

(X − 1) ·M {g̃i} = (X − 1) {M {g̃i}} = (X − 1) {λi} = 0.

The θ-polynomial (X − 1) ·M has degree n− 1 with n K-linearly independent roots.

Therefore, by Proposition 2 it is the zero polynomial. This implies that all the µi are

zero, and for i = 1, . . . , n, λi = 0. Therefore the hi’s are K-linearly independent. ⊓⊔

Corollary 1 The dual of a generalized Gabidulin code is a generalized Gabidulin code.

Generalized Gabidulin codes over fields of any characteristic 15

3 Decoding Generalized Gabidulin Codes

Let K →֒ L be a cyclic Galois extension of finite degree m = [L : K] and θ a K-

automorphism such that AutK(L) = 〈θ〉. We consider a generalized Gabidulin code

Gabθ,k(g) with parameters [n, k, d]r, for some support g = (g1, . . . , gn) ∈ Ln, such

that the gi’s are K-linearly independent. The problem of decoding the code Gabθ,k(g)
is classically stated as follows. Let y ∈ Ln be such that

y = c(f) + e+ ε = c+ e+ ε,

where c = c(f) = f {g} ∈ Gabθ,k(g) is the codeword corresponding to the evaluation

of f(X) ∈ L[X; θ], e and ε are respectively the vector of errors and erasures, which

are “small”. The goal is to recover c ∈ Gabθ,k(g), or, equivalently, f(X) ∈ L[X; θ].
For an error e, being small means that e has low rank weight. For the erasure ε,

there are two definitions, which are more involved. In the first part of this Section,

we introduce the decoding problem in presence of errors only and show how to treat

it by solving the reconstruction problem of θ-polynomials. Then we recall two models

of erasures introduced in [Rot91,BM85,LSS14,KK08] adapted to existing applications

(line erasures and network coding erasures for instance) and show how the problem

of decoding in presence of these errors and erasures can be reduced to the decoding

problem of errors in a generalized Gabidulin code derived from the original one.

By choosing a fixed K-basis B of K →֒ L, we will indifferently consider the vectors

of Ln as m× n matrices over K.

3.1 Decoding errors

We define formally the decoding problem as

Definition 13 (Decoding problem Dec(n, k, t,g,y))

• Input:

– n, k ∈ N, k 6 n;

– support g = (g1, . . . , gn) ∈ L
n, where the gi’s are K-linearly independent;

– the Gabidulin code Gabθ,k(g);
– t ∈ N, the rank weight of the error vector (or matrix);

– y = (y1, . . . , yn) ∈ L
n.

• Output:

– (c, e) or, equivalently, (f(X),e), such that:

1. c ∈ Gabθ,k(g), or, equivalently, f(X) ∈ L[X; θ], deg f(X) < k;

2. e = (e1, . . . , en) ∈ L
n with w(e) 6 t;

3. y = c+ e = f {g}+ e,

– or return fail is no such solution exists.

Example 4 In the context of Example 3, suppose we receive

1 −1 1 3 −1 1
1 0 −1 0 −1 −2
0 1 0 −1 −1 −1
0 1 1 1 0 0
1 −1 3 2 −1 0
0 1 −1 −1 −1 −2

=

0 0 0 1 −1 0
0 1 0 0 −1 −1
1 0 0 0 −1 −1
0 1 0 0 0 −1
0 0 2 0 −1 −1
1 0 0 1 −1 −1

+

1 −1 1 2 0 1
1 −1 −1 0 0 −1
−1 1 0 −1 0 0
0 0 1 1 0 1
1 −1 1 2 0 1
−1 1 −1 −2 0 −1

16 Daniel Augot et al.

which can be written in vector form

(y1, . . . , y6) = (c1, . . . , c6) + (ǫ1,−ǫ1, ǫ2, ǫ1 + ǫ2, 0, ǫ2),

where ǫ1 = 1+ α−α2 +α4 −α5 and ǫ2 = 1−α+ α3 + α4 − α5. In this case we have

an error of rank 2.

Our decoding method is inspired by the so-called Welch-Berlekamp algorithm [BW86,

GS92], and we first present an intermediate problem.

Definition 14 (Non Linear Reconstruction problem NLR(n, k, t,g,y))

• Input:

– n, k ∈ N, k 6 n;

– t ∈ N, the number of errors;

– g = (g1, . . . , gn) ∈ L
n, where the gi’s are K-linearly independent;

– y = (y1, . . . , yn) ∈ L
n.

• Output:

– f(X), V (X) ∈ L[X; θ] such that:

1. deg f(X) < k;

2. V (X) 6= 0 and deg V (X) 6 t;

3. V {yi} = V · f {gi} = V {f {gi}}, i = 1, . . . , n,

– or return fail if no such solution exists.

In the above definition, V (X) plays the role of the locator polynomial of the error: if

y = g + e, where w(e) 6 t, then V (X) vanishes on the K-vector space generated by

e.

Proposition 9 There is a one-to-one correspondence between solutions of Dec(n, k, t,g,y)
and those of NLR(n, k, t,g,y).

Proof Let n, k, t, xg,y be the parameters of the two statements. If f(X) ∈ L[X; θ]
and e ∈ Ln are solution of Dec(n, k,g,y), then f(X) and V (X) = A〈e1,...,en〉(X)
are a solution of NLR(n, k, t,g,y). Conversely, if f(X) and V (X) are a solution of

NLR(n, k, ⌊n−k
2 ⌋,g,y), then f(X) and e = (y1−f {g1} , . . . , yn−f {gn}) are a solution

of Dec(n, k, g,y). ⊓⊔

Therefore, to decode errors it is sufficient to solve the Non Linear Reconstruction

problem. However since the related equations involve products of unknowns, we would

have to solve quadratic systems over L, which is a difficult and intractable task. In the

case we are interested in errors of weight less than the error-correcting capability, we can

“linearize” this problem, i.e. treat terms of degree as new indeterminates, and then the

solutions to the linearized problem give the solution to the Non Linear Reconstruction

problem problem, thus enabling to decode.

Definition 15 (Linear Reconstruction problem LR(n, k, t,g,y))

• Input:

– n ∈ N, k 6 n;

– t ∈ N the number of errors;

– g = (g1, . . . , gn) ∈ L
n, where the gi’s are K-linearly independent;

– y = (y1, . . . , yn) ∈ L
n;

Generalized Gabidulin codes over fields of any characteristic 17

• Output:

– N(X),W (X) ∈ L[X; θ] such that

1. W (X) 6= 0
2. degW (X) 6 t and

• either degN(X) 6 k + t− 1 if n− k is even;

• or degN(X) 6 k + t if n− k is odd;

3. W {yi} = N {gi}, i = 1, . . . , n.

– or return fail if no such solution exists.

A solution (V (X), f(X)) of NLR(n, k, t,g,y) gives a solution (V (X) · f(X), V (X)) of

LR(n, k, t,g,y). We have the following converse proposition:

Theorem 6 Let t 6 ⌊n−k
2 ⌋. If there exists a solution (V (X), f(X)) to NLR(n, k, t,g,y),

then any solution (W (X),N(X)) of LR(n, k, t,g,y) satisfies

W (X) · f(X) = N(X).

Proof Let (V (X), f(X)) be a solution of NLR(n, k, t,g,y), with deg V (X) 6 t, deg f(X) 6
k − 1 and V 6= 0. We set

ei = yi − f {gi} , i = 1, . . . , n,

and e = (e1, . . . , en). For all i = 1, . . . , n, since V (X) is non-zero and e has rank less

than or equal to t:

V {ei} = V {yi − f {gi}} = V {yi} − V · f {gi} = 0.

Let (N(X),W (X)) be a solution of LR(n, k, t,g,y), with W (X) 6= 0 and degW (X) 6
t. For all i = 1, . . . , n,

W {ei} =W {yi} −W {f {gi}}

= N {gi} −W {f {gi}}

Since the vector (W {e1} , . . .W {en}) has rank less than or equal to t, there exists

U(X) 6= 0 with degree less than or equal to t such that, for i = 1, . . . , n,

U {W {ei}} = U {N {gi} −W {f {gi}}} = 0.

Hence, for i = 1, . . . n,

(U(X) · (N(X)−W (X) · f(X))) {gi} = 0.

Now since degN(X) 6 k + t − 1 if n − k is even and degN(X) 6 k + t if n − k is

odd, U(X) · (N(X)−W (X) · f(X)) is a θ-polynomial of degree less than or equal to

k + 2t− 1 if n− k is even and k + 2t if n− k is odd. Since t 6 ⌊n−k
2 ⌋, in both cases,

its degree at most n− 1. Moreover it vanishes on n K-linearly independent elements.

Therefore

U(X) · (N(X)−W (X) · f(X)) = 0

Since L[X; θ] has no zero divisor, we have N(X) =W (X) · f(X). ⊓⊔

As an immediate consequence, provided t 6 ⌊(n− k)/2⌋, any solution (W (X),N(X))
of LR(n, k, t,g,y) gives the θ-polynomial f(X) solution to Dec(n, k, t,g,y), obtained

by a simple left Euclidean division f(X) = W (X)\N(X) in the θ-polynomial ring

L[X; θ]. This procedure is presented in Algorithm 1.

18 Daniel Augot et al.

Remark 3 The difference we made between the oddity of n−k is not essential here, but

it is convenient to introduce this distinction that will be needed in further algorithms.

Theorem 7 Let g = (g1, . . . , gn) ∈ L
n be K-linearly independent elements. Let y =

c(f)+e, where c(f) ∈ Gabθ,k(g). If w(e) 6 ⌊n−k
2 ⌋, then Algorithm 2 recovers (f, e)

on inputs (n, k,g,y). If w(e) > ⌊n−k
2 ⌋, then Algorithm 2 returns fail.

Proof Since w(e) 6 ⌊n−k
2 ⌋, then there is a solution to NLR(n, k, ⌊n−k

2 ⌋, g,y), and

Theorem 6 ensures that for t 6 ⌊n−k
2 ⌋ any solution (N(X),W (X)) to LR(n, k, t,g,y)

given by Algorithm 1, gives a solution to NLR(n, k, t,g,y), by a left Euclidean divi-

sion.

To prove the converse, suppose that Algorithm 2 returns (f(X), e). This implies

that Algorithm 1 has returned N(X),W (X) with degW (X) 6 ⌊n−k
2 ⌋; N(X) =

W (X) · f(X), where deg f(X) 6 k. This last equation gives W {f {gi}} = N {gi} =
W {yi}, i.e. W {f {gi} − yi} = 0 , 1 6 i 6 n, which implies w(e) 6 ⌊n−k

2 ⌋, since

degW (X) 6 ⌊n−k
2 ⌋. Since deg f(X) < k, we have c = f {g} ∈ Gabθ,k(g). Thus there

is a solution to the decoding problem. Therefore, the algorithm returns a failure if and

only if the rank of the error vector is larger than ⌊n−k
2 ⌋. ⊓⊔

Algorithm 1 LinearReconstruct (via Gaussian elimination)

Input: n, k ∈ N, k 6 n;
Input: g = (g1, . . . , gn) ∈ Ln, where the gi’s are K-linearly independent;
Input: y = (y1, . . . , yn) ∈ Ln.
Output: N(X),W (X) ∈ L[X; θ] solution to LR(K,L, n, k, t = ⌊n−k

2
⌋, g,y)

1: Let s = ⌊(n− k)/2⌋ if n− k is even and s = ⌊(n− k)/2⌋+ 1 otherwise
2: Compute the kernel V of the linear system (8), by Gaussian elimination
3: if V 6= {0} then

4: get a random non zero vector (n0, . . . , nk+s−1, w0, . . . , wt) ∈ V
5: collect the coefficient ni’s in N(X)
6: collect the coefficient wi’s in W (X)
7: return (N(X), W (X))
8: else

9: return fail

10: end if

Remark 4 Let t = ⌊(n− k)/2⌋ and s = t− 1 if n− k is even and s = t otherwise. Let

W (X) =
∑t

i=0wiX
i, and N(X) =

∑k+s−1
i=0 niX

i, then the coefficients wi’s and ni’s

of W and N , solution of LR(n, k, t,g,y), satisfy

g1 · · · θ

k+s−1(g1) y1 · · · θ
t(y1)

...
. . .

...
...

. . .
...

gn · · · θ
k+s−1(gn) yn · · · θ

t(yn)

 ·

n0
...

nk+s−1

−w0

...

−wt

= 0. (8)

It is a system of k + s + t + 1 unknowns in n. The right kernel of the system can be

found in O(n3) arithmetic operations in L, by standard Gaussian elimination.

Generalized Gabidulin codes over fields of any characteristic 19

Algorithm 2 Decoding Gabidulin Codes up to half the minimum distance

Input: n, k ∈ N, k 6 n;
Input: g = (g1, . . . , gn) ∈ Ln, where the gi’s are K-linearly independent;
Input: y = (y1, . . . , yn) ∈ Ln.
Output: f(X) ∈ L[X; θ], e ∈ Ln

1: (N(X), W (X))← LinearReconstruct(K,L, θ, n, k,g,y)
2: if LinearReconstruct(n, k,g,y) returns fail then

3: return fail

4: else

5: (f(X), R(X)) ←− LeftEuclideanDivision(N(X), W (X)),
i.e. N(X) = W (X)f(X) + R(X)

6: if R(X) = 0 and deg f(X) < k then

7: return f(X), y − f {g}
8: else

9: return fail

10: end if

11: end if

3.2 Decoding errors and erasures

The notion of erasures is somewhat difficult to introduce. A first model of “line era-

sures” [Rot91,BM85] considers the received word as a matrix (all vectors in Ln are

expanded into matrices of size m × n over K by expanding each coefficient over a

K-basis B = (b1, . . . , bm) of L.):

Y = C+E+ E ∈ (K ∪ ?)m×n,

where C ∈ Gabθ,k(g), E is the error-matrix of rank weight 6 t and E is the “erasures”

matrix, with “?” being the erasure symbol. Matrices can not be expressed as vectors

in this model.

A second model considers network coding erasures [LSS14,KK08]. It is a bit more

involved and does not fit with the above short introduction, and shall be introduced

later.

3.2.1 Decoding in presence of line erasures

Some coefficients of Y are erased. We model these erasures by a matrix E whose

coefficients are ? or 0. The ? correspond to erased coefficients, with the convention

that for any x ∈ L, ? + x =?. Since the rank of a such matrix is not well-defined, its

weight is measured by the term-rank.

Definition 16 The term-rank wtr(E) of a matrix E is the minimal size of a set S of

rows or columns such that any non-zero entry of the matrix E belong to a row or a

column of S. We denote by Sr and Sc the indices of rows and columns of a minimal

covering of the erasure matrix, i.e.

Ei,j =? =⇒ i ∈ Sr or j ∈ Sc,

furthermore, let sr = |Sr| and sc = |Sc|.

Notice that coverings, even minimal, are not unique. This was originally the metric

considered for applications of Gabidulin codes [Rot91].

20 Daniel Augot et al.

Example 5 We receive

1 0 ? 2 0 0
1 −1 0 1 0 −1
0 1 ? −1 −2 −1
? 1 ? ? 0 −1
1 −1 2 1 0 −1
0 1 ? 0 −2 −1

=

0 0 0 1 −1 0
0 1 0 0 −1 −1
1 0 0 0 −1 −1
0 1 0 0 0 −1
0 0 2 0 −1 −1
1 0 0 1 −1 −1

+

1 −1 0 1 1 0
1 −1 0 1 1 0
−1 1 0 −1 −1 0
0 0 0 0 0 0
1 −1 0 1 1 0
−1 1 0 −1 −1 0

+

0 0 ? 0 0 0
0 0 0 0 0 0
0 0 ? 0 0 0
? 0 ? ? 0 0
0 0 0 0 0 0
0 0 ? 0 0 0

.

(9)

In this example, the erasure matrix has term-rank 2, since the third column and the

fourth row enable to cover all ? symbols.

Definition 17 (Decoding problem with line erasures)

• Input:

– Gabθ,k(g), with parameters [n, k, d]r;
– Y ∈ Mm×n(K);
– E the erasure matrix, whose term-rank is denoted by s.

• Output:

– f ∈ L[X; θ] with deg f(X) < k;

– E ∈ Mm×n(K) with w(E) 6 ⌊n−k
2 ⌋−s, such that for all i, j, such that Ei,j 6=?,

Yi,j = C(f)i,j +Ei,j .

The procedure for correcting errors and erasures consists of eliminating erasures by

reducing the problem of decoding error and erasures in the initial Gabidulin code to

decoding errors of a derived Gabidulin code. We show in the following steps how to

deal with column erasures first, then with line erasures, and finally decode using the

classical model of rank errors.

1. Column erasures: Let ỹ = (yi)i/∈Sc
, be the received vector punctured on the erased

columns. This is a vector of length n− sc satisfying

ỹ = c̃(f(X)) + ẽ+ ε̃,

where ẽ and ε̃ are the punctured version of e and ε. Since ε̃ has no more column

erasures, the problem is thus now reduced to decoding errors and rows erasures in

Gabθ,k(g̃);
2. Row erasures: Let Vr(X) = A〈bi,i∈Sr〉 be the θ-polynomial annihilating the ele-

ments of B labeled by Sr. This implies in particular that Vr {ε̃} = 0. Therefore,

since c̃(f(X)) = f {g̃} for some θ-polynomial f(X) of degree less than or equal to

k − 1, we obtain:

Vr {ỹ} = Vr · f {g̃}+ Vr {ẽ} .

The problem is now reduced to decoding errors in Gabθ,k+sr (g̃).
3. Correcting errors: Since the rank of Vr {ẽ} is at most the rank of ẽ, we can correct

the remaining errors by solving LR(n−sc, k+sr, ⌊
(n−sc)−(k+sr)

2 ⌋, g,y) as shown in

previous Section. The rank of the new error should by at most the error capability

of the new code. After this step, f(X) is recovered by a Euclidean division on the

left by Vr(X) in L[X; θ].

The procedure is given in Algorithm 3.

Generalized Gabidulin codes over fields of any characteristic 21

Theorem 8 If 2t+ sr+ sc 6 n−k, then the θ-polynomial f can be uniquely recovered

by Algorithm 3 on inputs n, k, Sr, Sc, g̃, ỹ,B.

Proof The third step succeeds if the number of original errors is lower or equal to the

error correcting capability of the code that we get after steps 1 and 2, which has length

n− sc and dimension k + sr. Thus, decoding succeeds if

w(Vr {ẽ}) = t′ 6 ⌊
(n− sc)− (k + sr)

2
⌋

i.e. if

2t′ + sc + sr 6 n− k.

Note that t′ = w(Vr {ẽ}) 6 w(e) = t, thus 2t + sc + sr 6 n − k is sufficient for

ensuring successful decoding. In practice, the weight of the error does not decrease

when correcting the erasures, hence t = t′.

⊓⊔

Algorithm 3 Decoding line erasures

Input: A K-basis B = (b1, . . . , bm) ∈ Lm of L
Input: g = (g1, . . . , gn) ∈ Ln

Input: k the dimension of the code
Input: y = (y1, . . . , yn) ∈ Ln

Input: Sc and Sr , sets of distinct labels of size sc and sr, such that sr + sc 6 n− k
Output: f ∈ L[X; θ]
1: g̃←− (gi, i 6∈ Sc)
2: ỹ←− (yi, i 6∈ Sc)
3: Vr(X)←− A〈bi,i∈Sr〉

4: zi ←− Vr {yi} , i /∈ Sc

5: z̃←− (zi, i 6∈ Sc)
6: F (X)←− Algorithm 2(n− sc, k + sr , g̃, z̃)
7: return f(X) = Vr(X)\F (X)

3.2.2 Decoding network coding erasures

The erasure model proposed in [LSS14] is related to the problem of correcting errors

and erasures in network coding applications of Gabidulin codes. The received vector is

seen in matrix form, in the K-basis B:

Y = C(f) +E+ Âr ·Br +Ac · B̂c,

where Âr and B̂c are known to the receiver. Denoting by sr and sc the number of row

and column erasures and by r the rank of the full error, right hand side matrices have

sizes m× n, m× n, m× sr, sr × n, m× sc and sc × n.

Example 6 Here is an example of a codeword altered by a full error, 1 row erasure and

1 column erasure. The bold-written matrices are known to the receiver.

Y =

0 0 0 1 −1 0
0 1 0 0 −1 −1
1 0 0 0 −1 −1
0 1 0 0 0 −1
0 0 2 0 −1 −1
1 0 0 1 −1 −1

+

1 −1 0 1 1 0
1 −1 0 1 1 0
−1 1 0 −1 −1 0
0 0 0 0 0 0
1 −1 0 1 1 0
−1 1 0 −1 −1 0

+

1

−1

0

1

1

−1

·

0
0
1
1
0
1

t

+

1
1
−1
1
−1
1

·

1

0

−1

0

0

1

t

.

22 Daniel Augot et al.

The associated decoding problem is then defined as follows.

Definition 18 (Decoding problem with network coding erasures)

• Input:

– Gabθ,k(g), with parameters [n, k, d];
– Y ∈ Mm×n(K);

– Âr ∈ Mm×sr(K);

– B̂c ∈Msc×n(K).
• Output:

– f ∈ L[X; θ] with deg(f) < k;

– E ∈ Mm×n(K) with w(E) 6 ⌊n−k
2 ⌋ − (sr + sc);

– Ac ∈Msr×n(K);
– Br ∈ Mm×sc(K);

such that

Y = C(f) +E+ Âr ·Br +Ac · B̂c.

The procedure for correcting errors and erasures is the following:

1. Column erasures: let U be a n×n matrix of rank n such that B̂c ·U has its n− sc
last columns equal to 0. This matrix U exists and corresponds to the column oper-

ations that would be applied to reduce B̂c to a column echelon form by Gaussian

elimination. We have

Y ·U = C ·U+E ·U+ Âr ·Br ·U+ Âc ·Bc ·U.

Let g̃ be the n − sc last positions of vector gU, ỹ be the n − sc last positions of

vector yU and ẽ the n−sc last positions of vector eU. Since puncturing Âc ·Bc ·U

gives 0, the problem is thus now reduced to decoding errors and rows erasures in

Gabθ,k(g̃) with the new “received word” ỹ.

2. Row erasures: Let Vr(X) ∈ L[X; θ] be the annihilator of the K-vector space gen-

erated by the sr columns of Âr. Then the problem rewritten under vector form

becomes

Vr {ỹ} = Vr · f {g̃}+ Vr {ẽ} .

Since Vr(X) has degree sr, the problem is now reduced to decoding errors in the

Gabidulin code Gabθ,k+sr(g̃);
3. Correcting errors: Since the rank of Vr {ẽ} is at most the rank of ẽ, this can be done

by solving LR(n− sc, k + sr, ⌊
(n−sc)−(k+sr)

2 ⌋, g̃, ỹ) as shown in previous section.

The rank of the new error should by at most the error capability of the new code.

The output of the error decoding algorithm is actually Vr(X) · f(X), and f(X) is

recovered by a division on the left by Vr(X).

The procedure is detailed in Algorithm 4.

Theorem 9 If 2t+sr+sc 6 n−k, then Algorithm 4 uniquely recovers the codeword

or the message polynomial, on inputs n, k, g,y, B̂c, Âr, of size given in the network

coding erasures model.

Proof The proof is the same that in the first erasure model. ⊓⊔

Generalized Gabidulin codes over fields of any characteristic 23

Algorithm 4 Decoding network coding erasures

Input: g = (g1, . . . , gn) ∈ Ln

Input: y = (y1, . . . , yn) ∈ Ln

Input: B̂c ∈ Ksc×n and Âr ∈ Km×sr ,
Input: k the dimension of the code
Input: sr (resp. sc) the number of row (resp. column) erasures, such that sr + sc 6 n− k
Output: f(X) ∈ L[X; θ]

1: Find U 6= 0 ∈Mn(K) such that B̂c · U is zero on the n− sc last columns
2: g̃←− (gU)[sc+1..n]

3: ỹ←− (yU)[sc+1..n]

4: Vr(X)←− annihilator of the column space of Âr

5: z̃i ←− Vr {ỹi}
6: z̃←− (zi)[sc+1..n]

7: F (X)←− Algorithm 2(n− sc, k + sr , g̃, z̃)
8: return f(X) = V(X)r\F (X)

4 The Welch-Berlekamp like algorithm

The decoding algorithm presented in the previous section is based upon the resolution

of the so-called linear reconstruction problem presented in Definition 15. In this

section we present an algorithm derived from the Welch-Berlekamp one [BW86], in the

version formulated by Gemmel and Sudan [GS92], solving this linear reconstruction

problem. Originally used for the decoding of Reed-Solomon codes, this algorithm was

adapted to Gabidulin codes over finite fields by Loidreau [Loi06]. The version that

we present in this section is a generalization of the latter one. It also works on finite

field extensions by replacing the automorphism θ by the Frobenius automorphism. Our

version takes into account cases that were not covered by the algorithm in [Loi06].

In a first section we present the algorithm. In a second one we prove that it indeed

solves the linear reconstruction problem. Then we study the complexity of decoding

rank errors up to the error-correcting capability, by using this algorithm together with

the left Euclidean division of θ-polynomials. We show that it is always quadratic. Fi-

nally we present two variants of the decoding and precise their effects on the complexity.

4.1 The Welch-Berlekamp like algorithm

The idea is to compute two pairs (N0,W0) and (N1,W1) of θ-polynomials which sat-

isfy the interpolation conditions of the problem LR(n, k, ⌊(n− k)/2⌋,g,y) (see Defi-

nition 15):

W {yi} = N {gi} , 1 6 i 6 n, (10)

and such that at least one of the pairs satisfies the final degree conditions:

deg(N) 6

{
k + ⌊n−k

2 ⌋ − 1, if n− k even,

k + ⌊n−k
2 ⌋, if n− k odd,

−∞ < deg(W) 6 t.

(11)

Therefore our aim is to control the growth of the degrees of the respective poly-

nomials, but ensuring that at each round in the loop, the interpolation conditions are

satisfied. Algorithm 5 will be analyzed in the next section but we present here the

ideas:

24 Daniel Augot et al.

1. Initialization step: from lines 2 to 7. There are two way of constructing pairs of

polynomials of relatively small degree satisfying the interpolation condition at step

k.

• One of the pair is formed with (N0 = A<g1,...,gk>,W0 =0), where A<g1,...,gk>

is the annihilator polynomial, see Definition 7. In that case we have deg(N0) =
k. Note that this pair does not satisfy the degree conditions since W0 = 0 and

deg(N0) = k > k − 1.
• The other one is formed with (N1 = I[g1,...,gk],[y1,...,yk],W1 = X), where

I[g1,...,gk],[y1,...,yk], is the interpolating polynomial, see Definition 8. In that

case deg(N1) = k − 1 and deg(W1) = 0, therefore, this pair of polynomials

satisfy the degree conditions.

2. Interpolation step (rounds k + 1 6 j 6 n): lines 8 to 45. From two pairs of poly-

nomials satisfying the interpolation condition and such that at least one of them

satisfies the degree conditions at round j,

W {yi} = N {gi} , 1 6 i 6 j,

we construct two pairs of polynomials satisfying

W {yi} = N {gi} , 1 6 i 6 j + 1

such that at least one of the pairs satisfies the degree conditions at round j + 1.
To ensure this, we evaluate the discrepancy vectors u = (ui)

n
i=1, computing the

difference vectors (N {gi} −W {yi})
n
i=1 at every round of the loop. At round i, it

must satisfy

u = (0, . . . , 0, ui+1, . . . , un)

This controls the effectiveness of the interpolation condition. To make sure that

at least one of the pairs satisfies the degree conditions we increase the degree of

one pair on average by one every two rounds thanks to the updates presented in

Table 1. In part 4.2 we prove that one of the obtained pairs satisfies the degree

requirements (11).

u0,i u1,i A′
1 A′

0 type

∗ 6= 0
(
X −

θ(u1,i)

u1,i

)
·A1 A0 −

u0,i

u1,i
A1 1

= 0 = 0 X ·A1 A0 2
6= 0 = 0 no update 3

Table 1 The update formulas depending on the defects. A denotes N or W , which have the
same update formula, or us = (us,i)i, for s = 0, 1. We denote by A′ the update of A, in order
to distinguish its value at the beginning and at the end of a round.

4.2 Proof of the algorithm

First we suppose that we never fall in the case of the secondary loop (lines 10 to 21).
The easy part is to prove that if the interpolation condition is satisfied at round j, then

it is also satisfied at round j + 1. As a consequence since the interpolation condition

is satisfied by construction at the beginning of Interpolation step, it is also satisfied at

the end of the algorithm for both pairs of polynomials.

Generalized Gabidulin codes over fields of any characteristic 25

Algorithm 5 Reconstruction algorithm

Input: k,n ∈ N, k 6 n
Input: g = (g1, . . . , gn) ∈ Ln, K-linearly independent elements
Input: y = (y1, . . . , yn) ∈ Ln

Output: N and W solutions to
1: # Initialization step
2: N0(X)←− A<g1,...,gk>

3: W0(X)←− 0
4: N1(X)←− I[g1,...,gk],[y1,...,yk]
5: W1(X)←− 1
6: u0 = (u0,i)

n
i=1 ←− N0 {g} −W0 {y}

7: u1 = (u1,i)ni=1 ←− N1 {g} −W1 {y}
8:
9: # Interpolation step

10: for i from k + 1 to n do

11: # Secondary loop
12: j ←− i
13: while u0,j 6= 0 and u1,j = 0 and j 6 n do

14: j ←− j + 1
15: end while

16: if j=n+1 then

17: return (N1,W1)
18: else

19: # Permutation of the components of the positions i and j
20: i↔ j
21: end if

22:
23: # Updates of θ-polynomials, according to discrepancies
24: if u1 6= 0 then

25: N ′
1 ←− (X −

θ(u1,i)

u1,i
) ·N1

26: W ′
1 ←− (X −

θ(u1,i)

u1,i
) ·W1

27: N ′
0 ←− N0 −

u0,i

u1,i
N1

28: W ′
0 ←−W0 −

u0,i

u1,i
W1

29: end if

30: if u0 = 0 and u1 = 0 then

31: N ′
1 ←− X ·N1

32: W ′
1 ←− X ·W1

33: N ′
0 ←− N0

34: W ′
0 ←−W0

35: end if

36:
37: N0 ←− N ′

1
38: W0 ←−W ′

1
39: N1 ←− N ′

0
40: W1 ←−W ′

0
41:
42: # Discrepancies updates
43: u0 = (u0,i)ni=1 ←− N0 {g} −W0 {y}
44: u1 = (u1,i)

n
i=1 ←− N1 {g} −W1 {y}

45: end for

46:
47: return N1,W1

26 Daniel Augot et al.

Proposition 10 (Interpolation) Let k+1 6 j 6 n−1 such that W0 {yi} = N0 {gi}

and W1 {yi} = N1 {gi} for all 1 6 i 6 j. Let (N ′
0,W

′
0) and (N ′

1,W
′
1) be the polynomials

obtained from (N0,W0) and (N1,W1) from any update described in Table 1. Then

W ′
0 {yi} = N ′

0 {gi} and W ′
1 {yi} = N ′

1 {gi}, for all 1 6 i 6 j + 1.

Proof We only prove for updates of type 1, that is:

1. At round j, N ′
1 =

(
X −

θ(u1,j)
u1,j

)
·N1 and W ′

1 =
(
X −

θ(u1,j)
u1,j

)
·W1:

For all 1 6 i 6 j, we have N ′
1 {gi} = θ(N1 {gi}) −

θ(u1,j)
u1,j

N1 {gi} and W ′
1 {yi} =

θ(W1 {yi}) −
θ(u1,j)
u1,j

W1 {yi}. From this we only have to check the equality for

i = j + 1, since for i 6 j this comes from the hypotheses of the theorem. For

i = j + 1 we have u1,j+1 = N1

{
gj+1

}
−W1

{
yj+1

}
and by reordering the terms

N ′
1

{
gj+1

}
=

1

u1,j+1

(
N1

{
gj+1

}
θ(W1

{
yj+1

}
)− θ(N1

{
gj+1

}
)W1

{
yj+1

})
.

We obtain the same value for W ′
1

{
yj+1

}
.

2. At round j, N ′
0 = N0 −

u0,j

u1,j
N1 and W ′

0 =W0 −
u0,j

u1,j
W1:

For all 1 6 i 6 j, the equality comes from the hypotheses of the theorem: N0 {gi} =
W0 {yi} and N1 {gi} = W1 {yi}.

Now since for i = j + 1 we have u1,j+1 = N1

{
gj+1

}
−W1

{
yj+1

}
and u0,j+1 =

N0

{
gj+1

}
−W0

{
yj+1

}
, we obtain

N ′
0

{
gj+1

}
=

1

u1,j+1

(
W0

{
yj+1

}
N1

{
gj+1

}
−W1

{
yj+1

}
N0

{
gj+1

})
.

The same value is obtained for W ′
0

{
yj+1

}
.

For the other updates, the interpolation property is obviously satisfied. ⊓⊔

We have proved that our algorithm correctly interpolated the polynomials at every

round in the Interpolation step. Now we have to control the degrees to check that at

least one of the pairs of polynomials satisfies the degree conditions (11).

First we give an upper bound on the degrees of the polynomials in the algorithm.

Proposition 11 (Degree Control) At the end of round j, k + 1 6 j 6 n of the

Interpolation step in Algorithm 5, the degrees of the polynomials satisfy:

deg(N0) 6 k + ⌊ j−k
2 ⌋, deg(W0) 6 ⌊

j−k+1
2 ⌋,

deg(N1) 6 k − 1 + ⌊ j−k+1
2 ⌋, deg(W1) 6 ⌊

j−k
2 ⌋.

Proof The proof is made by induction. At the beginning of round j = k + 1, N0 and

N1 are respectively the annihilator of degree k and the interpolating polynomial of

degree k − 1. Moreover W0 = 0 and W1 = X. Therefore, by considering the updates

in Table 1 and the fact that the polynomials are swapped at the end of round j (lines

37 to 40), at the end of the round 1, we have:

• deg(N0) = k, deg(W0) = 1, since polynomials are multiplied by an affine polyno-

mial, increasing thus their degrees exactly by one.

• deg(N1) = k, since it is the sum of a polynomial of degree exactly k and a poly-

nomial of degree strictly less than k.

Generalized Gabidulin codes over fields of any characteristic 27

• deg(W1) 6 1. There is no certainty on the exact degree of W1 since it is the sum

of 0 and a constant, possibly 0.

Suppose that the property is true for some k + 1 6 j 6 n− 1. There are two cases:

1. j − k = 2u is even.

By hypothesis, at the beginning of round j + 1 (corresponds to the end of round

j), we have deg(N0) 6 k + u, deg(W0) 6 u, deg(N1) 6 k − 1 + u, deg(W1) 6 u.

At the end of round j + 1 we have therefore,

deg(N0) 6 k + u, deg(W0) 6 u+ 1,
deg(N1) 6 k − 1 + u+ 1, deg(W1) 6 u.

Since j − k = 2u is even, ⌊ j+1−k
2 ⌋ = u, and ⌊ j+1−k+1

2 ⌋ = u+ 1.
2. j − k = 2u+ 1 is odd.

By hypothesis, at the beginning of round j+1 deg(N0) 6 k+u, deg(W0) 6 u+1,
deg(N1) 6 k + u, deg(W1) 6 u. At the end of round j + 1,

deg(N0) 6 k + u+ 1, deg(W0) 6 u+ 1,
deg(N1) 6 k − 1 + u+ 1, deg(W0) 6 u+ 1.

Since j − k = 2u+ 1, we have: ⌊ j+1−k+1
2 ⌋ = ⌊ j+1−k

2 ⌋ = u+ 1.

Now suppose that the upper bound on the degrees is true for some k+1 6 j 6 n−1.
Then the chosen updates show that it is still true for j + 1. ⊓⊔

So far this proposition gives upper bounds, but does not ascertain that at the end

of the algorithm we will not fall into a degenerated case (W1 = 0). To this end we will

use the following proposition which shows that at every round at least one polynomial

of every pair reaches the degree upper bound of the previous proposition.

Proposition 12 At the end of loop k + 1 6 j 6 n in Algorithm 5:

• If j − k = 2u+ 1, then deg(N1) = k + u and deg(W0) = u+ 1;
• If j − k = 2u, then deg(N0) = k + u and deg(W1) = u.

Proof Let Pj for all k 6 j 6 n− 1 the property:

• deg(N1) = k + u, deg(W0) = u+ 1, if j = k + 2u+ 1.
• deg(N0) = k + u, deg(W1) = u, if j = k + 2u.

From the initialization round in the proof of Proposition 11, Pk+1 is satisfied.

Suppose now that Pk+2u+1 is satisfied, we show that Pk+2u+2 is satisfied.

Combining the induction property and the upper bounds of Proposition 11, at

the end of round j = k + 2u+ 1, we have:

deg(N0) 6 k + u, deg(W0) = u+ 1,
deg(N1) = k + u, deg(W1) 6 u.

Hence at the beginning of round j + 1 = k + 2u+ 2, the same bounds and equalities

hold.

Since deg(W0) > deg(W1) the updates in the loop show that at the end of the

round k+2u+2, deg(W1) = u+1. The polynomial N0 is obtained from N1 by a left

multiplication by an affine monic polynomial. Hence deg(N0) = k + u+ 1 at the end

28 Daniel Augot et al.

of round k+ 2u+ 2. The upper bounds come from Proposition 11. Hence Pk+2u+2

is satisfied.

By using the same arguments we show that if Pk+2u is satisfied then Pk+2u+1 is

also satisfied. Since we proved that Pk+1 was satisfied, by induction we proved that

Pj is satisfied for all k + 1 6 j 6 n. ⊓⊔

A direct consequence of this proposition is that W = 0 can never occur for

any pair of polynomials in the Interpolation step. Namely, this would imply that

the corresponding polynomial N satisfies N {gi} = 0, for all 1 6 i 6 j. However,

deg(N) 6 k+ ⌊ j−k
2 ⌋ < j, for j > k+1. Since the gi’s are linearly independent by the

hypotheses on the input of the algorithm, this implies that N = 0. But from Proposi-

tion 12, it is not possible to have the two polynomials of the pair which do not reach

the upper bound on the degree.

This is the reason why the algorithm returns the pair of polynomials of smallest

degree. Now by combining all the previous results, we obtain:

Theorem 10 (Proof of the algorithm) Let

• K →֒ L be a cyclic field extension;

• θ be a generator of its automorphism group AutK(L);
• g = (g1, . . . , gn) ∈ L

n be K-linearly independent elements;

• y = (y1, . . . , yn) ∈ L
n;

• an integer k 6 n ∈ N

Then the pair (N1,W1) returned by Algorithm 5 is a solution of LR(n, k, t = ⌊(n−
k)/2⌋,g,y).

Proof Proposition 10 shows that the returned pair satisfies the interpolation step

for all j = 1, . . . , n. Let t = ⌊(n − k)/2⌋. From Proposition 11 the degrees of the

returned pair (N1,W1) satisfy

deg(N1) 6

{
k − 1 + t, if n− k = 2t

k + t, if n− k = 2t+ 1

deg(W1) 6 t

and Proposition 12 ensures that W1 6= 0, therefore from (11) the degree conditions

are satisfied. ⊓⊔

Now we deal with the case of what occurs in the case where the secondary loop

(lines 10 to 21) is activated. In the case where at round i, u1,i = 0 and u0,i 6= 0, we

search for the first position i < s 6 n such that either u1,s 6= 0 or u1,s = 0 = u0,s.

There are two cases :

• Either there exists some i < s 6 n satisfying either u1,s 6= 0 or u1,s = 0 = u0,s. In

that case the positions i and s are exchanged. This corresponds to a permutation

of one position along all the input vectors and has no impact on the interpolation

and degree conditions.

• Or such an s does not exist and this means that the pair of polynomials (N1,W1)
at the beginning of round i satisfies the interpolation conditions (the discrepancy

vector u1 is equal to 0), and from Proposition 11 and Proposition 12 the degree

conditions are satisfied.

Generalized Gabidulin codes over fields of any characteristic 29

4.3 Complexity of the decoding

The complexity of the decoding procedure consists of adding

• The complexity of Algorithm 5 returning the θ-polynomials (N1,W1);
• The complexity of the left Euclidean division of N1 by W1.

4.3.1 Prerequisite

Before studying the complexity of the Algorithm 5, we give the complexity of el-

ementary functions used. We count the number of additions in L, multiplications in

L, uses of θ and divisions in L. For certain field extensions K →֒ L, an element of L

is represented by its coefficients in a K-basis of L, and the automorphism consists in

permuting these coefficients. So uses of θ do not need computations in these cases, for

example in Kummer or cyclotomic extensions.

Let A,B ∈ L[X; θ] be θ-polynomials of degrees a and b, and let x ∈ L. The

complexity of arithmetic operations is given in the following table.

operation additions multiplications uses of θ divisions

A+B 1 +min(a, b) 0 0 0
A · B ab (1 + a)(1 + b) a(1 + b) 0

A {x} a a+ 1 a 0

Euclidean division

A = B ·Q+R (a− b)b (a− b)(b+ 1) (a− b)(2b) (a− b)

The multiplication algorithm is the naive one, but in our case it is optimal since

we only multiply by polynomials of degree 1.

4.3.2 Error correction

At the Initialization step, we have to compute the annihilator and the interpolating

polynomials. They can be simultaneously computed with Algorithm 6.

Algorithm 6 Annihilator and Interpolator polynomials

Input: g1, . . . , gk ∈ L K-linearly independent
Input: y1, . . . , yk ∈ L
Output: A(X), I(X)
1: A := 1
2: I := 0
3: for 1 6 i 6 k do

4: I := I+ yi−I{gi}
A{gi}

· A

5: A := (X −
θ(A{gi})
A{gi}

) · A

6: end for

7: return A,I

Additionally we have to compute the discrepancy vectors:

u0 = (0, . . . , 0,A{gk+1} , . . . ,A{gn})
u1 = (0, . . . , 0, I {gk+1} − yk+1, . . . , I {gn} − yn)

30 Daniel Augot et al.

Therefore the complexity of the Initialization step is:

additions multiplications uses of θ divisions

Algorithm 6 2k2 − 2k 2k2 − k 1.5k2 − 0.5k 2k

u0 and u1 (2k − 1)(n− k) (2k+ 1)(n− k) (k − 1)(n− k) 0

In the Interpolation step the number of arithmetic operations can be upper bounded

by considering only updates of type 1. The involved operations consist of:

1. updates of (N0,W0) and (N1,W1) at round j = k + i:

From Proposition 11 the degrees of the θ-polynomials N0, N1, W0 and W1 are

respectively less or equal to k + ⌊ i−1
2 ⌋, k − 1 + ⌊ i2⌋, ⌊

i
2⌋ and ⌊ i−1

2 ⌋.

2. updates of the discrepancy vectors u0 and u1. The discrepancy vectors u0, u1 at

round j+1 in the loop can be obtained from u0, u1 at round j by performing the

same updates on the vectors than for the corresponding pairs of polynomials. For

instance if we consider updates of type 1:

u′
1 ←− θ(u1)−

θ(u1,j)
u1,j

u1,

u′
0 ←− u0 −

u0,j

u1,j
u1,

where θ acts on u1 component by component.

Therefore, at round j, an upper bound on the complexities is:

additions multiplications uses of θ divisions

Up. N0, N1, W0 and W1 2j − 1 2j − 1 j + 1 2

Up. u0 and u1 2(n− j) 2(n− j) n− j 0

Total 2n− 1 2n− 1 n+ 1 2

To obtain the full cost one has to sum the complexities for j = k+1, . . . , n. Finally

to complete the decoding complexity analysis it remains to evaluate the complexity of

the final left Euclidean division of N1 by W1 which is:

additions multiplications uses of θ divisions

Left Euclidean division (k − 1)n−k
2 (k − 1)n−k

2 (n− k)(k − 1) 0

Since the secondary loop consists only on tests and permutations, it has no effect on

the complexity. All these evaluation lead to the following theorem:

Theorem 11 (Decoding complexity) The complexity of solving Dec(K,L, θ, n, k, ⌊n−k
2 ⌋, g,y)

by using Algorithm 5 is O(n2) operation in L. More precisely the number of different

field operations is upper-bounded by:

• 2n2 − 2n+ (k − 1)n−k
2 additions in L,

• 2n2 − k + (k − 1)(n−k
2) multiplications in L,

• n2 + 0.5k2 − 2n+ 1.5k2 + (n− k)(k − 1) uses of θ,

• 2n divisions in L.

Remark 5 Since k(n − k) 6 n2

4 , the total number of multiplication is upper-bounded

by 2.125n2.

Generalized Gabidulin codes over fields of any characteristic 31

4.3.3 Complexity of the errors and erasures correction

Correcting errors and erasures corresponds to remove the erasures and then correcting

the residual rank errors. As seen at section 3.2, this corresponds to:

• Removing the column erasures by either directly puncturing the columns or com-

puting some Gaussian elimination and then puncturing;

• Removing row erasures by computing Vr and evaluate it on (n− sc) elements of L;

• Decoding errors in a generalized Gabidulin code of length n − sc and dimension

k + sr;

• Divide the obtained solutions by Vr.

Overall a direct corollary of the previous theorem is

Corollary 2 Given a generalized Gabidulin code of parameters [n, k, d] and a received

word y with sr row erasures and sc column erasures and the maximal number of full-

errors, the complexity of recovering the information polynomial f is:

• O(nscm) operations in K;

• O(n2) multiplications in L.

4.4 Some improvements

In this section we present two ways to improve the complexity of Algorithm 5. In a

first time, we design a variant without divisions in L. This can be of interest since al-

though in finite fields, the complexity of multiplication and division is roughly identical,

this is not necessarily the case in other fields.

Second, we use the property that the polynomials N0 and N1 lie by construction

in the left module generated by the annihilator and the interpolating polynomials

computed at the Initialization step. This enables to reduce significantly the cost of the

updates by updating polynomials of smaller degrees.

4.4.1 A division-free variant

As we will see in a next section by computing in integer rings of rational fields, it

can be very interesting to process the algorithm without making divisions, so that

when inputs are integer values, there is no fraction along the computation. This can

be accomplished modifying Algorithm 5 to avoid divisions (see Table 4.4.1).

• Consider the polynomials A, I returned by Algorithm 7 on the first k positions

of the input vectors of Algorithm 5. We have

– A = µA<g1,...,gk>.

– I = λ I[g1,...,gk],[y1,...,yk].

Both polynomials are computed without divisions. It is not difficult to see that

λ 6= 0 and µ 6= 0. Therefore, by replacing lines 4 and 5 of Algorithm 5 by

N1(X) ←− I and W1(X) ←− λ, we obtain polynomials still satisfying the inter-

polation conditions and of the same degree.

• Concerning the interpolation step of Algorithm 5, we modify the updates so that

there is no more divisions by u1:

32 Daniel Augot et al.

u0,i u1,i A′
1 A′

0 type
∗ 6= 0 (u1,iX − θ(u1,i)) · A1 u1,iA0 − u0,iA1 1

= 0 = 0 X · A1 A0 2
6= 0 = 0 no update 3

Table 2 Division-free updates

Algorithm 7 Annihilator and Interpolator polynomials (Division-free variant)

Input: g1, . . . , gk ∈ L K-linearly independent
Input: y1, . . . , yk ∈ L
Output: A(X) such that A{xi} = 0
Output: I(X) and λ such that I {xi} = λyi
A ←− 1
I ←− 0
λ←− 1
for 1 6 i 6 k do

I ←− A{xi} · I +(λyi − I {xi}) · A
λ←− A{xi} · λ
A ←− (A{xi}X − θ(A{xi})) · A

end for

return A,I, λ

Since W1 is not monic anymore, this requires more multiplications. Concerning the

Euclidean division W1\N1, since W1 is not monic, this amounts to k − 1 additional

divisions, but these are exact divisions.

Hence this division-free variant of Algorithm 5 requires roughly 1.5 times more

multiplications in L.

4.4.2 Polynomials with lower degree

In the algorithm N0 and N1 are updated using additions and left-multiplications.

Therefore they lie in the left-module generated by A and I. This implies that at every

round k + 1 6 j 6 n they can be expressed under the form

Ni = Pi · A+Qi · I, i = 0,1,

for some polynomials Pi and Qi, which are updated similarly to the corresponding

polynomial Ni. Moreover, the polynomials Qi are initialized by Q1 = W1 = 1 and

Q0 =W0 = 0. Since the polynomials have the same initialization and the same update,

they are equal, that is at every round we have:

Ni = Pi · A+Wi · I, i = 0,1.

If we replace the lines 25 and 27 in the algorithm with

P ′
1 ←− (X −

θ(u1,i)
u1,i

) · P1,

P ′
0 ←− P0 −

u0,i

u1,i
P1,

and lines 31 and 33 accordingly, we now update Wi and Pi, such that degPi =
deg(Ni) − k. The discrepancy vectors are updated as before. Hence the number of

operations at round j is now upper bounded by

Generalized Gabidulin codes over fields of any characteristic 33

additions multiplications uses of θ divisions

u0 and u1 2(n− j) 2(n− j) n− j + 1 0

Up. (Pj and Wj) 2j − k − 1 2j − k − 1 j − k + 1 2

The gain in arithmetic operations for the interpolation step is k(n − k) The final

division is modified and becomes:

W1\(P1A) + I .

Since the polynomials in the division have the same degree than in the basic algorithm,

the complexity is the same. We need k + 1 additional operations to modify the final

division. However this effect is largely compensated by the fact that the complexity of

computing the Pi’s is much smaller than the complexity of computing the Ni’s.

Theorem 12 (Complexity improvement) If one consider using the polynomials

Pi rather than Ni in Algorithm 5, the number of arithmetic operations over the field

L is reduced by k(n− k).

5 The case of number fields

When the code alphabet is an infinite field, like a number field, the proposed decoding

algorithm has the disadvantage that the bit-size of intermediate coefficients grows a lot,

in such a way that the decoding algorithm is not practical at all. A standard computer

algebra way of circumventing this problem is to perform computations modulo a large

enough prime. In the Section, we discuss this technique in the number field case, and

relate a generalized Gabidulin code built with integral elements to its reduction modulo

a prime, which turns out to be a classical Gabidulin code over a finite field.

Assuming that the receiver knows an a priori bound on the size of the message, or

on the size of the error, it can apply this technique with a large enough prime, to get

the exact result over the number field, only by doing computations modulo the chosen

prime.

5.1 Basic algebraic number theory

In this Section, we recall some definitions and properties about number fields, their

integer rings, ideals and ramification. We refer the reader to [Coh93, §4.8.1 and §4.8.2].

Let Q →֒ F be a number field of degree [F : Q] = m, and denote by OF its integer

ring. The integer rings of number fields are Dedekind rings: a non zero ideal is prime if

and only if it is maximal. A prime ideal of OF restricted to Z is a prime ideal pZ of Z.

Conversely, let pZ be a prime ideal of Z. The ideal p generated by pZ in F is generally

not a prime ideal, and we have the following decomposition into prime ideals:

p =

q∏

i=1

p
ei
i (12)

where the pi’s are the prime ideals of OF whose restriction to Z is pZ. The exponent

ei is called the ramification index. The residue field OF /pi is an extension of Z /pZ,

its extension degree fi is called the residual degree. We say that pi is above p, and

conversely that p is below pi,

34 Daniel Augot et al.

We have the relation
∑q

i=1 fiei = m and when Q →֒ F is a Galois extension, we

have that all the indices ei are equal to the same e, and all residual degrees fi are equal

to the same f , with qfe = m.

We say that p is ramified if there is some i such that ei > 1. It happens only for a

finite number of prime numbers p. The number p is inert if it is unramified and q = 1
(thus f = m). Conversely, p splits totally in Z if it is unramified and q = m (thus

ei = fi = 1).

Assume that F = Q[z] where z is an algebraic integer. Let T (X) ∈ Q[X] be the

minimal polynomial of z. Then for any prime which doesn’t divide the index [OF : Z[z]],
we can obtain the prime decomposition of p from the decomposition of T (X) modulo p.

In particular, the prime p is inert if T (X) is irreducible modulo p [Coh93, Thm 4.8.13].

Example 7 In the ring Z[i],

• 2 is ramified. Indeed, 2 = (1 + i)(1 − i) but i+ 1 and i − 1 = i(i + 1) span the

same ideal.

• 3 is inert, since it is a prime number in Z[i]. Thus, Z[i]/(3) ≃ F9.

• 5 splits totally. Indeed, 5 = (2+ i)(2− i) and these factors span two distinct ideals.

Thus, Z[i]/(5) ≃ F5×F5.

Actually, to build relevant examples of generalized Gabidulin codes, we shall need

a more elaborate situation, with a base field being already an extension of Q. Let

Q →֒ K →֒ L be an extension of number fields, p ∈ N a prime number, p a prime ideal

of OK above p, let OL be the ring of the integers of L, and P a prime ideal of OL

above p, i.e. p ∈ P. Then OL/P is finite degree extension of OK/p. We can describe

the Galois group of OK/p →֒ OL/P from the Galois group AutK(L). Recall that the

decomposition group of P is the following subgroup of the Galois group:

DP = {θ ∈ AutK(L) : θ(P) = P}

whose cardinal is ef [Coh93]. Consider the map

ψP : DP → AutOK/p(OL/P)

θ 7→ θ

(13)

where θ is as follows:

θ : OL/P → OL/P

x+P 7→ θ(x) +P

. (14)

Then ψP is a morphism of groups with kernel

IP =
{
θ ∈ DP : ∀x ∈ OL, θ(x)− x ∈ P

}

which is the inertia group of P.

Proposition 13 [Sam71, §6.2] [Sam71, §6.2] With the previous notation,

1. OL/P is a Galois extension of OK/p, of degree f ,

2. ψP is a surjective morphism from DP to the Galois group AutOK/p(OL/P),
3. IP has cardinal e.

Generalized Gabidulin codes over fields of any characteristic 35

5.2 Integral codes

We now can give some definitions about codes with integer coefficients. Let Q →֒ K →֒

L be a number field and OL its integer ring (also called maximal order). We also

consider an integral basis B = (b1, . . . , bℓ) of OL (see [Coh93, §4.4]). An integral basis

is a basis of the Z-module OL, and any element x ∈ OL can be uniquely decomposed

as

x =
ℓ∑

i=1

xibi, xi ∈ Z .

For any element x ∈ L, there exists λ ∈ Z such that λx ∈ OL. Let C ⊂ Ln be a

code with generating matrix G ∈ Mk,n(L). Then C admits a generating matrix G′ ∈

Mk,n(OL), with λ ∈ Z such that λG = G′. For Gabidulin codes, we will furthermore

consider a support g of integral elements.

Proposition 1 Let Q →֒ K →֒ L be an extension of number fields, and OK , OL the

corresponding integers rings. Let g ∈ Ln be a vector of K-linearly independent elements

of L. Let θ ∈ AutK(L), 0 6 k 6 n, and C be the code C = Gabθ,k(g). Then there

exists a support g′ ∈ On
L such that C = Gabθ,k(g

′).

Proof Let λ ∈ Z such that λgi ∈ OL, i = 1, . . . , n. Such a λ exists since we have a

finite number of gi’s. Then g′ = λg ∈ On
L is an integral support which defines the

same code. ⊓⊔

Definition 19 Let Q →֒ K →֒ L be a number field and OL its integer ring (also called

maximal order). Let C be a code in Ln. Its associated integral code is OC = C ∩ On
L.

Definition 20 Let Q →֒ K →֒ L be an extension of number fields, and let C be

Gabidulin code with an integral support g = (g1, . . . , gn) ∈ O
n
L, its restricted code is

G = {(f {g1} , . . . , f {gn}) : f ∈ OL[X; θ],deg(f) < k} .

Remark 6 The name of this code due to the coefficients of f , restricted to OL. The

restricted code is included in the integral code of the Gabidulin code. Nevertheless, the

inclusion is strict. Consider for example a code whose support is (2, 2α, 2α2, . . .), and

the information word f = 1
2X

0. The corresponding codeword is (1, α, α2, . . .), which

belongs to the integral code but not to the restricted code.

5.3 The intermediate growth of coefficients

Definition 21 Let Q →֒ K →֒ L be a number field extension of degree ℓ = [L : Q],
and let OK and OL be the corresponding integer rings, and B = (b1, . . . , bℓ) an integral

basis of OL. The size of x ∈ OL, with x uniquely written

x =
ℓ∑

i=1

xibi, xi ∈ Z,

is defined as |x| = log2(maxi(|xi|)), where |xi| denotes the absolute value of xi ∈ Z.

The size of a polynomial in OL[X; θ] or, of a vector in Ln, is the maximal size of its

coefficients.

36 Daniel Augot et al.

An observation is that even if the inputs of Algorithm 5 are small, and also if the

output polynomial f(X) is small, the size of the intermediate θ-polynomials N(X) and

W (X) can be quite large, even though their division f(X) is small. If we consider the

division-free variant of the algorithm (see algorithm 7 and table of updates 4.4.1) the

size of the θ-polynomials (Ni,Wi) is roughly doubled at every step.

Example 8 We consider a generalized Gabidulin code with dimension k = 4 and length

n = 8 over the cyclotomic extension of Q with degree m = 10. We choose an infor-

mation polynomial with size 1, and we add an error of size 2 and rank 2. After the

initialization step of the algorithm, polynomials (N0,W0) and (N1,W1) are of size 12.
After the last step they have size 191 (not very far from 24 and 28). In Table 4, we

report timings for decoding codewords of codes of length up to 16.

5.4 Integer Gabidulin codes modulo a prime ideal

In this Section, we consider codes defined on the integer ring OL. We define their

reduction modulo an ideal of OL, and study the case of Gabidulin codes.

Definition 22 Let Q →֒ K →֒ L be a number field, C ⊂ On
L be an integral code and

P be an ideal of OL. The reduction of the code modulo P is

C = {(c1, . . . , cn) : (c1, . . . , cn) ∈ C}

where x denotes the reduction of x modulo P.

We want to study a Gabidulin code modulo P. Under conditions given in the following

theorem, this code is well defined and is a Gabidulin code over a finite field.

Theorem 13 Let Q →֒ K →֒ L be a number field extension and let Z, OK and OL

be the associated integer rings. Let θ be a generator of the Galois group AutK(L). Let

g = (g1, . . . , gn) ∈ O
n
L be a support of integral elements, and Gabθ,k(g) be a generalized

Gabidulin code with support g, whose associated restricted Gabidulin code is

OGabθ,k(g) = {(f {g1} , . . . , f {gn}) : f ∈ OL[X; θ],deg(f) < k} .

Finally, let P be a prime ideal of OL, and let p ⊂ OK denote the ideal below P. If the

following conditions hold

1. θ(P) = P,

2. g1, . . . , gn are OK/p-linearly independent,

then the following code

G =
{
(f {g1} , . . . , f {gn}) : f ∈ (OL/P)[X; θ],deg(f) < k

}
,

where θ is defined in Eq. 14, is a classical Gabidulin code Gabθ,k(g) defined using the

extension of finite fields OK/p →֒ OL/P, and the automorphism θ. Furthermore, any

c ∈ G is the reduction modulo P of a codeword c ∈ OGabθ,k(g).

Proof Condition 2 makes g a valid support of linearly elements in OL/P. Then θ is a

generator element of the Galois Group of the extension of finite fields OK/p →֒ OL/P,

from Proposition 13. Actually θ is a power of the Frobenius automorphism x 7→ xq ,

with q = |OK/p|. ⊓⊔

Remark 7 To get g1, . . . , gn linearly independent over OK/p, we need n 6 [OL/P :
OK/p] = f . Usually, codes are designed with n = m, or with n close to m. Thus, inert

primes (for which f = m) are of a particular interest.

Generalized Gabidulin codes over fields of any characteristic 37

5.5 Decoding using a prime ideal

We exhibits a simple link between decoding a generalized Gabidulin code and decoding

its reduction modulo a prime. First we provide a Lemma.

Lemma 1 Let e = (e1, . . . , en) ∈ OL be a vector of K-rank t. Then the OK/p-rank

of e = e (mod P) is at most t.

Proof There exists a monic θ-polynomial E of degree t which vanishes on the ei’s.

Therefore E {ei} = E {ei} = 0 and E is non zero, since E is monic. From our definition

of rank metric with annihilator polynomials, this implies that e has rank less than or

equal to t. ⊓⊔

Theorem 14 Let G be an restricted generalized Gabidulin code, p be an inert prime

of OK , such that G is a generalized Gabidulin code. Suppose that N,W ∈ OL[X; θ]
is solution to LR(n, k, t,g,y = (y1, . . . , yn) ∈ O

n
L) (see Definition 15). Let N,W ∈

(OL/P) [X; θ] be the reduction of the θ-polynomials N,W modulo P. Then (N,W) is

a solution to LR(n, k, t,g,y).

Proof By hypothesis g is formed with linearly independent elements, and since the con-

ditions on the degrees of the polynomials remain unchanged by taking the polynomial

modulo P, it is thus sufficient to check that

W {yi} = W {yi} , 1 6 i 6 n,

N {gi} = N {gi} , 1 6 i 6 n.

This is immediate from the definition of θ in Definition 22 and from the fact that

the operation of taking modulo P is a ring morphism. ⊓⊔

Suppose that one receives the vector y = f {g} + e, where f {g} ∈ G such that the

coefficients of f(X) are taken in the integer ring OL, and e, such that rank e 6 t 6

⌊(n− k)/2⌋, is also formed with elements of OL. Then

y = f {g}+ e,

where f {g} ∈ G, and rank(e) 6 t 6 ⌊(n− k)/2⌋. In the case where G is a generalized

Gabidulin code over OL/P, then f(X) can be recovered by any algorithm solving the

linear reconstruction problem like the Algorithm 5. The same is true if we consider

erasures.

With this method we limit the growth of intermediate values and the bit-complexity

of the decoding procedure, since all computations are completed in the finite field OL/P

which is isomorphic to Fqm , where q = |OK/p|. Recovering f requires O(n2) operations

in Fqm .

Remark 8 Cyclotomic and Kummer extensions are well adapted to this purpose. In-

deed, in cyclotomic extensions, there are many prime numbers of Z that give inert

ideals. Conversely, considering Kummer extensions, many prime numbers of Z splits

totally in the first extension, and their prime factors remain inert in the second exten-

sion.

38 Daniel Augot et al.

6 Example and timings

In this section, we provide a full example to illustrate the decoding algorithm of gener-

alised Gabidulin code over a number field. All steps are detailled. This example includes

the reduction of the code modulo a prime, the correction of row and column erasures in

the network coding model, the reconstruction algorithm (Algorithm 5 and the final

division). Then, we present timings for decoding a code with integer coefficients, when

decoding over OL (i.e. in the field L), and when decoding modulo an inert prime ideal.

6.1 A full example

In this example, we consider the extension

K = Q →֒ L = K[α] = Q[Y]/(1 + Y + · · ·+ Y 6)

provided with the K-automorphism θ defined by θ : α 7→ α3. The family (1, α, . . . , α5)
is a K-basis of L.

We consider a code of length n = 6 and dimension k = 2. The information word has

the form f(X) = f0+f1X, fi ∈ L, where the fi’s have the form fi = fi,0+ · · ·+fi,5α
5.

Furthermore, suppose that only small message are encoded, i.e. fi,j ∈ {0, 1}, and that

this fact is known at the receiving end.

Since the coefficients of the information polynomial are small and belong to the

integer ring of L, we can reduce the code modulo an inert prime ideal such as 3OL.

Moreover, the possibles values {0, 1} of the coefficients fi,j are distinct modulo 3OL,

thus knowing f modulo 3OL enables to know f in L.

This example takes place in the network coding erasure model. The support g =
(g1, . . . , g6) of the code and the received word y = (y1, . . . , y6) are the following :

g1 = 1, y1 = α5 + α3 − α2 + 2α+ 2
g2 = α, y2 = α5 − α4 + α3 + α2 − 1
g3 = α2, y3 = −2α5 + 4α4 + α2 − 2α
g4 = α3, y4 = −α5 + 2α4 + α3 − α2 + 3
g5 = α4, y5 = −2α5 − 2α2

g6 = α5, y6 = −α5 − α4 + α3 − 2α2 − α+ 2

and the receiver also knows the following matrices :

Ar =

1
−1
0
1
1
−1

and Bc =
(
1 0 −1 0 0 1

)

that describe erasures in the network coding model.

Generalized Gabidulin codes over fields of any characteristic 39

We first reduce the gi’s, the yi’s and the matrices Ar and Bc modulo 3OL. The

support of the code and the received word become the following:

g1 = 1, y1 = α5 + α3 + 2α2 + 2α+ 2
g2 = α, y2 = α5 + 2α4 + α3 + α2 + 2
g3 = α2, y3 = α5 + α4 + α2 + α

g4 = α3, y4 = 2α5 + 2α4 + α3 + 2α2

g5 = α4, y5 = α5 + α2

g6 = α5, y6 = 2α5 + 2α4 + α3 + α2 + 2α+ 2

Then, we correct column erasures. We notice that the column operations C1 ← C1−C6

and C3 ← C3+C6 give a column reduced echelon form (but with pivots on the right).

We do the same operation on g and y and remove their last component (which contains

all erasures) :

g1 = 2α5 + 1, y1 = 2α5 + α4 + α2

g2 = α, y2 = α5 + 2α4 + α3 + α2 + 2
g3 = α5 + α2, y3 = α3 + 2α2 + 2
g4 = α3, y4 = 2α5 + 2α4 + α3 + 2α2

g5 = α4, y5 = α5 + α2

Then, we correct row erasures. The column matrix Ar modulo 3OL correspond to the

element 2α5+α4+α3+2α+1 ∈ OL. We compute the annihilator polynomial Vr(X)
of the columns of Ar mod 3OL:

Vr(X) = (α5 + α2)X0 + (1)X1

and evaluate this polynomial over the yi’s. We are now looking for F (X) = Vr(X)·f(X)
instead of f(X). The evaluations zi, i = 1, . . . , 5 of F (X) are:

g1 = 2α5 + 1, z1 = 2α5 + 2α4 + 2α2 + 1
g2 = α, z2 = 2α5 + α4 + α3 + 2α2 + 2α+ 1
g3 = α5 + α2, z3 = α5 + α3 + α2 + 2α+ 2
g4 = α3, z4 = 2α5 + α4 + α3 + 2α2 + 2α
g5 = α4, z5 = 2α5 + 2α2 + 1

We now have to solve the reconstruction problem to get N and W . We now have a

code of dimension 3 and length 5, no more erasures, and rank errors only, and we can

apply our Welch-Berlekamp algorithm. The initialisation will consider the first three

evaluations and there will be 2 iterations. We use the division-free variant for this

example.

At initialisation, we compute the following polynomials.

N0(X) = (α5 + α4 + α3 + 2α2 + 2α+ 2)X0 + (α5 + 2α2 + 2α+ 2)X1

+(α4 + 2α+ 1)X2 + (1)X3

W0(X) = 0
N1(X) = (2α5 + α4 + α2 + 2α)X0 + (2α+ 2)X1

+(2α5 + 2α4 + 2α3 + 2α+ 1)X2

W1(X) = (1)X0

We also initialise the discrepancies:

u0 = (0,0, 0, 2α+ 2, α5 + α4 + α3 + 2α2 + α+ 2)

u1 = (0,0, 0, α5 + 2α4 + 2α3 + α2 + 2α+ 2, 2α5 + α3)

40 Daniel Augot et al.

We begin the first iteration by extracting discrepancies:

u0,4 = N0(g4)−W0(z4)
= 2α+ 2

u1,4 = N1(g4)−W1(z4)
= α5 + 2α4 + 2α3 + α2 + 2α+ 2

Then we update the polynomials by the following formulae:

N ′
0(X) = (X1 − θ(u1)

u1
X0)×N1(X)

W ′
0(X) = (X1 − θ(u1)

u1

X0)×W1(X)

N ′
1(X) = N0 −

u0

u1
N1(X)

W ′
1(X) = W0 −

u0

u1

W1(X).

We schitch them to get:

N0(X) = N ′
1(X) = (2α5 + 2α4 + α+ 1)X0 + (2α5 + α4 + α3 + 2α2)X1

+(α5 + 2α4 + α3 + α2 + 2α)X2 + (2α5 + 2α3 + 2α2 + 2α+ 1)X3

W0(X) =W ′
1(X) = (2α5 + α4 + 2α3 + 2α+ 1)X0 + (1)X1

N1(X) = N ′
0(X) = (2α3 + α2 + 2α+ 2)X0 + (α5 + 2α4 + 2α3 + 2α2 + α)X1

+(2α4 + α3 + 2α)X2 + (1)X3

W1(X) =W ′
0(X) = (2α5 + 2α+ 1)X0

We also update and switch discrepancies, to get:

u0 = (0, 0, 0, 0, 2α5 + 2α4 + 2α3 + 2α+ 1)
u1 = (0, 0, 0, 0, 2α5 + 2α4 + 2α3 + α2 + 2α+ 1)

During the second iteration, we get:

u0,5 = N0(g4)−W0(g5)
= 2α5 + 2α4 + 2α3 + 2α+ 1

u1,5 = N1(g4)−W1(z5)
= 2α5 + 2α4 + 2α3 + α2 + 2α+ 1

and

N0(X) = N ′
1(X) = (2α4 + α3 + 2α2 + α+ 1)X0 + (2α5 + α4 + α2 + 2)X1

+(α4 + α3 + α2 + 1)X2 + (2α5)X3

+(1)X4

W0(X) =W ′
1(X) = (2α4 + 2α3 + 2α2 + 2α+ 1)X0 + (2α3 + 2α+ 1)X1

N1(X) = N ′
0(X) = (2α5 + 2α3)X0 + (α5 + α3 + α2 + α+ 2)X1

+(α5 + 2α4 + 2α3 + 2α2 + α+ 1)X2 + (α3)X3

W1(X) =W ′
0(X) = (α4 + α3 + 2α2 + α+ 1)X0 + (1)X1

Updating and switching discrepancies, we get

u0 = (0, 0, 0, 0, 0)
u1 = (0, 0, 0, 0, 0)

which satisy the interpolation condition. Then, the polynomials

N(X) = N1(X) = (2α5 + 2α3)X0 + (α5 + α3 + α2 + α+ 2)X1

+(α5 + 2α4 + 2α3 + 2α2 + α+ 1)X2 + (α3)X3

W (X) =W1(X) = (α4 + α3 + 2α2 + α+ 1)X0 + (1)X1

Generalized Gabidulin codes over fields of any characteristic 41

length n of the code 4 6 8 10 12 14 16
degree [Q[α] : Q] 4 6 10 10 12 16 16
prime ideal P 2OL 3OL 2OL 2OL 2OL 3OL 3OL

Table 3 Cyclotomic extensions used in our timings

n\k 2 4 6 8 10 12 14 16
4 0.07 0.08
6 0.23 0.24 0.21
8 0.84 0.85 0.87 0.85
10 1.78 1.91 2.11 2.32 2.51
12 10.59 11.00 12.52 15.15 17.72 20.32
14 215.21 196.06 202.07 242.59 292.91 345.89 398.77
16 1522.54 1320.98 1405.90 1722.54 2061.72 2503.12 2887.52 3223.13

Table 4 Timings over the number field L

are solution of the reconstruction problem. We divide them to get

F (X) = (α4 + 1)X0 + (2α5 + 2α4 + 2α2 + 2α)X1 + (α)X2,

then, we divide it by Vr(X) to recover

f(X) = (α2)X0 + (α5)X1.

Thus, since the possible fi,j are 0 or 1 modulo P, we have recovered the information

polynomial f(X) = α2X0 + α5X1.

6.2 Timings

For timings measurements, our generalized Gabidulin codes are constructed over a

cyclotomic extension Q →֒ L = Q[α] = Q[Y]/(1 + Y + · · ·+ Ym−1), for small values

of m, see Table 3. The information words are on the form f(X) =
∑k−1

i=0 fiX
i. The

error is constructed by making the product of a vector (e1, . . . , et) by a matrix of t

rows and n columns over K. In order to have small coefficients, the fi’s and the ei’s

are on the form
∑m

j=1 xjα
j with xj ∈ {0; 1} and the expanded coefficients are chosen

in {−1; 0; 1}.
First, computations are done in OL, since all coefficients are integral. Then, the

received words are reduced modulo an inert prime ideal P. These reduced received

words are decoded over OL/P. This ideal is generated by the smallest prime number

of Z inert in OL. The time required for computation are respectively presented in

Tables 4 and 5.

The algorithm has been writted in Magma V2.20-9. The machine has 24 processors

intel xeon X5690, 96 gigas of RAM, is 3.47gHz clocked, and has distribution ubuntu

14. Time computation are obained with the Cputime function. It corresponds to the

time required to 50 decodings.

7 Conclusion

Given any cyclic Galois extension K →֒ L provided with an automorphism θ generating

the Galois group AutK(L), we can design generalized Gabidulin codes. Cyclotomic,

42 Daniel Augot et al.

n\k 2 4 6 8 10 12 14 16
4 0.10 0.09
6 0.33 0.31 0.25
8 0.83 0.83 0.76 0.62
10 1.33 1.37 1.32 1.19 1.00
12 2.33 2.46 2.46 2.31 2.06 1.78
14 5.13 5.41 5.42 5.20 4.78 4.25 3.72
16 6.69 7.20 7.31 7.17 6.74 6.20 5.53 4.96

Table 5 Timings using the residue field OL/P

Kummer or Artin-Schreier extensions are examples of extensions that fulfill the condi-

tion which enable to design the codes.

We also have provided various useful definitions of the rank metric. These general-

ized Gabidulin codes have the same properties as their analogues in finite fields, namely

they are also MRD, and can be decoded with an adaptation of the Welch-Berlekamp

algorithm with quadratic complexity in terms of operations in L. Such a code, with

parameters [n, k, d]r, enables to correct up to sc column erasures, sr row erasures and

an error of rank t if sc + sr + 2t 6 n − k in both line erasure and network coding

erasure models.

Of course, over an infinite field, one obstacle is the growth of intermediate coeffi-

cients. We can circumvent this problem computing modulo an inert prime ideal of Z,

chosen large enough when the size of the message or the error is known, by observing

that a Generalized Gabidulin code modulo a prime ideal is a classical Gabidulin code

over a finite field.

References

Ber68. E. R. Berlekamp. Algebraic Coding Theory, chapter 11. McGraw-Hill, 1968.
BGU07. Delphine Boucher, Willi Geiselmann, and Félix Ulmer. Skew-cyclic codes. Applicable

Algebra in Engineering, Communication and Computing, 18(4):379–389, 2007.
BM85. M. Blaum and R. J. McEliece. Coding protection for magnetic tapes: A generalization

of the Patel-Hong code. Information Theory, IEEE Transactions on, 31(5):690–693,
1985.

BU12. Delphine Boucher and Félix Ulmer. Linear codes using skew polynomials with auto-
morphisms and derivations. Designs, Codes and Cryptography, pages 1–27, 2012.

BW86. Elwyn R Berlekamp and Lloyd R Welch. Error correction for algebraic block codes,
December 30 1986. US Patent 4,633,470.

Coh93. Henri Cohen. A course in computational algebraic number theory, volume 138.
Springer, 1993.

Del78. Ph Delsarte. Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A, 25(3):226–241, 1978.

FL06. Cédric Faure and Pierre Loidreau. A new public-key cryptosystem based on the
problem of reconstructing p–polynomials. In Coding and Cryptography, pages 304–
315. Springer, 2006.

Gab85. Ernest Mukhamedovich Gabidulin. Theory of codes with maximum rank distance.
Problemy Peredachi Informatsii, 21(1):3–16, 1985.

GPT91. E .M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-
commutative ring and their application in cryptology. In D. W. Davies, editor,
Advances in Cryptology - EUROCRYPT’91, volume 547 of LNCS, pages 482–489.
Springer, 1991.

GS92. Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. In-

formation processing letters, 43(4):169–174, 1992.
KK08. Ralf Koetter and Frank R Kschischang. Coding for errors and erasures in random

network coding. IEEE Transactions on Information Theory, 54(8):3579–3591, 2008.

Generalized Gabidulin codes over fields of any characteristic 43

LN97. Rudolf Lidl and Harald Niederreiter. Finite fields, volume 20. Cambridge university
press, 1997.

Loi06. Pierre Loidreau. A welch–berlekamp like algorithm for decoding gabidulin codes. In
Coding and Cryptography, pages 36–45. Springer, 2006.

LSS14. Wenhui Li, Vladimir Sidorenko, and Danilo Silva. On transform-domain error and
erasure correction by gabidulin codes. Designs, Codes and Cryptography, 73(2):571–
586, 2014.

Mol99. Richard A Mollin. Algebraic number theory. CRC Press, 1999.
Neu99. Jürgen Neukirch. Algebraic number theory. Springer, 1999.
Ore33a. Oystein Ore. On a special class of polynomials. Transactions of the American

Mathematical Society, 35(3):559–584, 1933.
Ore33b. Oystein Ore. Theory of non-commutative polynomials. Annals of mathematics, pages

480–508, 1933.
Ore34. Oystein Ore. Contributions to the theory of finite fields. Transactions of the Amer-

ican Mathematical Society, 36(2):243–274, 1934.
Rot91. Ron M. Roth. Maximum-rank array codes and their application to crisscross error

correction. Information Theory, IEEE Transactions on, 37(2):328–336, 1991.
Sam71. Pierre Samuel. Théorie algébrique des nombres. 1971.

	1 Introduction
	2 Generalization of Gabidulin codes
	3 Decoding Generalized Gabidulin Codes
	4 The Welch-Berlekamp like algorithm
	5 The case of number fields
	6 Example and timings
	7 Conclusion

