Skip to main content
Log in

New constructions of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Permutation polynomials over finite fields have been studied extensively recently due to their wide applications in cryptography, coding theory, communication theory, among others. Recently, several authors have studied permutation trinomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\), where \(q=2^k\), \(h(x)=1+x^s+x^t\) and \(r, k>0, s, t\) are integers. Their methods are essentially usage of a multiplicative version of AGW Criterion because they all transformed the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing the corresponding fractional polynomials permute a smaller set \(\mu _{q+1}\), where \(\mu _{q+1}:=\{x\in \mathbb {F}_{q^2} : x^{q+1}=1\}\). Motivated by these results, we characterize the permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\) such that \(h(x)\in {\mathbb F}_q[x]\) is arbitrary and q is also an arbitrary prime power. Using AGW Criterion twice, one is multiplicative and the other is additive, we reduce the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing permutations over a small subset S of a proper subfield \({\mathbb F}_{q}\), which is significantly different from previously known methods. In particular, we demonstrate our method by constructing many new explicit classes of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\). Moreover, we can explain most of the known permutation trinomials, which are in Ding et al. (SIAM J Discret Math 29:79–92, 2015), Gupta and Sharma (Finite Fields Appl 41:89–96, 2016), Li and Helleseth (Cryptogr Commun 9:693–705, 2017), Li et al. (New permutation trinomials constructed from fractional polynomials, arXiv: 1605.06216v1, 2016), Li et al. (Finite Fields Appl 43:69–85, 2017) and Zha et al. (Finite Fields Appl 45:43–52, 2017) over finite field with even characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbary A., Ghioca D., Wang Q.: On constructing permutations of finite fields. Finite Fields Appl. 17, 51–67 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball S., Zieve M.: Symplectic spreads and permutation polynomials. In: Finite Fields and Applications. Lecture Notes in Computer Science, vol. 2948, pp. 79–88. Springer, Berlin (2004).

  3. Berlekamp E.R., Rumsey H., Solomon G.: On the solution of algebraic equations over finite fields. Inf. Control 10, 553–564 (1967).

    Article  MATH  Google Scholar 

  4. Ding C.: Cyclic codes from some monomials and trinomials. SIAM J. Discret. Math. 27, 1977–1994 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding C., Yuan J.: A family of skew Hadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding C., Qu L., Wang Q., Yuan J., Yuan P.: Permutation trinomials over finite fields with even characteristic. SIAM J. Discret. Math. 29, 79–92 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. Dobbertin H.: Almost perfect nonlinear power functions on \(\mathbf{GF}(2^{n})\): the Welch case. IEEE Trans. Inf. Theory. 45, 1271–1275 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. Gupta R., Sharma R.K.: Some new classes of permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 41, 89–96 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou X.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou X.: Determination of a type of permutaiton trinomials over finite fields, \(\mathbf{II}\). Finite Fields Appl. 35, 16–35 (2015).

    Article  MathSciNet  Google Scholar 

  11. Laigle-Chapuy Y.: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. Leonard P.A., Williams K.S.: Quartics over \(\mathbb{GF}\left(2^n\right)\). Proc. Am. Math. Soc. 36, 347–350 (1972).

    MathSciNet  Google Scholar 

  13. Li N., Helleseth T.: New permutation trinomials from Niho exponents over finite fields with even characteristic (2016). arXiv: 1606.03768v1.

  14. Li N., Helleseth T.: Several classes of permutation trinomials from Niho exponents. Cryptogr. Commun. 9, 693–705 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. Li K., Qu L., Li C., Fu S.: New permutation trinomials constructed from fractional polynomials. Acta. Arith. (to appear). arXiv: 1605.06216v1.

  16. Li K., Qu L., Chen X.: New classes of permutation binomials and permutation trinomials over finite fields. Finite Fields Appl. 43, 69–85 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. Li K., Qu L., Chen X., Li C.: Permutation polynomials of the form \(cx+ {{\rm Tr}}_{q^l/q}\left(x^a\right)\) and permutation trinomials over finite fields with even characteristic. Cryptogr. Commun. (2017). https://doi.org/10.1007/s12095-017-0236-7.

  18. Lidl R., Niederreiter H.: Finite Fields, 2nd edn. Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

  19. Park Y.H., Lee J.B.: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivest R.L., Shamir A., Aselman L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun J., Takeshita O.Y.: Interleavers for turdo codes using permutation polynomials over integer rings. IEEE Trans. Inf. Theory. 51, 101–119 (2005).

    Article  MATH  Google Scholar 

  22. Wang Q.: Cyclotomic mapping permutation polynomials over finite fields. In: Golomb S.W., Gong G., Helleseth T., Song H.-Y. (eds.) Sequences, Subsequences, and Consequences, vol. 4893, pp. 119–128. Lecture Notes in Computer ScienceSpringer, Berlin (2007).

    Chapter  Google Scholar 

  23. Wu B.: The compositional inverses of linearized permutation binomials over finite fields (2013). arXiv: 1311.2154v1.

  24. Yuan P., Ding C.: Permutation polynomials over finite fields from a powerful lemma. Finite Fields Appl. 17, 560–574 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan P., Ding C.: Further results on permutation polynomials over finite fields. Finite Fields Appl. 27, 88–103 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. Zieve M.E.: On some permutation polynomials over \(\mathbb{F}_{q} \) of the form \(x^{r}h\left(x^{(q-1)/d}\right)\). Proc. Am. Math. Soc. 137, 2209–2216 (2009).

    Article  MATH  Google Scholar 

  27. Zha Z., Hu L., Fan S.: Further results on permutation trinomials over finite fields with even characteristic. Finite Fields Appl. 45, 43–52 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheng Y., Yuan P., Pei D.: Large classes of permutation polynomials over \({{\mathbb{F}}}_{q^2}\). Des. Codes Cryptogr. 81, 505–521 (2016).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longjiang Qu.

Additional information

Communicated by G. Kyureghyan.

The research of Longjiang Qu is partially supported by the National Basic Research Program of China (Grant No. 2013CB338002), the Nature Science Foundation of China (NSFC) under Grants 11531002, 61572026, 61722213, 61672530, the Program for New Century Excellent Talents in University (NCET), the Open Foundation of State Key Laboratory of Cryptology (No. MMKFKT201617) and the Basic Research Fund of National University of Defense Technology (No. CJ 13-02-01). The research of Qiang Wang is partially supported by NSERC of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Qu, L. & Wang, Q. New constructions of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\) . Des. Codes Cryptogr. 86, 2379–2405 (2018). https://doi.org/10.1007/s10623-017-0452-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0452-3

Keywords

Mathematics Subject Classification

Navigation