Skip to main content
Log in

The classification of Steiner triple systems on 27 points with 3-rank 24

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We show that there are exactly 2624 isomorphism classes of Steiner triple systems on 27 points having 3-rank 24, all of which are actually resolvable. More generally, all Steiner triple systems on \(3^n\) points having 3-rank at most \(3^n-n\) are resolvable. Combining this observation with the lower bound on the number of such \({\mathrm {STS}}(3^n)\) recently established by two of the present authors, we obtain a strong lower bound on the number of Kirkman triple systems on \(3^n\) points. For instance, there are more than \(10^{99}\) isomorphism classes of \({\mathrm {KTS}}(81)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Assmus Jr. E.F.: On \(2\)-ranks of Steiner triple systems. Electron. J. Comb. 2, Research paper 9 (1995).

  2. Assmus Jr. E.F., Key J.D.: Designs and their codes. Cambridge University Press, Cambridge (1992).

    Book  MATH  Google Scholar 

  3. Babai L.: Almost all Steiner triple systems are asymmetric. Ann. Discr. Math. 7, 37–39 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  5. Colbourn C.J., Dinitz J.F. (eds.): Handbook of Combinatorial Designs, vol. 2. Chapman & Hall/, Boca Raton (2007).

    MATH  Google Scholar 

  6. Colbourn C.J., Magliveras S.S., Mathon R.A.: Transitive Steiner and Kirkman triple systems of order 27. Math. Comp. 58(197), 441–450 (1992).

    MathSciNet  MATH  Google Scholar 

  7. Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251–259 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  8. GAP user manual. https://www.gap-system.org/Manuals/doc/ref/chap39.html.

  9. Jungnickel D., Magliveras S.S., Tonchev V.D., Wassermann A.: On classifying Steiner triple systems by their 3-rank. In: Blömer J. (ed.) MACIS 2017, pp. 295–305. Lecture Notes in Computer ScienceSpringer, New York (2018).

    Google Scholar 

  10. Jungnickel D., Tonchev V.D.: On Bonisoli’s theorem and the block codes of Steiner triple systems. Des. Codes Cryptogr. 86, 449–462 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. Jungnickel, D., Tonchev, V.D.: Counting Steiner triple systems with classical parameters and prescribed rank. ArXiv e-prints 1709.06044 (2017).

  12. Key J.D., Shobe F.D.: Some transitive Steiner triple systems of Bagchi and Bagchi. J. Stat. Plann. Inference 58, 79–86 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. McKay, B., Piperino, A.: Nauty and Traces. http://pallini.di.uniroma1.it/.

  14. Osuna O.P.: There are 1239 Steiner triple systems \(\text{ STS }(31)\) of 2-rank 27. Des. Codes Cryptogr. 40, 187–190 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. Soicher, L.H.: DESIGN Package (Version 1.6) for GAP. http://www.maths.qmul.ac.uk/~leonard/designtheory.org/software/.

  16. Teirlinck L.: On projective and affine hyperplanes. J. Combin. Th. Ser. A 28, 290–306 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  17. Tonchev V.D.: A mass formula for Steiner triple systems STS\((2^{n}-1)\) of 2-rank \(2^n -n\). J. Combin. Theory Ser. A 95, 197–208 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Vladimir Tonchev acknowledges support by the Alexander von Humboldt Foundation and NSA Grant H98230-16-1-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Jungnickel.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungnickel, D., Magliveras, S.S., Tonchev, V.D. et al. The classification of Steiner triple systems on 27 points with 3-rank 24. Des. Codes Cryptogr. 87, 831–839 (2019). https://doi.org/10.1007/s10623-018-0502-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0502-5

Keywords

Mathematics Subject Classification

Navigation