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7 Linear codes from Denniston maximal arcs

Daniele Bartoli, Massimo Giulietti, Maria Montanucci

Abstract

In this paper we construct functional codes from Denniston maximal arcs. For q = 24n+2 we
obtain linear codes with parameters [(

√
q−1)(q+1), 5, d]q where limq→+∞ d = (

√
q−1)q−3

√
q.

We also find for q = 16, 32 a number of linear codes which appear to have larger minimum
distance with respect to the known codes with same length and dimension.

Keywords: Denniston maximal arcs; functional codes.

1 Introduction

For q a prime power, let AG(N, q) denote the affine space over the finite field with q elements
Fq. For a point set X ⊆ AG(N, q) and a linear subspace V ⊂ Fq[X1, . . . ,XN ], the functional code
CV(X )⊂F

n
q is defined as

CV(X ) := {(f(P1), . . . , f(Pn)) : f ∈ V},
where X = {P1, . . . , Pn}. Clearly, the code CV(X ) can be seen as η(V), where η is the linear map

η : V → F
n
q

with η(f) = (f(P1), . . . , f(Pn)) for any f ∈ V. An analogous definition is given for X a subset of
PG(N, q), theN -dimensional projective space over Fq; here, V consists of homogeneous polynomials
in X0,X1, . . . ,XN . The length of CV(X ) is n, the dimension is dimFq

η(V), and the minimum
distance coincides with n−maxf∈V , η(f)6=0 #(Vf ∩ X ), where Vf denotes the set of zeros of f .

The case where X consists of the set of Fq-rational points of a quadric or a hermitian variety
and V is a vector space of polynomials of a given degree has been thoroughly investigated; see
for instance [3, 4, 11–14]. In particular, functional codes from the Hermitian curve, the so-called
Hermitain codes, have performances which are sometimes comparable with those of BCH codes;
see e.g. [7, Ch. 4] and [18,19].
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In this paper we construct functional codes arising from particular subsets X ∈ AG(2, q) (or
PG(2, q)) called maximal n-arcs. A maximal n-arc X is a set of nq + n − q points such that any
line of the plane contains either 0 or n points of X . The integer n is called the degree of X . In [2]
Barlotti proved that a necessary condition for the existence of a proper maximal arc is n | q, whereas
it was shown in [1] that no nontrivial maximal arcs exist for q odd. Maximal arcs have interesting
connection with linear codes; see for instance [6,9]. In particular, the functional code CV(X ) where
V is the set of linear forms and X is a maximal arc of degree n in PG(2, q) is an optimal 2-weight
code. Maximal arcs are also related to partial geometries [20] and Steiner 2-designs [8, 23].

The classification of maximal arcs of degree 2 in PG(2, q), also called hyperovals, is a long-
standing and fascinating problem in Finite Geometry. The simplest example of hyperoval is given
by a conic plus its nucleus; for other infinite families see e.g. [17, Section 8.4]. As to the higher
degree case, in 1969 Denniston [10] gave a construction of maximal arcs of degree n in Desarguesian
projective planes of even order q, for all n dividing q. Such maximal arcs consist of the union of some
conics and their common nucleus. Other constructions of maximal arcs are given in [15,16,20,24,25];
see also the references therein.

The aim of the paper is twofold. On the one hand, for small q’s we give explicit constructions of
functional linear codes from Denniston maximal arcs having better parameters than those listed in
the database Mint [21]; see Section 2. In particular, we obtain codes with parameters [119, 10, 94]16 ,
[120, 5, 103]16 , [119, 5, 103]16 , [51, 5, 43]16 , [99, 5, 88]32 .

On the other hand, for q = 24n+2 we show that some functional codes from Denniston arcs
reach the parameters of the functional Hermitian codes of the same dimension. We in fact obtain
linear codes with parameters [(

√
q − 1)(q + 1), 5, d]q where limq→+∞ d = (

√
q − 1)q − 3

√
q. This

achievement relies on an interesting geometrical property of Denniston arcs. A Denniston maximal
arc can be seen as the set of Fq-rational points of a (reducible) algebraic curve of degree 2t with
equation L(f(x, y)) = 0, with L an additive polynomial of degree t and f an irreducible quadratic
form. For q a square and L(T ) = T

√
q − T we show that such curve intersects a generic conic

through the common nucleus of the conics in at most (roughly) 2
√
q points. This significantly

improves the bound 4
√
q provided by Bézout Theorem and shows that

√
q(q − 2) is a rough lower

bound on the minimum distance of the functional code where V is the 5-dimensional linear space
of polynomials generated by X,Y,XY,X2, Y 2; see Theorem 3.1 and Corollary 3.2.

2 Codes from Denniston arcs of degree q/2 and q/4

We recall the construction of Denniston maximal arcs. Let H be an additive subgroup of Fq.
Consider an irreducible quadratic form f(x, y) = ax2+ bxy+ cy2 over Fq. Denniston maximal arcs,

2



viewed as subsets of AG(2, q), can described as

Ω = {(x, y) ∈ AG(2, q) | f(x, y) ∈ H};
see [10]. It is easily seen that |Ω| = n = (q + 1)(|H| − 1) + 1. In this paper we will consider
functional codes from both Ω and Ω∗ = Ω \ {(0, 0)}.

2.1 |H| = q/2

Consider now a subgroup H of index 2. Note that (0, 0) belongs to Ω. Consider the Fq-vector space
V of dimension 5 given by

{ax2 + bxy + cy2 + dx+ ey : a, b, c, d, e ∈ Fq}.

Let η : V → F
n
q be defined by

η(f) = (f(P1), . . . , f(Pn)),

where Ω = {P1, . . . , Pn}. The image η(V) is an [n, 5, n − α]q code, where α = maxf∈V #{Vf ∩ Ω}.
In this case, if f splits into two linear factors then it vanishes at q points of Ω at most. On the
other hand, if f defines an absolutely irreducible conic, Vf contains at most q + 1 points. So η(V)
is an [(q2 − q)/2, 5, (q2 − 3q − 2)/2]q code. Let us consider now Ω∗ = {P1, . . . , Pn−1}. By the same
construction, η(V) is an [(q2 − q)/2 + 1, 5, (q2 − 3q)/2 + 1]q code, since a conic (irreducible or not)
can contain at most q points of the set Ω∗.

Table 1 shows the parameters of this family of codes. In particular, for q = 16, the codes
[120, 5, 103]16 and [119, 5, 103]16 improve the corresponding entries in the database Mint [21].

Now we deal with the case where V is the vector space of all the polynomials of degree at most
three. By the Hasse-Weil bound (see [22, Theorem 5.2.3]) an irreducible plane cubic curve has at
most 16 + 1 + 2

√
16 = 25 points in PG(2, 16). On the other hand, if the cubic splits in three lines

or one line and a conic then it is easily seen that such a curve shares at most 24 or 25 with Ω or
Ω∗. This ensures the existence of a [120, 10, 95]16 and a [119, 10, 94]16 which are better than the
[120, 10, 92]16 and the [119, 10, 91]16 codes in [21].

2.2 |H| = q/4

We now consider the case where V is as in the previous subsection but H is a subgroup of index
4. As a result of a computer search, we found some functional codes on Ω∗ over F16 and F32 with
better parameters than those listed in [21]. In Table 2 the weight distribution of these codes is
described. Here η is a primitive element of F16 satisfying η4+η+1 = 0 and ω is a primitive element
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Table 1: Intersection with conics, |H| = q/2

q n η(V) Best known

16 120 [120, 5, 103]16 [120, 5, 102]16
16 119 [119, 5, 103]16 [119, 5, 101]16

Table 2: Codes with |H| = 4
q H f(x, y) Weight distribution Parameters Best known in [21]

16 ηF4 x2 + η10xy + η8y2
0143459444272452992

46523247127504818736

4914280508496512415
[51, 5, 43]16 [51, 5, 42]16

32 {0, ω9, ω13, ω19} x2 + xy + y2

01886689660901848

911577492236289353592

941103529519760496251394

97237732981364889952206

[99, 5, 88]32 [99, 5, 87]32

of F32 satisfying ω5 + ω2 + 1 = 0. The group H and the polynomial f are specified in the second
and in the third column. The fourth column contains the weight distribution of η(V). We remark
that for q = 32 several other different subgroups H give rise to codes having the same weight
distribution. An interesting open problem is to determine whether all these codes are isomorphic.

3 Codes from Denniston arcs of degree
√
q

In this section we consider the case where q = 24n+2 and the subgroup H is the field F√
q. As

√
q

is not a power of 4, Fq = F√
q(ξ), with ξ a root of T 2 + T + 1 = 0. Note that {1, ξ} is a basis of Fq

over F√
q, and the polynomial T 2 + T + ξ ∈ Fq[T ] is irreducible over Fq. Then

Ω∗ =
⋃

z∈F∗√
q

{(x, y) ∈ AG(2, q) | x2 + xy + ξy2 = z}.

Consider a generic conic D through (0, 0). Then the affine points (x, y) in D can be parametrized
as follows:

x = x(m) = − E +Dm

A+Bm+ Cm2
y = y(m) = −m

E +Dm

A+Bm+ Cm2
, (1)
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where A,B,C,D,E ∈ Fq and (A,B,C) 6= (0, 0, 0). Note that values m for which A+Bm+Cm2 = 0
correspond to ideal points of the conic D and therefore we can suppose A+Bm+ Cm2 6= 0.

In order to determine the minimum distance of the functional code CV(Ω∗), with V the linear
space generated by X,Y,X2,XY, Y 2, we need to count the possible intersections between D and
Ω∗. This is equivalent to determine the number of pairs (m, z) ∈ Fq × F√

q such that

(

− E +Dm

A+Bm+ Cm2

)2

(1 +m+ ξm2) = z. (2)

Write m = m1 + ξm2, A = a1 + ξa2, B = b1 + ξb2, C = c1 + ξc2, D = d1 + ξd2, E = e1 + ξe2,
with mi, ai, bi, ci, di, ei ∈ F√

q for i = 1, 2. Then Equation (2) reads

{

f(m1,m2, z) = 0
g(m1,m2, z) = 0

, (3)

where

f(m1,m2, z) = (a1 + a2 + b1m1 + b1m2 + b2m1 + c1m
2
1 + c2m

2
1 + c2m

2
2)

2z + d21m
3
1

+d21m
2
1 + d21m1m

2
2 + d21m

4
2 + d21m

3
2 + d21m

2
2 + d22m

4
1 + d22m

3
1 + d22m

2
1m2

+d22m
2
1 + d22m

3
2 + e21m1 + e21m

2
2 + e21 + e22m

2
1 + e22m1 + e22m

2
2 + e22m2 + e22,

g(m1,m2, z) = (a2 + b1m2 + b2m1 + b2m2 + c1m
2
2 + c2m

2
1)

2z + d21m
4
1

+d21m
2
1m2 + d21m1m

2
2 + d21m

4
2 + d21m

2
2 + d22m

3
1 + d22m

2
1 + d22m1m

2
2

+d22m
4
2 + d22m

3
2 + d22m

2
2 + e21m

2
1 + e21m2 + e22m1 + e22m

2
2 + e22.

The coefficients of z in f and g cannot be both the zero polynomial in m1 and m2 otherwise
(A,B,C) = (0, 0, 0). First of all we note that the bijection (m1,m2, z) 7→ (m1,m2, z + 1) does not
change the number of triples (M1,M2, Z) ∈ F

3√
q satisfying (3). Let f ′(m1,m2, z) = f(m1,m2, z+1)

and g′(m1,m2, z) = f(m1,m2, z+1). Also, both f ′ and g′ are linear in z. We denote by h(m1,m2)
the polynomial obtained by eliminating z. In the proof of Theorem 3.1 we will show that the number
of triples (M1,M2, Z) ∈ F

3√
q satisfying (3) is at most the number of pairs (M1,M2) ∈ F

2√
q satisfying

h(M1,M2) = 0. Note that by a straightforward computation h can be written as
∑

0≤i,j≤8 αi,jm
i
1m

j
2

with

5



α8,0 = α0,8 = c22 α4,4 = c22 α7,0 = c21

α6,2 = α2,6 = c22 α5,2 = α3,4 = c21 + c22 α2,5 = α4,3 = c21

α0,7 = c21 + c22 α6,0 =
b22 + c21e

2
1 + c21

+c22e
2
1 + c22e

2
2

α4,2 = α2,4 =
b21 + b22 + c21e

2
2

+c21 + c22e
2
1 + c22

α0,6 =
b21 + c21e

2
1 + c21e

2
2

+c22e
2
2 + c22

α5,0 = b21 + c21e
2
2 + c22e

2
1 α4,1 = b22 + c21e

2
1 + c22e

2
1 + c22e

2
2

α3,2 = b21 α2,3 = b22 α1,4 = b21 + c21e
2
1 + c21e

2
2 + c22e

2
2

α0,5 = b22 + c21e
2
2 + c22e

2
1 α4,0 =

a22 + b21e
2
1 + b21 + b22e

2
1

+b22e
2
2 + c21e

2
2 + c22e

2
1

α2,2 = b21e
2
1 + b21 + b22e

2
1 + b22e

2
2

α0,4 =
a21 + a22 + b21e

2
1 + b21

+b22e
2
1 + b22e

2
2 + c21e

2
1

+c21e
2
2 + c22e

2
2

α3,0 = a21 + b21e
2
2 + b22e

2
1 α2,1 =

a22 + b21e
2
1 + b22e

2
1

+b22e
2
2

α1,2 =
a21 + a22 + b21e

2
1

+b22e
2
1 + b22e

2
2

α0,3 = a21 + b21e
2
1 + b21e

2
2 + b22e

2
2 α2,0 =

a21e
2
1 + a21 + a22e

2
1

+a22e
2
2 + b21e

2
2 + b22e

2
1

α0,2 =
a21e

2
2 + a21 + a22e

2
1 + a22

+b21e
2
1 + b22e

2
1 + b22e

2
2

α1,0 = a21e
2
2 + a22e

2
1 α0,1 = a21e

2
1 + a22e

2
1 + a22e

2
2

α0,0 = a21e
2
2 + a22e

2
1.

(4)

The polynomial h(m1,m2) defines a plane curve X of order at most 8. First we show that X
has at most two absolutely irreducible components defined over F√

q. By the Hasse-Weil Theorem,
this will give us an upper bound on the number of solutions of h(m1,m2) = 0, and hence on the
number or triples (M1,M2, Z) ∈ F

3√
q satisfying (3).

Note that X contains the points

P1 = (η, η2), P2 = (η2, η4), P3 = (η4, η8), P4 = (η8, η)

6



with F
∗
16 = 〈η〉, where η4 + η + 1 = 0. We distinguish a number of cases.

1. D 6= 0. We can suppose (d1, d2) = (0, 1). The homogeneous part of degree 8 of h(m1,m2) is
c22(m

2
1 +m1m2 +m2

2)
4.

(a) c2 6= 0. Since the ideal points of X are not F√
q-rational, there are no F√

q-rational
lines contained in X . It is easy to see that no F√

q-rational cubic component can be
contained in X . Also, conic or quartic components of X are F√

q-rational if and only if

their homogeneous part of highest degree is (m2
1 +m1m2 +m2

2) or (m
2
1 +m1m2 +m2

2)
2

respectively. If X has more that two absolutely irreducible components defined over F√
q

then it must split in: 2 lines and 3 conics, 4 conics, 2 conics and 1 quartic.

In the first case at least two points among P1, P2, P3, P4 are not contained in the two
lines, which must be of type m1 + ξm2 + α = 0 and m1 + ξ2m2 + β = 0. So at least
one conic must contain a point Pi. By direct checking this implies that the conic is not
defined over F√

q.

In the second case, a conic of equation m2
1+m1m2+m2

2+Am1+Bm2+C = 0 contains
all the points Pi’s if and only if















η4A+ η8B + C + η3 = 0
ηA+ η2B +C + η12 = 0
η8A+ ηB +C + η6 = 0
η2A+ η4B + C + η9 = 0

.

The previous system has no solution. Therefore there exist at least two conics which con-
tain the points Pi’s. On the other hand, by direct checking and recalling that {1, η, η5, η6}
is a basis of Fq2 over F√

q, such conics are not defined over F√
q. This implies that at

most two conics can be F√
q-rational.

In the third case, arguing as above, we conclude that the points Pi’s must be contained
in the quartic component. The quartic F√

q-rational component Q must be defined by

(m2
1 +m1m2 +m2

2)
2 +A1m

3
1 +A2m

2
1m2 +A3m1m

2
2 +A4m

3
2

+B1m
2
1 +B2m1m2 +B3m

2
2 +C1m1 + C2m2 + C3 = 0,

where Ai, Bi, Ci ∈ F√
q. The condition Pi ∈ Q yields

A1 = B1+B2+C1+C2+C3, A2 = B3+C3, A3 = C1+C3+1, A4 = B1+C1+C2+C3+1.

7



Also, if Q and two conics D1 and D2 of equation m2
1+m1m2+m2

2+αim1+βim2+γi = 0
are all components of X , then

B3 + C1 + 1 = 0, B2 +B3 + C3 + 1 = 0.

Now, by direct checking the point Q = (η5e1+η10e2+η3, η10e1+e2+η13) belongs to X .
If Q ∈ Di, then the conic splits into two non-F√

q-rational lines, so Q must be contained
in Q. This yields B1 = C1 = 0, B3 = C2 = C3 = 1 and in this case Q splits in four lines
not defined over F√

q.

(b) c2 = 0 and c1 6= 0. In this case X has degree 7. The homogeneous part of degree 7 is
given by c21(m

2
1+m1m2+m2

2)
3(m1+m2). An F√

q-rational line contained in X can only
have equation m1 +m2 +A1 = 0. By direct checking this implies

{

b1 + b2 + c1e2 + c1A1 = 0
c1(b1 + b2 + c1e2 + η2c1)(b1 + b2 + c1e2 + ηc1) = 0

.

This is not possible since c1 6= 0 by assumption. Therefore the only cases in which X
has more than two absolutely irreducible components defined over F√

q are: 1 line and 3
conics, 2 conics and 1 cubic.

In the first case, the line ℓ must be of type m1 + m2 + A1 = 0, otherwise not all the
conics are F√

q-rational. Arguing as above, we immediately notice that not all the points
Pi’s can be contained in ℓ, and this forces at least one conic to be non-F√

q-rational.

In the second case, all the points Pi’s and the point Q must be contained in the cubic
which has equation

(m2
1 +m1m2 +m2

2)(m1 +m2) +A1m
2
1 +A2m1m2 +A3m

2
2 +B1m1 +B2m2 +B3 = 0.

This yields

A1 +B2 + 1 = 0, A3 = B1 = B3, A2 = 0, e22 + e2 + 1 = 0,

impossibile since e2 ∈ F√
q.

(c) c1 = c2 = 0 and b2 6= 0. In this case X has degree 6. The homogeneous part of degree
6 is given by (b1m2 + b2m1)

2(m2
1 +m1m2 +m2

2)
2. A linear F√

q-rational component of
X should have equation b1m2 + b2m1 + A1 = 0. This implies b1 = b2, a1 = b2e2, and
(b2 + ηA1)(b2 + η2A1) = 0, impossible. The unique case in which we have more than
two absolutely irreducible components defined over F√

q is given by two conics of type

8



m2
1+m1m2+m2

2+Am1+Bm2+C = 0 and one conic of type (b1m2+ b2m1)
2 +Am1+

Bm2 + C = 0. Suppose that all the Pi’s and Q belong to the last conic. By direct
checking such a conic has equation b22m

2
1 + b21m

2
2 + b21m1 + b22m2 + b21 = 0 and both

b21e
2
2 + b21e2 + b21 + b22e

2
1 + b22e1 + b22e2 + b22 = 0

and
b21e

2
1 + b21e1 + b21e2 + b21 + b22e

2
1 + b22e1 + b22e

2
2 = 0.

This gives b2 = 0, impossible. So at least one conic of equation (b1m2+ b2m1)
2+Am1+

Bm2 + C = 0 contains one point among {P1, P2, P3, P4, Q} and, as above, it is not
F√

q-rational.

(d) c1 = c2 = b2 = 0 and b1 6= 0. In this case X has degree 6 and the homogeneous part
of degree 6 is given by b21m

2
2(m

2
1 +m1m2 +m2

2)
2. An F√

q-rational line contained in X
should have equation m2 = A1. By direct checking this is impossible since b1 6= 0. As
in the previous case the unique decomposition of X that we need to check is given by
three conics. Since one of them should have equation m2

2 +Am1 +Bm2 +C = 0, if Pi’s
and Q belong to it, then A = C = 1 and B = 0 and e22 + e2 + 1 = 0, impossible. So at
least one conic of equation (b1m2 + b2m1)

2 + Am1 + Bm2 + C = 0 contains one point
among {P1, P2, P3, P4, Q} and, as above, it is not F√

q-rational.

(e) c1 = c2 = b1 = b2 = 0. In this case X has degree 4 and the homogeneous part of degree
4 is given by (α1m2+α2m1+α2m2)

4, where α2
i = ai, i = 1, 2. A linear component of X

should be α1m2 + α2m1 + α2m2 +A = 0. It is easily seen that such a line cannot be a
component of X and therefore the number of F√

q-rational components of X is at most
two.

2. D = 0. We can suppose (e1, e2) = (1, 0), since otherwise the conic D splits into two lines. In
this case X has degree 6 and the homogeneous part of degree 6 is given by (c1m1 + c1m2 +
c2m1)

2(m2
1 +m1m2 +m2

2)
2.

(a) (c1, c2) 6= (0, 0). It is easily seen that there exists no linear F√
q-rational component in

X .

If e2 = 0, e1 6= 0, b1 = b2 = a1 = 1 then X splits in

e21(m1 +m2+ η5)(m1 +m2+ η10)(a22 +m4
1+m3

1+m2
1m

2
2+m1m2+m4

2+m3
2+m2

2+m2)

and it contains at most two conic components defined over F√
q. Otherwise, X does not

contain linear components. The only possibility is three conics. If one of the points

9



Pi’s belongs to a conic of equation m2
1 +m1m2 +m2

2 + αim1 + βim2 + γi = 0 then, as
above, it is not F√

q-rational. So all the points Pi’s must belong to the conic of equation

(c1m1 + c1m2 + c2m1)
2 +Am1 +Bm2 + C = 0 which is hence of type

c21m
2
1 + c21m1 + c21m

2
2 + c21m2 + c21 + c22m

2
1 + c22m2 = 0.

The other two conics must be of equation m2
1 + m1m2 + m2

2 + αim1 + βim2 + γi = 0,
i = 1, 2. Easy computations show that in this case c1 = c2 = 0, impossible.

(b) (c1, c2) = (0, 0). If b1 6= b2 then X has degree 4 and the homogeneous part of degree 4 is
given by (b1+b2)

2(m2
1+m1m2+m2

2)
2. No F√

q-rational linear components are contained
in X and therefore it contains at most two absolutely irreducible components defined
over F√

q.

If b1 = b2 then X has degree 3 and the homogeneous component of degree 3 is given by
(b1)

2(m1+m2)(m
2
1 +m1m2+m2

2). Clearly, at most one F√
q-rational linear components

is contained in X and therefore it contains at most two absolutely irreducible component
defined over F√

q.

We are now in a position to prove the main result of this section.

Theorem 3.1. The size of the intersection between a conic D through the origin and the set Ω∗ is

at most 2q + 2 + 20
√
q.

Proof. As shown above, the number of absolutely irreducible F√
q-rational components of the curve

X is two. By the Hasse-Weil Theorem (see [22, Theorem 5.2.3]) it is easily seen that the maximum
number of affine F√

q-points (M1,M2) of X is

2q + 20
√
q + 2.

Let r1(m1,m2) and r2(m1,m2) be given by

r1(m1,m2) = a1 + a2 + b1m1 + b1m2 + b2m1 + c1m
2
1 + c2m

2
1 + c2m

2
2,

r2(m1,m2) = a2 + b1m2 + b2m1 + b2m2 + c1m
2
2 + c2m

2
1.

We do not have to deal with pairs (M1,M2) ∈ F
2√
q such that r1(M1,M2) = r2(M1,M2) = 0, since

otherwise M = M1 + ξM2 is such that A+BM + CM2 = 0 and this would give an ideal point of
D, see the parametrization of D in (1).
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So, for a pair (M1,M2) ∈ F
2√
q such that h(M1,M2) = 0, we have that one between r1(M1,M2)

and r2(M1,M2) is different from 0. This yields the existence of a unique Z ∈ F√
q such that the

triple (M1,M2, Z) satisfies the conditions in (3).

Corollary 3.2. For q = 24n+2, there exist linear codes with parameters [(
√
q−1)(q+1), 5, d]q , with

d ≥ (
√
q − 1)(q + 1)− (2q + 2 + 20

√
q) = (

√
q − 3)q − 19

√
q − 3.

Proof. Using the notation of this section, the code CV(Ω∗), where

Ω∗ =
⋃

z∈F∗√
q

{(x, y) ∈ AG(2, q) | x2 + xy + ξy2 = z}

and V = 〈X,Y,X2,XY, Y 2〉, has length equal to |Ω∗| = (
√
q−1)(q+1). Its dimension is dim(V) = 5

and by Theorem 3.1 its minimum distance is at least (
√
q − 1)(q + 1) − (2q + 2 + 20

√
q) = (

√
q −

3)q − 19
√
q − 3.

4 Concluding remarks and open questions

In this paper we constructed functional codes arising from Denniston maximal arcs. In some cases
such codes have better parameters than the already known ones. Some computations have been
done using the software MAGMA [5]. Due to computational reasons, we could perform the search
only for small q. In these cases, we observed that the weight distribution of the codes associated
with different subgroups were the same. We do not know if different subgroups of the same size
can give rise to inequivalent codes or not.

For q = 24n+1 we find linear codes with dimension 5, length with the same order of magnitude of
q3 and Singleton defect bounded by 2q. Functional codes with similar parameters can be obtained
from the Hermitian curve of PG(2, q). We were not able to compare the weight distributions of
the two codes.
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