
ar
X

iv
:1

71
2.

09
34

5v
1

 [
cs

.I
T

]
 2

4
D

ec
 2

01
7

Duplication-Correcting Codes

Andreas Lenz · Antonia Wachter-Zeh ·

Eitan Yaakobi

Abstract In this work, we propose constructions that correct duplications
of multiple consecutive symbols. These errors are known as tandem duplica-
tions, where a sequence of symbols is repeated; respectively as palindromic
duplications, where a sequence is repeated in reversed order. We compare the
redundancies of these constructions with code size upper bounds that are ob-
tained from sphere packing arguments. Proving that an upper bound on the
code cardinality for tandem deletions is also an upper bound for inserting tan-
dem duplications, we derive the bounds based on this special tandem deletion
error as this results in tighter bounds. Our upper bounds on the cardinality
directly imply lower bounds on the redundancy which we compare with the re-
dundancy of the best known construction correcting arbitrary burst insertions.
Our results indicate that the correction of palindromic duplications requires
more redundancy than the correction of tandem duplications and both signif-
icantly less than arbitrary burst insertions.

Keywords Error-correcting codes · Duplication errors · Generalized
sphere packing bound · DNA storage · Combinatorial channel · Burst
insertions/deletions

This work was supported by the Institute for Advanced Study (IAS), Technische Universität
München (TUM), with funds from the German Excellence Initiative and the European
Union’s Seventh Framework Program (FP7) under grant agreement no. 291763.
Parts of this work have been presented at the 2017 Workshop on Coding and Cryptography
(WCC), St. Petersburg [7].

Andreas Lenz
Institute for Communications Engineering, Technical University of Munich (TUM)
E-mail: andreas.lenz@mytum.de

Antonia Wachter-Zeh
Institute for Communications Engineering, Technical University of Munich (TUM)
E-mail: antonia.wachter-zeh@tum.de

Eitan Yaakobi
Computer Science Department, Technion – Israel Institute of Technology, Haifa, Israel
E-mail: yaakobi@cs.technion.ac.il

http://arxiv.org/abs/1712.09345v1

2 Andreas Lenz et al.

Mathematics Subject Classification (2000) 94B20 · 94B65 · 94B60

1 Introduction

The increasing demand for high density and long-term data storage and the
recent advance in biotechnological methodology has motivated the storage of
digital data in DNA. One interesting application in this area involves the
storage of data in the DNA of living organisms. Tagging genetically modified
organisms, infectious bacteria, conducting biogenetical studies or storing data
are only a few in a list of modern applications. However, the data is corrupted
by errors during the replication of DNA and therefore an adequate error pro-
tection mechanism has to be found. Typical errors include point insertions,
deletions, substitutions and tandem or palindromic duplications. While the
correction of substitutions, insertions and deletions is well studied, knowledge
about correcting tandem and palindromic duplication errors is relatively lim-
ited. In the former case, a subsequence of the original word is duplicated and
inserted directly after the original subsequence. An example for a tandem du-
plication of length 3 in a DNA sequence GATCATG is GATCATCATG,
where the underlined part highlights the duplication. Similarly, a palindromic
duplication in the same word is GATCCTAATG. Note that these duplication
errors are a special kind of burst insertion errors, where a consecutive sequence
of random symbols is inserted into the transmitted sequence. In this paper, we
propose several constructions that correct tandem, respectively palindromic
duplication errors that yield lower redundancies than the best known burst
insertion correcting codes. The redundancies of our constructions are further
compared with lower bounds that we obtain from a sphere packing argument.

1.1 Related Work

Upper and lower bounds on the size of the largest code have been well studied
for substitution errors in the Hamming metric. However, for other error mod-
els, such as insertions or deletions only recently non-asymptotic upper bounds
onto code sizes have been found [2,5]. For repetition errors, which are spe-
cial kinds of insertion errors, the only known upper bound is the asymptotic
bound from Levenshtein [8]. The non-asymptotic bounds in [5] have been found
by computing the fractional transversal number of the hypergraph associated
with deletion errors. In [2], this procedure has been analyzed and generalized
to other error models, such as the Z-channel, grain-error channel, and projec-
tive spaces. Further, it has been shown that the average sphere packing value
provides a valid upper bound on code sizes, if the associated hypergraph is
regular and symmetric. Repetition errors form a related error model to tan-
dem and palindromic duplications and corresponding error correcting codes
have been studied in e.g. [1] and [8]. More recently, an explicit construction
for multiple repetition errors has been suggested [10]. These codes use the fact

Duplication-Correcting Codes 3

that repetition errors are equivalent to errors in the ℓ1-metric and are based on
Lee-metric BCH codes [11]. Codes correcting tandem duplications have been
considered in [4], where amongst others a construction for the correction of an
arbitrary number of fixed length duplications was presented. These codes are
based on choosing irreducible words with respect to tandem duplications and
their relation to zero run-length-limited systems has been illustrated. In this
work we employ the method presented in [2], known as the generalized sphere
packing bound for tandem duplications to find non-asymptotic upper bounds
on the code cardinalities and additionally present low-redundancy construc-
tions that correct errors of these types, which extends the work in [7].

1.2 Outline

The paper is organized as follows. After introducing the preliminaries, in Sec-
tion 2, we define duplication deletion errors, an artificial error model that
helps to find tight code size upper bounds. We derive upper bounds on the
cardinality of codes that correct tandem duplication errors of length ℓ by find-
ing a transversal on the associated hypergraph based on the error sphere size
distribution in Section 3. These upper bounds directly imply a lower bound
on the redundancy of a code. Finally, in the last section, we propose construc-
tions that correct single tandem or palindromic duplications and compare their
redundancies with the lower bounds.

1.3 Preliminaries

For two integers a, b ∈ N0, we write 〈a〉b to denote the integer rest of a divided
by b. We denote x = (x1, x2, . . . , xn) ∈ Zn

q to be a vector of n symbols over
the ring of integers modulo q, xi ∈ Zq ∀ i. The length of a vector x is denoted
by |x|.

A tandem duplication of length ℓ at position p with 0 ≤ p ≤ n − ℓ in
a word x = (uvw), with |u| = p, |v| = ℓ, |w| = n − ℓ − p is defined by
τℓ(x, p) = (uvvw) ∈ Zn+ℓ

q and a palindromic duplication of length ℓ is defined

by ρℓ(x, p) = (uvvRw), where vR = (vℓvℓ−1 . . . v1) is the reversal of v. The
inverse operation, a tandem deletion of length ℓ at position 0 ≤ p ≤ n − 2ℓ
in a word x = (uvvw) with |u| = p, |v| = ℓ, |w| = n − 2ℓ − p is denoted by
τDℓ (x, p) = (uvw) ∈ Zn−ℓ

q . Finally, we write a palindromic deletion of length ℓ

at position 0 ≤ p ≤ n−2ℓ in a word x = (uvvRw) with |u| = p, |v| = ℓ, |w| =
n− 2ℓ− p as ρDℓ (x, p) = (uvw) ∈ Zn−ℓ

q .

Example 1 (Tandem and palindromic duplication and deletion errors) Con-
sider the word x = (11110220) ∈ Z8

3. Then, a tandem duplication of length 2
at position p = 3 yields τ2(x, 3) = (1111010220), where the underlined part
is the erroneous duplication. Similarly, a palindromic duplication of length 2
at position 3 results in ρ2(x, 3) = (1111001220). Examples for tandem and

4 Andreas Lenz et al.

palindromic deletion errors of length 2 in x are τD2 (x, 0) = (110220) and
ρD2 (x, 4) = (111102).

Note that the deletion operations are only defined at positions p, where the
word x is of the form (uvvw), respectively (uvvRw) with |u| = p.

With these definitions, the sphere of a word x with radius t is the set of
all vectors that are reached by exactly t tandem or palindromic duplications,
respectively deletions, i.e.,

Sǫ
t (x) = {y|y = ǫ (...(ǫ(x, p1)...), pt)} , (1)

where ǫ is the error type and pi denote the position of the i-th duplication,
respectively deletion. Here,

– ǫ = τℓ for tandem duplication errors,
– ǫ = τDℓ for tandem deletion errors,
– ǫ = ρℓ for palindromic duplication errors,
– or ǫ = ρDℓ for palindromic deletion errors.

We further define the error ball

Bǫ
t (x) = {y|y = ǫ (...(ǫ(x, p1)...), pθ) , θ ≤ t} , (2)

as the set of all vectors that can be reached by at most t errors. Note that
interestingly the size of these sets depends on x, which is the key complication
when computing upper bounds on the code cardinality.

For a word x, let r(x) be the number of runs, ri(x) the length of the i-th
run, respectively r(i)(x) the number of runs of length i and r(≥i)(x) be the
number of runs of length at least i in x.

Example 2 (Runs) Consider the word x = (11110220), which has r(x) = 4
runs. The lengths of those runs are r1(x) = 4, r2(x) = 1, r3(x) = 2 and
r4(x) = 1. Therefore, there are r(1)(x) = 2 runs of length 1, r(2)(x) = 1 run
of length 2, r(3)(x) = 0 runs of length 3 and r(4)(x) = 1 run of length 4.

The ℓ1 norm of a vector x ∈ Nn
0 over the natural numbers is given by the sum

of its entries and is denoted by |x|1 =
∑n

i=1 xi.

Definition 1 A codebook C ⊂ Zn
q is called a t-tandem duplication (palin-

dromic duplication, tandem deletion, palindromic deletion) correcting code-
book, if Bǫ

t (c1) ∩Bǫ
t (c2) 6= ∅ implies c1 = c2 for all c1, c2 ∈ C.

In the following we will use the term single-error correcting for the case t = 1.

1.3.1 Tandem Duplication Preliminaries

The following definitions are based on the findings in [4] and show the con-
nection between tandem duplications and ℓ1-metric errors, which is helpful
for both, deriving upper bounds onto code cardinalities and finding code con-
structions that correct tandem duplications.

Duplication-Correcting Codes 5

Definition 2 (ℓ-step derivative) For x ∈ Zn
q we define the ℓ-step derivative

φℓ(x) = (ux,vx) with ux = (x1, x2, . . . , xℓ) and vx = (xℓ+1, xℓ+2, . . . , xn)−
(x1, x2, . . . , xn−ℓ).

Note that in the following we refer to vx as the second part of the ℓ−step
derivative of x, as introduced in Definition 2. It has been shown in [4] that a
tandem duplication of length ℓ in x corresponds to an insertion of ℓ consecutive
zeros in vx. This motivates the introduction of the ℓ-trunk and ℓ-zero-signature
representation for vx.

Definition 3 (ℓ-Trunk, ℓ-zero signature) Denote by 0m the m-fold repe-
tition of 0 and let v = (0m0 , w1, 0

m1 , w2, . . . , wp, 0
mp) with wi ∈ Zq \ {0} and

p = wtH(v) be the Hamming weight of v. We define the ℓ-trunk of v to be
µℓ(v) = (0〈m0〉ℓ , w1, 0

〈m1〉ℓ , w2, . . . , wp, 0
〈mp〉ℓ) as the word that is obtained by

shortening every zeros run of length m to be of length m mod ℓ. Further, the
ℓ-zero signature of v is defined as σℓ(v) =

(⌊

m0

ℓ

⌋

,
⌊

m1

ℓ

⌋

, . . . ,
⌊mp

ℓ

⌋)

.

By this definition, the ℓ-zero signature is a vector over the natural numbers N0

and counts the number of distinct ℓ consecutive 0’s in one run of consecutive
0’s in v. Note that v is uniquely determined by its ℓ-trunk µℓ(v) and ℓ-zero-
signature σℓ(v). It is easy to see that a tandem duplication in x corresponds to
increasing an entry of σℓ(vx) by 1 (a tandem deletion corresponds to decreasing
the entry by 1), but leaves the root (ux, µℓ(vx)) unchanged.

Example 3 Let x = (21010121) ∈ Z8
3 be a word of length 8. Its ℓ-step derivative

φ(x) = (ux,vx) for ℓ = 2 is given by φ2(x) = ((21), (100020)). Hence, the ℓ-
trunk is µ2(vx) = (1020). The ℓ-zero signature has length wtH(v) + 1 = 3
and is given by σ2(vx) = (010). The word x is now perturbed by a tandem
duplication of length 2, resulting in y = τ2(y, 0) = (2121010121). Computing
the ℓ-step derivative yields φ2(y) = (uy,vy) = ((21), (00100020)). The ℓ-trunk
computes to µ2(vy) = (1020) and the ℓ-zero signature of vy is σ2(vy) = (110).
As expected, the first entry of the ℓ-zero signature increased by 1.

The notation is summarized in the Table 1.

Notation Definition
τℓ(x, p) Tandem duplication of length ℓ at position p

τD
ℓ
(x, p) Tandem deletion of length ℓ at position p

ρℓ(x, p) Palindromic duplication of length ℓ at position p

ρD
ℓ
(x, p) Palindromic deletion of length ℓ at position p

Sǫ
t (x) Error sphere of t errors of type ǫ

Bǫ
t (x) Error ball of t errors of type ǫ

φℓ(x) ℓ-step derivative (φℓ(x) = (ux, vx))
µℓ(vx) ℓ-trunk
σℓ(vx) ℓ-zero signature

Table 1 Summary of notation

6 Andreas Lenz et al.

2 Relationship between Duplication and Deletion Codes

We start with revealing relationships between tandem duplication correcting
codes with tandem deletion correcting codes. Although the tandem deletion
error is an artificial model, it will help later to formulate tight bounds on codes
correcting tandem duplication errors.

2.1 Equivalence of Tandem Duplication and Deletion Codes

For conventional insertion and deletion correcting codes, it is known that a
code C is t-insertion correcting if and only if it is t-deletion correcting [9]. A
similar behavior can be shown for tandem duplications, which is formulated
in the following theorem.

Theorem 1 A code C ⊂ Zn
q is t-tandem duplication (length ℓ) correcting if

and only if it is t-tandem deletion (length ℓ) correcting.

Proof By Definition 1 it is sufficient to show that the tandem duplication error
balls for all x,y ∈ Zn

q intersect if and only if their tandem deletion error balls
intersect, i.e.

Bτℓ(x) ∩Bτℓ(y) 6= ∅ ⇐⇒ BτD
ℓ (x) ∩BτD

ℓ (y) 6= ∅ ∀x,y ∈ Zn
q ,

in order to prove Theorem 1. As illustrated in the previous section, a tandem
duplication does not change the ℓ-trunk of a word and increases one entry of
the ℓ-zero signature by 1. Similarly, a tandem deletion does not change the ℓ-
trunk of a word and decreases one entry of the ℓ-zero signature by 1. Therefore,
writing | • |1 as the ℓ1-norm, φℓ(x) = (ux,vx) and φℓ(y) = (uy,vy), it follows.

Bτℓ
t (x) ∩Bτℓ

t (y) 6= ∅

⇐⇒ (ux, µℓ(vx)) = (uy, µℓ(vy)) ∧ |σℓ(vx)− σℓ(vy|1 ≤ 2t

⇐⇒B
τD
ℓ

t (x) ∩B
τD
ℓ

t (y) 6= ∅.

⊓⊔

2.2 Relationship between Palindromic Duplication and Deletion codes

For palindromic duplication errors, an equivalence similar to Theorem 1 does
not hold. A counter example for ℓ = 2, t = 1 that shows that not every
palindromic deletion correcting code is palindromic duplication correcting is
presented here.

Example 4 Let C = {c1, c2} with c1 = (010101) and c2 = (010011). C is

single palindromic deletion correcting, since B
ρD
2

1 (c1) = {c1} and B
ρD
2

1 (c2) =

{c2, (0101)} and thusB
ρD
2

1 (c1)∩B
ρD
2

1 (c2) = ∅. On the other hand, C is not single
palindromic duplication correcting since Bρ2

1 (c1) ∩Bρ2

1 (c2) = {(01001101)}.

Duplication-Correcting Codes 7

The following example illustrates that also not every palindromic duplication
correcting code is palindromic deletion correcting.

Example 5 Consider the code C = {c1, c2} with c1 = (011010) and c2 =
(011110). C is single palindromic duplication correcting, since

Bρ2

1 (c1) = {c1, (01101010), (01111010), (01100110), (01101100), (01101001)},

Bρ2

1 (c2) = {c2, (01101110), (01111110), (01111001)},

and thus Bρ2

1 (c1)∩Bρ2

1 (c2) = ∅. However, C is not single palindromic deletion

correcting since B
ρD
2

1 (c1) ∩B
ρD
2

1 (c2) = {(0110)}.

3 Upper Bounds on the Code Cardinalities

One of the most basic problems in coding theory is finding the largest code
correcting a given type of error ǫ. In general, this problem can be stated as

Aǫ(n, t) = max
C⊆Zn

q

|C|, s.t. Bǫ
t (c1) ∩Bǫ

t (c2) = ∅, ∀ c1, c2 ∈ C,

where Aǫ(n, t) denotes the maximum cardinality of a code of length n that
corrects t errors of type ǫ. Due to the fact that the exact number Aǫ(n, t) is
often not known, one is interested in finding tight upper and lower bounds
onto this number. In the following, we derive non-asymptotic upper bounds
for tandem and palindromic duplication errors by using tools from hypergraph
theory similar to the approach from [2,5].

3.1 Upper Bound for General Error Types

Consider the hypergraph Hǫ
n,t =

(

Vǫ
n,t, E

ǫ
n,t

)

with vertices Vǫ
n,t and hyperedges

Eǫ
n,t,

Vǫ
n,t =

⋃

x∈Zn
q

Bǫ
t (x),

Eǫ
n,t = {Bǫ

t (x),x ∈ Zn
q },

that is associated with a channel of at worst t errors of type ǫ in words of
length n. The vertices Vǫ

n,t of the hypergraph Hǫ
n,t =

(

Vǫ
n,t, E

ǫ
n,t

)

consist of
all possible channel inputs and outputs, while the hyperedges Eǫ

n,t represent
possible channel outcomes for a selected channel input x ∈ Zn

q . The following
definitions of hypergraph transverals and matchings are naturally associated
with problems in coding theory and can be found in, e.g. [3].

Definition 4 (Hypergraph matching) A matching of a hypergraph H =
(V , E) is a set of disjoint hyperedges M ⊆ E , such that Ei ∩ Ej = ∅ for all
Ei, Ej ∈ M.

8 Andreas Lenz et al.

With this definition, a matching is described by a function M : E → {0, 1},
that satisfies

∑

E∈E:ν∈E

M(E) ≤ 1, ∀ν ∈ V ,

where M(E) = 1 indicates that a hyperedge E is included in the matching
and M(E) = 0 means that the hyperedge is not included in that matching M .

Definition 5 (Hypergraph transversal) A transversal of a hypergraph
H = (V , E) is a set of vertices T ⊆ V , such that for each hyperedge E ∈ E ,
there exists a ν ∈ E with ν ∈ T .

Similarly to the hypergraph matching, a transversal can therefore be described
by a function T : V → {0, 1}, with

∑

ν∈E

T (ν) ≥ 1, ∀E ∈ E , (3)

where T (ν) indicates, whether a vertex ν is included in the transversal. With
these definitions, finding the code with maximum cardinality is equivalent to
finding the largest matching M⋆. The solution to this problem is referred
to as the matching number and is denoted by ν(H) = |M⋆|. Consequently,
ν(Hǫ

n,t) = Aǫ(n, t). Simplifying the computationally intensive problem of find-
ing the exact matching number, it has been shown in [5] that the matching
number is upper bounded by any fractional transversal, which is a function
T ∗ : V → R+

0 , satisfying the transversal condition (3). Hence, we restate the
following Lemma from [2,5] which gives an upper bound on the maximum
code cardinality Aǫ(n, t).

Lemma 1 Let Hǫ
n,t = (Vǫ

n,t, E
ǫ
n,t) be a hypergraph that is associated with t

errors of type ǫ. The maximum code cardinality Aǫ(n, t) for a code of length n
correcting t errors of type ǫ is upper bounded by

Aǫ(n, t) ≤
∑

ν∈V
T ǫ(ν),

where T ǫ : Vǫ
n,t → R+

0 is a fractional transversal which satisfies

∑

ν∈Bǫ
t (x)

T ǫ(ν) ≥ 1, ∀x ∈ Zn
q ,

T ǫ(ν) ≥ 0, ∀ν ∈ V .

(4)

With Lemma 1 it is possible to formulate upper bounds on codes correcting
tandem duplication errors by using an appropriate fractional transversal. How-
ever, notice that the transversal sum in Lemma 1 is formulated over all words
ν ∈ V , where V contains words of length n, n+ ℓ, . . . , n+ tℓ for the duplication
errors. If, in contrary, bounds for deletion errors are derived, the vertices of
the hypergraph are words of length n, n− ℓ, . . . , n− tℓ. This indicates that a

Duplication-Correcting Codes 9

bound based on the deletion errors is smaller than for the corresponding dupli-
cation error. Indeed, this is observed also for classical deletions and insertions
where this method provides a better bound for deletions than for insertions.

As shown in Section 2 it holds that Aτℓ(n, t) = AτD
ℓ (n, t) and. Therefore, a

fractional transversal for the hypergraphs associated with tandem deletion er-
rors provides valid upper bounds onto the size of tandem duplication error
correcting codes.

In the following we show how to formulate fractional transversals that yield
upper bounds for tandem deletion duplication error correcting codes. The next
definition will be helpful for the upcoming steps.

Definition 6 (Irreducible words) For an error type ǫ ∈ {τℓ, ρℓ}, we define
the set of all t-irreducible words to be

IRRǫ
t = {ν ∈ Z∗

q : SǫD

t (ν) = ∅}.

Note that in contrast to substitution errors and conventional deletion errors,
it is possible that the error spheres for duplication deletion errors are empty.
Therefore, the fractional transversal that will serve for upper bounding the
sizes of our codes has to be formulated carefully and will be only non-zero for
vectors that are either irreducible or contained in the error sphere of a word
x ∈ Zn

q .

Lemma 2 For some fixed t and ℓ, the function T τD
ℓ : V

τD
ℓ

n,t → R+
0

T τD
ℓ (ν) =

0, if ν /∈ Zn−tℓ
q ∧ ν /∈ IRRτℓ

t

1, if ν ∈ IRRτℓ
t

∣

∣S
τD
ℓ

t (ν)
∣

∣

−1
, if ν ∈ Zn−tℓ

q ∧ ν /∈ IRRτℓ
t

.

is a fractional transversal for the hypergraph H
τD
ℓ

n,t = (V
τD
ℓ

n,t , E
τD
ℓ

n,t) associated
with t tandem deletion errors of length ℓ.

Proof To show that T τD
ℓ is a valid transversal, we need to proof that the frac-

tional transversal condition (4) is satisfied for all x ∈ Zn
q . Consider first the

case that B
τD
ℓ

t (x) ∩ IRRτℓ
t 6= ∅, which means that the error ball around x

contains an irreducible word. Then the transversal condition is directly ful-

filled, as T τD
ℓ (ν) = 1 for at least one element ν ∈ B

τD
ℓ

t (x). For the case

B
τD
ℓ

t (x) ∩ IRRτD

t = ∅, we will first show that

∣

∣S
τD
ℓ

t (ν)
∣

∣ ≤
∣

∣S
τD
ℓ

t (x)
∣

∣ (5)

for all ν ∈ B
τD
ℓ

t (x). This inequality is known as the monotonicity property [2]
and can be proven using the expression for the error sphere size, which will
be derived in Lemma 11. Since the length of the ℓ-zero signature of x and ν

10 Andreas Lenz et al.

is the same, i.e. |σℓ(vx)| = |σℓ(vν)|, and σℓ(vν) ≤ σℓ(vx), inequality in (5)
follows. Hence, the transversal sum satisfies

∑

ν∈SτD

t (x)

∣

∣S
τD
ℓ

t (ν)
∣

∣

−1
≥ |S

τD
ℓ

t (x)| min
ν∈S

τD
ℓ

t (x)

∣

∣S
τD
ℓ

t (ν)
∣

∣

−1
≥ 1.

Notice that
∣

∣S
τD
ℓ

t (ν)
∣

∣

−1
is well defined, as B

τD
ℓ

t (x) contains no irreducible
words in this case. ⊓⊔

A key ingredient for the proof of Lemma 2 is the monotonicity property (5)
of tandem deletion errors, which means that the deletion sphere sizes for all
words in a deletion sphere are smaller than the size of the parent sphere.
Computing the overall transversal sum with the functions as given in Lemma 2,
we obtain the following upper bound on the maximum cardinalities of tandem
duplication correcting codes.

Corollary 1 Denote by N
τD
ℓ

t (n, i) = |{x ∈ Zn
q : |S

τD
ℓ

t (x)| = i}|. Then the
maximum cardinality of any t-tandem duplication correcting code is upper
bounded by

Aτℓ(n, t) ≤
t

∑

i=0

|IRRτℓ
t ∩ Zn−iℓ

q |+
imax
∑

i=1

N
τD
ℓ

t (n− tℓ, i)

i
,

where imax is the maximum error sphere size for t tandem deletion errors.

Note that it has been shown in [4] that the number of irreducible words IRRτℓ
t

is connected to the number of run-length-limited words for tandem duplication
errors. Therefore, for large n, the second summand in Corollary 1 dominates
the upper bound.

3.2 Bound for Tandem Deletions

To find explicit expressions for the bound stated in Corollary 1, we have to
compute the number of words of length n with sphere size i for tandem and
palindromic deletion errors. In the following, we will find combinatorial ex-
pressions for these numbers that can then directly be used to obtain code size
upper bounds. Expressions for the sphere sizes of the discussed error types can
be found in Appendix A.

Lemma 3 The number of words of length n with tandem deletion sphere size
i is given by

N
τD
ℓ

1 (n, i) = |{x ∈ Zn
q : |S

τD
ℓ

1 (x)| = i}| =

=

⌊n
ℓ ⌋−1
∑

ν=i

n−(ν+1)ℓ
∑

ω=i−1

qℓA(n− (ν + 1)ℓ, ℓ− 1, ω)

(

ω + 1

i

)(

ν − 1

i− 1

)

,

where A(n′, ℓ′, ω) is the number of all words x ∈ Zn′

q that have zero-runs of
length at most ℓ′ and Hamming weight ω.

Duplication-Correcting Codes 11

Proof We consider the ℓ−step derivative φℓ(x) = (u,v). According to Corol-

lary 3, the size of the single tandem deletion sphere is given by |S
τD
ℓ

1 (x)| =
wtH(σℓ(v)) and we therefore want to find the number of words x ∈ Zn

q with
wtH(σℓ(v)) = i.

Let ν be the number of length ℓ tandem duplications in x, i.e. |σℓ(v)|1 = ν.
Further let J denote the support set of σℓ(v), i.e. J = {m : σ(v)m 6= 0}, with
|J | = i. The number of possibilities to distribute the duplications into σℓ(v)
for a given support J is equal to the number of solutions of

i
∑

j=1

yj = ν, yj ∈ N, ∀ 1 ≤ j ≤ i. (6)

This number is given by
(

ν−1
i−1

)

[5, Lemma 2.2]. Further, let ω be the Hamming
weight of the ℓ-trunk, i.e. wtH(µℓ(v)) = ω and thus |σℓ(v)| = ω + 1, which
corresponds to the number of unambiguous positions for tandem duplications
of length ℓ. The number of possible support sets J of σℓ(v) with |J | = i then
is

(

ω+1
i

)

. The vector µℓ(v) can be chosen to be any q-ary vector of length
n− (ν+1)ℓ that has zero-runs of length at most ℓ−1 and Hamming weight ω.
The number of such vectors is given by A(n−(ν+1)ℓ, ℓ−1, ω). Finally, the first
ℓ symbols u ∈ Zℓ

q can be chosen arbitrarily and thus have qℓ possibilities. ⊓⊔

It can be deduced from the results in [6] that for ω ≥ 2 the number of all q-ary
vectors of length n′, maximum zero-run length ℓ′ and weight ω is given by

A(n′, ℓ′, ω) = (q − 1)ω

n′ > ℓ′ :

ℓ′
∑

p=0

ω−1
∑

j=0

(−1)j
((

ω−1
j

)(

n′−p−1−j(ℓ′+1)
ω−1

)

−

(

n′−p−1−(j+1)(ℓ′+1)
ω−1

))

,

n′ ≤ ℓ′ :
(

n′

ω

)

,

.

For ω = 0 and ω = 1, it holds that A(n′, ℓ′, 0) = 1, if n′ ≤ ℓ′ and A(n′, ℓ′, 0) = 0
otherwise. Further, A(n′, ℓ′, 1) = (q − 1)max{0, 2(ℓ′ + 1)− n′}.

Plugging in the result from Lemma 3 into Corollary 1 directly gives an
upper bound on the cardinality of a code correcting a single tandem duplication
error of size ℓ. Note that the number of irreducible words of length n can be

obtained by |IRRτℓ
t ∩ Zn

q | = N
τD
ℓ

1 (n, 0).

4 Code Constructions

In this section, we propose code constructions that can correct a single tandem
duplication, respectively a single palindromic duplication.

12 Andreas Lenz et al.

4.1 Code Correcting a Single Tandem Duplication

For the following construction, which is able to correct a single tandem du-
plication of length ℓ, we use the general construction presented in [4] with an
explicit code which can correct a single error in the ℓ1 metric. Varshamov-
Tenegolts (VT) codes [13] are single asymmetric error correcting codes that
can also be applied to single ℓ1-metric errors. According to the original defi-
nition, we construct a set of vectors over the natural numbers, which satisfies
the VT constraint.

Definition 7 For some 0 ≤ a ≤ n, the set of vectors satisfying the VT con-
straint is defined as

VT a(n) =

{

x ∈ Nn
0 :

〈

n
∑

i=1

xi

〉

n+1

= a

}

.

Construction 1 For some a ∈ Nn−ℓ+1, 1 ≤ ai ≤ i,

C1(n) = {x ∈ Zn
q : σℓ(v) ∈ VT aω+1

(ω + 1)},

where φℓ(x) = (u,v) is the ℓ-step derivative of x and ω = wtH(v) is the length
of the ℓ-zero signature.

It can be directly deduced from the results in [4] that Construction 1 is single
tandem duplication correcting. The minimum size of this construction can
directly be obtained and is given in the following Lemma.

Lemma 4 There exist integers a ∈ Nn−ℓ+1, 1 ≤ ai ≤ i, such that the cardi-
nality of Construction 1 satisfies

|C1(n)| ≥ qℓ
⌊n

ℓ ⌋−1
∑

ν=0

n−(ν+1)ℓ
∑

ω=0

A(n− (ν + 1)ℓ, ℓ− 1, ω)

(

ω+ν
ν

)

ω + 2
.

Proof Let ν be the number of length ℓ tandem duplications in x, i.e. |σℓ(v)|1 =
ν. Further, let ω be the Hamming weight of the ℓ-trunk (for its definition, see
Section 1.3.1), i.e. wtH(µℓ(v)) = ω and thus the length of the ℓ-zero signature
is given by |σℓ(v)| = ω+1. The total number of such possible ℓ-zero signatures
is
(

ω+ν
ν

)

. Due to the pigeonhole principle, we can always find an integer aω+1 ≤
ω+1, such that the number of ℓ-zero signatures satisfying the VT-constraint is

at least
(ω+ν

ν)
ω+2 . Counting the q-ary vectors of length n−(ν+1)ℓ that have zero-

runs of length at most ℓ−1 and Hamming weight ω with A(n−(ν+1)ℓ, ℓ−1, ω)
yields the lemma. ⊓⊔

Duplication-Correcting Codes 13

4.2 Construction Correcting a Palindromic Duplication for ℓ = 2

For the case of a binary alphabet q = 2, we propose a construction that is
able to correct a single palindromic duplication of length ℓ = 2. We start with
some definitions that will help for defining the code construction.

Definition 8 (1-run-length profile) The set of all binary words of length
n, whose number of runs of length 1 is congruent to a mod 5, is defined by

Da(n) =
{

x ∈ Zn
2 |
〈

r(1)(x)
〉

5
= a

}

,

where r(1)(x) is the number of runs with length 1.

Definition 9 (Run-length profile constraint) We define the set of binary
words with run-length profile constraint b

Eb(n) =
{

x ∈ Zn
2 | 〈C(x)〉2n+1 = b

}

,

with the checksum for the run lengths

C(x) =

r(x)
∑

i=1

iri(x).

In general, it is possible to formulate the above definitions for words over
arbitrary finite alphabets, however, in this section we are only interested in
finding a construction for binary words. With these definitions, it is possible to
state the following construction, which we will show that is a single palindromic
duplication (length 2) correction correcting code.

Construction 2 For a ∈ {0, 1, 2, 3, 4} and b ∈ {0, 1, . . . , 2n}, we construct
the following binary code of length n

C2(n) = Da(n) ∩ Eb(n).

Theorem 2 The code C2(n) is single palindromic duplication (length 2) cor-
recting for any a ∈ {0, 1, 2, 3, 4} and b ∈ {0, 1, . . . , 2n}.

Proof Let us consider all possible constellations for palindromic duplications of
length 2. There are five basic patterns that have to be taken into account and
they are displayed in Table 2 with their corresponding erroneous outcomes. In
Table 2, a ∈ Z2 and b ∈ Z2 denote two distinct symbols with a 6= b, j ∈ N
denotes the run in which the duplication occurred and rj , rj+1, rj+2, rj+3 the
lengths of the j-th, (j + 1)st, (j + 2)nd, respectively (j + 3)rd run. Note that
the cases 1.b, 2.b, and 4.b refer to the case when the palindromic duplication
occurred one symbol before the ending of word. It can be observed that for
each case, the number of length-1 runs is changed by a distinct value. In case
1, the number of length 1 runs is not changed, in case 2, it decreases by 1,
in case 3, it decreases by 2, in case 4 it increases by 2 and in the last case it
increases by 1. This enables to distinguish between these cases, if we choose

14 Andreas Lenz et al.

Case Original Sequence RL Profile Perturbed Sequence RL Profile
1.a aa (rj) aaaa (rj + 2)
1.b ab (rj , 1) abba (rj , 2, 1)
2.a abaa (rj , 1, rj+2) abbaaa (rj , 2, rj+2 + 1)
2.b aba (rj , 1, 1) abbaa (rj , 2, 2)
3 abab (rj , 1, 1, rj+3) abbaab (rj , 2, 2, rj+3)
4.a abba (rj , 2, rj+2) abbaba (rj , 2, 1, 1, rj+2)
4.b abb (rj , 2) abbab (rj , 2, 1, 1)
5 abbb (rj , rj+1) abbabb (rj , 2, 1, rj+1 − 1)

Table 2 Duplication constellations for ℓ = 2

codewords from the set of words that satisfy the run-profile constraint Da(n).
Assume, the word y is received. The decoder then computes

〈

a− r(1)(y)
〉

5
,

which allows to identify one of the above five cases.
We will now show that, given an erroneous channel output y ∈ Zn+2

2 , for each
of the above cases, we can unambiguously determine the run j ∈ {1, 2, . . . , r(x)}
in which the palindromic duplication occurred by computing the checksum dif-
ference C̃ = 〈C(y)− b〉2n+1. Table 3 shows the increases of the checksum for

Case C̃ Range of j Range of r(y)
1.a 2j 1 ≤ j ≤ r(y) 1 ≤ r(y) ≤ n− 1
1.b 2r(y)− 1 – 3 ≤ r(y) ≤ n+ 1
2.a 2j + 3 1 ≤ j ≤ r(y)− 2 3 ≤ r(y) ≤ n− 1
2.b 2r(y)− 1 – 3 ≤ r(y) ≤ n

3 2j + 3 1 ≤ j ≤ r(y)− 3 4 ≤ r(y) ≤ n

4.a 2j + 5 + 2
∑r(y)

k=j+4 rk(y) 1 ≤ j ≤ r(y)− 4 5 ≤ r(y) ≤ n+ 1

4.b 2r(y)− 1 – 4 ≤ r(y) ≤ n+ 1

5 2j + 3 + 2
∑r(y)

k=j+3 rk(y) 1 ≤ j ≤ r(y)− 3 4 ≤ r(y) ≤ n

Table 3 Checksum differences for all cases

the five different cases. To begin with, we show that the cases 1.a and 1.b,
respectively 2.a and 2.b or 4.a and 4.b can be distinguished using C̃. Case 1.a
and 1.b can be distinguished since 1.a yields even and 1.b yields odd integers
or 0 for C̃. Cases 2.a and 2.b have the same checksum only for j = r(y)− 2,
which in both cases means, that the duplication was in the run r(y)−2. Cases
4.a and 4.b only give the same checksum 2r(y)− 1, if there is an alternating
sequence after the palindromic duplication in case 4.a, which corresponds to
case 4.b.
Having available the exact case, the run j, in which the palindromic duplica-
tion occurred, is then obtained by finding the index j, which gives the observed
checksum deficiency. In cases 4 and 5 there might be several adjacent j, which
satisfy the equation. As this might only occur for sequences, which are alter-
nating before the palindromic duplication, we can identify the position of the
palindromic duplication by identifying the run j, which satisfies the checksum
difference C̃ and ends in a palindromic duplication. ⊓⊔

We illustrate the decoding process with the following example.

Duplication-Correcting Codes 15

Example 6 (Correcting a palindromic duplication) Consider the sequence x =
(01011001) ∈ C4,13(8), which is transmitted over a channel and results in
the received word y = (0101101001), where the underlined part is the part,
which is palindromic duplicated. We have r(x) = (1, 1, 1, 2, 2, 1) and C(x) =
1+2+3+2 ·4+2 ·5+6 = 30 = 13 mod 17. Thus, x ∈ D4(8)∩E13(8). For the
received word y, we have r(y) = (1, 1, 1, 2, 1, 1, 2, 1), r(1)(y) = 6 = 1 mod 5
and C(y) = 1+2+3+2 ·4+5+6+2 ·7+8 = 47 = 13 mod 17. This means the
number of run of length 1 increased by 〈1− 4〉5 = 2, which means we are in case

4. Let us now find those values j, for which 2j + 5+ 2
∑r(y)

k=j+4 rk(y)
!
= C̃ = 0

mod 17. A quick calculation yields two candidates j = 2 and j = 3, from
which only j = 3 is possible, since this is the only run, which ends in a
palindrome. Deleting the palindrome which starts at the third run gives the
correct transmit word x.

Corollary 2 There exist a ∈ {0, 1, 2, 3, 4} and b ∈ {0, 1, . . . , 2n} such that

|C2(n)| ≥
2n

5(2n+ 1)
.

Proof With the pigeonhole principle, we can find a ∈ {0, 1, 2, 3, 4} and b ∈
{0, 1, . . . , 2n} that yield a code size of at least 2n

5(2n+1) . ⊓⊔

The redundancy of Construction 2 is at most log2(n) + log2(10) while the
best known burst insertion (length 2) correcting code [12] has redundancy
at most log2(n) + log2(log2(n)) + 1. The redundancy scaling of the proposed
construction is therefore lower by the term log2(log2(n)).

4.3 Construction with Palindrome-Free Strings

In contrast to the previous sections, where we discussed duplications of a fixed
length ℓ, we are now considering single palindromic duplications of arbitrary
lengths 2 ≤ ℓ ≤ n. Note that the case ℓ = 1 is excluded here, since in this case,
a palindromic duplication is a single duplication error, which has been studied
in, e.g. [1,8]. Due to the fact that received words can have length n up to
2n, a sphere packing approach will not yield good lower bounds for this error
model. In the following, we propose a code, which corrects a single palindromic
duplication of any length 2 up to n by using palindrome free words.

Definition 10 A word x ∈ Zn
q is called ℓ-palindrome free, if S

ρD
ℓ

1 (x) = ∅.

Example 7 The word x = (012122) is 2-palindrome free, while the word y =
(012212) is not 2-palindrome free, as it contains (1221), which is a palindrome
of length 2.

Due to the combinatorial structure of palindromes, it is intuitive, that any
word that is ℓ-palindrome free, also does not contain any palindrome of length
at least ℓ. This is shown in them following lemma.

16 Andreas Lenz et al.

Lemma 5 For x ∈ Zn
q and ℓ2 ≥ ℓ1, we have

S
ρD
ℓ1

1 (x) = ∅ =⇒ S
ρD
ℓ2

1 (x) = ∅.

Proof By the definition of a ℓ1-palindrome-free word, we see that S
ρD
ℓ1

1 (x) =
∅ ⇐⇒ ∄ 1 ≤ i ≤ n−2ℓ1 : xi−j+ℓ1 = xi+j+1+ℓ1 ∀ j ∈ {0, 1, . . . ℓ1−1}. Since ℓ2 ≥
ℓ1, it follows that ∄ 1 ≤ i ≤ n−2ℓ2 : xi−j+ℓ2 = xi+j+1+ℓ2 ∀ j ∈ {0, 1, . . . ℓ2−1}.

⊓⊔

Now for our construction, we consider words, that do not contain any palin-

drome of length 2, i.e. SρD
2 (x) = ∅. For these words, the following lemma

holds.

Lemma 6 Let x,y ∈ Zn
q be two 2-palindrome free words, i.e. S

ρD
2

1 (x) =

S
ρD
2

1 (y) = ∅. Then
Sρℓ

1 (x) ∩ Sρℓ

1 (y) = ∅,

for all ℓ ≥ 2.

Proof Consider the system of equations ρℓ(x, i) = ρℓ(y, i+ j) in Appendix C.
Plugging in, (13a) into (13b), we yield yi+ℓ−m = yi+ℓ+1+m for m ∈ {0, . . . , j−
1}, which corresponds to a palindrome of length j. Since neither x nor y can
have a palindrome of length greater than 2, it follows that ρℓ(x, i) = ρℓ(y, i+j)
cannot hold for any i and j < ℓ. The same can be shown for j ≥ ℓ, since in
this case (14a) and (14b) imply a palindrome of length ℓ in either x or y. ⊓⊔

We therefore construct the following code, which can correct a single palin-
dromic duplication of length 2 up to n.

Construction 3 We construct the code CPF(n), consisting of all 2-palindrome
free words as

CPF(n) = {x ∈ Zn
q : S

ρD
2

1 (x) = ∅}.

With Lemma 6, the code CPF can correct a single palindromic duplication
of length 2 to n. In the following, we investigate the cardinality and rate of
Construction 3 and their asymptotic behavior.

Lemma 7 The cardinality of Construction 3 is

|CPF(n)| =
3

∑

i=1

ci(q)λ
n−3
i (q),

where

ci(q) = q(q − 1)
(q2 + q)λ2

i (q) + (q2 − 1)λi(q) + q2

(q − 1)λ2
i (q) + (2q − 4)λi(q) + 3q − 3

,

and λi(q) are the solutions to the polynomial equation

−λ3 + (q − 1)λ2 + (q − 2)λ+ (q − 1) = 0.

Duplication-Correcting Codes 17

Proof By the definition of the code CPF, the cardinality |CPF| is given by the
number of words x ∈ Zn

q that do not contain a palindrome of length 2. We
present a recursive approach on how to compute this number. Let

µ(n) =
(

Maaa(n) Maab(n) Maba(n) Mabb(n) Mabc(n)
)

∈ N5

be a vector over the natural numbers, whose entries are defined as

Maaa(n) = |{x ∈ Zn
q : S

ρD
2

1 (x) = ∅ ∧ xn−2 = xn−1 = xn}|,

Maab(n) = |{x ∈ Zn
q : S

ρD
2

1 (x) = ∅ ∧ xn−2 = xn−1 6= xn}|,

Maba(n) = |{x ∈ Zn
q : S

ρD
2

1 (x) = ∅ ∧ xn−2 = xn 6= xn−1}|,

Mabb(n) = |{x ∈ Zn
q : S

ρD
2

1 (x) = ∅ ∧ xn−2 6= xn−1 = xn}|,

Mabc(n) = |{x ∈ Zn
q : S

ρD
2

1 (x) = ∅ ∧ xn−2 6= xn−1, xn−1 6= xn, xn−2 6= xn}|.

With this definition, the elements of µ(n) count the number of 2-palindrome
free words, which end with a specific pattern that is indicated by subscripts.
A recursive relation µ(n+ 1) = Aµ(n) can be found by counting the number
of words of length n + 1 with a specific ending pattern that are obtained by
adding a symbol to a word of length n with another ending pattern, such that
the resulting word of length n + 1 is still 2-palindrome free. This recursive
relation is illustrated at the exemplary case of Maab(n + 1) in the following
and can be deduced for the other cases in a similar fashion. Words of length
n+ 1 that end on a pattern aab, where a, b ∈ Zq and a 6= b can be created by
adding a symbol b to a word that ends on a pattern aa, i.e. xn−1 = xn. Since
the resulting word is not allowed to contain a palindrome of length 2, we can
either

– append b 6= a to the pattern aaa
– or append c with c 6= a and c 6= b to the pattern abb.

For the first case, there are q − 1 possibilities to choose b and for the second
case, there are q − 2 possibilities to choose c. Therefore, we obtain

Maab(n+ 1) = (q − 1)Maaa(n) + (q − 2)Mabb(n).

Repeating the same steps for the other patterns, we yield the linear recursion
µ(n+ 1) = Aµ(n), where A ∈ N5×5

0 is given by

A =

0 q − 1 0 0 0
0 0 1 1 q − 2
0 0 1 1 q − 2
1 q − 2 0 0 0
0 0 1 1 q − 2

.

The starting conditions for the recursion areMaaa(3) = q,Maab(3) = Maba(3) =
Mabb(3) = q(q− 1) and Mabc(3) = q(q− 1)(q− 2), since words of length 3 can-
not contain any palindrome of length 2. Solving the recursion with standard
techniques yields the lemma. ⊓⊔

18 Andreas Lenz et al.

Lemma 8 The rate RPF =
logq(|CPF(n)|)

n
of Construction 3 tends to RPF →

logq(λ(q)), where

λ(q) =
q − 1

3
+

3

√

A+
√

A2 − B3 +
3

√

A−
√

A2 −B3,

A =
q − 1

2
+

(q − 1)(q − 2)

6
+

(q − 1)3

27
, (7)

B =
q − 2

3
+

(q − 1)2

9
,

as n → ∞.

Proof From Lemma 7, we know that |CPF(n)| =
∑3

i=1 ci(q)λ
n−3
i (q), where

λi(q) are the solutions to −λ3 + (q − 1)λ2 + (q − 2)λ+ q − 1 = 0. For large n,
the cardinality of CPF(n) is therefore dominated by the largest root λ(q) and
thus

logq (|CPF(n)|)

logq (λ
n(q))

→ 1,

as n → ∞. Hence, we can say that asymptotically RPF → logq(λ(q)) as n →
∞. λ(q) is given explicitly by (7). ⊓⊔

On the other hand, the following property of the code rate RPF can be shown
for large alphabet sizes q.

Lemma 9 For every code length n, the rate of Construction 3 satisfies the
asymptotic property lim

q→∞
RPF = 1.

Proof In Lemma 7, we have seen that |CPF(n)| =
∑3

i=1 ci(q)λ
n−3
i (q). Analyz-

ing (7) and with the expressions for c(q) for the coefficient corresponding to
the largest root λ(q) we yield

lim
q→∞

λ(q)

q
= 1,

lim
q→∞

c(q)

q3
= 1.

By standard methods, it can further be shown that the other two roots con-

verge to a constant lim
q→∞

λi(q) = − 1
2 ±

√
3
2 j. Hence,

lim
q→∞

|CPF(n)|

qn
= lim

q→∞

3
∑

i=1

ci(q)

q3
λn−3
i (q)

qn−3
= 1.

⊓⊔

Duplication-Correcting Codes 19

q

n
2 4 8 16 32 64 128 256 ∞

2 1 0.896 0.792 0.639 0.595 0.573 0.562 0.557 0.552
3 1 0.973 0.932 0.911 0.901 0.895 0.893 0.892 0.892
4 1 0.988 0.971 0.962 0.957 0.955 0.954 0.954 0.953
5 1 0.994 0.984 0.979 0.977 0.976 0.975 0.975 0.975
∞ 1 1 1 1 1 1 1 1 1

Table 4 Rates of CPF for different code lengths n and alphabet sizes q

Table 4 summarizes rates of CPF for different code lengths n and alphabet
sizes q. By Lemma 8 the last column of Table 4 are the values logq(λ(q)) and
by Lemma 9 the last row of Table 4 is equal ot 1. It is observed that already
for moderate q, the rate of this construction is close to 1. However, for large
n, the rate converges to logq(λ(q)) < 1. Also note that for n ≤ 3, RPF = 1 for
any q, since words of length at most 3 are automatically 2-palindrome free.

Decoding a received word y ∈ Zn+ℓ
q can be done by first identifying the

length of the duplication ℓ from the length of the received word. Then, the
transmitted word can be found by deleting palindromic duplication at every
possible position in y and deciding for the result, which gave a 2-palindrome
free word.

4.4 Comparison with Burst Insertion Correcting Codes

Figure 1 shows the lower bounds (LB) on the redundancy for binary codes
and different duplication lengths ℓ. We compare our results with maximum
redundancies of single burst insertion correcting codes from [12]. To the best of
our knowledge, these constructions have the largest codebooks that can correct
a single burst insertion of length ℓ. The figure also includes the redundancies
from the single tandem and palindromic duplication correcting construction,
presented in Section 4.1 (C1(n)), denoted by VT Tan. and 4.2 (C2(n)), denoted
by Pal.. Interestingly, there is a significant gap between the redundancies of
existing burst insertion constructions and the derived lower bounds on the
redundancy.

5 Conclusion & Outlook

In this paper we have derived upper bounds on the cardinalities of codes cor-
recting tandem or palindromic duplication errors of a given length ℓ. We have
derived constructions that correct a single tandem or palindromic duplication
and seen that these construction yield lower redundancies than codes that cor-
rect an arbitrary burst of insertions. However, there remain several interesting
aspects in this field, as

– Asymptotic behavior of code size upper bounds

20 Andreas Lenz et al.

20 30 40 50 60 70

0

5

10

15

n

R
ed

u
n
d
a
n
cy

[b
it
s]

LB Tan. ℓ = 1

LB Tan. ℓ = 2

LB Tan. ℓ = 4

Pal., ℓ = 2

Burst ℓ = 1

Burst ℓ = 2

Burst ℓ = 4

VT Tan. ℓ = 1

VT Tan. ℓ = 2

VT Tan. ℓ = 4

Fig. 1 Tandem/palindromic duplication bounds vs. burst insertion redundancies

– Code size upper bounds for multiple palindromic duplications
– Code constructions correcting multiple tandem or palindromic duplications
– Code constructions correcting a combination of duplication errors and

other error types, such as substitution errors or insertion and deletion er-
rors,

and many more.

A Sphere Sizes for Tandem and Palindromic Duplications and
Deletions

In the following we derive the size of the spheres Sǫ
t (x), as defined in (1), for tandem and

palindromic duplication and deletion errors. For the subsequent two lemmas we denote the
ℓ-step derivative by φℓ(x) = (ux, vx), according to the definition from Section 2.1.

Lemma 10 The sphere size for tandem duplications of length ℓ is given as

|S
τℓ
t (x)| =

(wtH(vx) + t

t

)

,

where φℓ(x) = (ux, vx) is the ℓ-step derivative of x.

Proof Recall that a tandem duplication error corresponds to increasing one entry of the ℓ-
zero signature σℓ(vx) by one. Then, the duplication sphere size equals the number of vectors

y ∈ N
|σℓ(vx)|
0 with y ≥ σℓ(vx) and |y|1 = |σℓ(vx)|1 + t. The number of such vectors is given

by
(|σℓ(vx)|+t−1

t

)

=
(

wtH(vx)+t
t

)

⊓⊔

Lemma 11 The sphere size for tandem deletions of length ℓ is given as

|S
τD
ℓ

t (x)| = |{s ∈ N
|σℓ(vx)|
0 : s ≤ σℓ(v) ∧ |s|1 = |σℓ(v)|1 − t}|

= |{s ∈ N
|σℓ(vx)|
0 : s ≤ σℓ(v) ∧ |s|1 = t}|,

where φℓ(x) = (ux, vx) is the ℓ-step derivative of x.

Duplication-Correcting Codes 21

Proof A tandem deletion corresponds to decreasing one entry of the ℓ-zero signature σℓ(vx)
by one. It is only possible to delete a tandem duplication at positions, where the ℓ-zero
signature has positive entries. ⊓⊔

Note that by this Lemma, S
τD
ℓ

t (x) = ∅, if |σℓ(v)|1 < t.

Corollary 3 The sphere size for single tandem deletions of length ℓ is

|S
τD
ℓ

1 (x)| = wtH(σℓ(v)),

where φℓ(x) = (u, v) is the ℓ-step derivative of x.

We continue with deriving the palindromic duplication sphere size for the cases ℓ = 1 and
ℓ = 2. For ℓ = 1, a palindromic duplication is a single duplication. Therefore, the sphere
size is

|Sρ1
1 (x)| = r(x),

as duplications in the same run yield the same outcome.

Lemma 12 The size of the palindromic duplication sphere |Sρ2
1 (x)| for palindromic dupli-

cations of length 2 is

|Sρ2
1 (x)| = n− 1−

n
∑

i=3

(i− 2)r(i)(x) = 2r(x)− r(1)(x)− 1.

Proof We start with the observation that there are n−1 possible positions i ∈ {0, 1, ..., n−2}
for palindromic duplications. Now, for ℓ = 2, the conditions ρℓ(x, i) = ρℓ(x, i + j) (10a) -
(10c) and (11a) - (11c) become x1 = x2 = · · · = x2+j ∀ j > 0. We therefore deduce that
two palindromic duplications in x of length 2 only result in the same vector y = ρℓ(x, i) =
ρℓ(x, i + j) iff they appear in the same run in x. Further, two palindromic duplications
at two different positions i and i + j, j > 0 can only duplicate symbols from the same
run, if this run has length at least 3. Thus, every additional symbol to runs of length at
least 2 does not increase the duplication sphere size and has to be subtracted from the
palindromic duplication sphere size. Using

∑n
i=1 ir

(i)(x) = n and
∑n

i=1 r
(i)(x) = r(x)

yields the statement. ⊓⊔

For ℓ ≥ 3 and j ≥ 2, (10a) - (10c) and (11a) - (11c) do not imply x1 = x2 = · · · = xℓ+j .
For example, consider ℓ = 3 and the word x = (010010). Then, ρ3(x, 0) = ρ3(x, 3) =
(010010010). However, it is possible to find an upper bound on the size of the palindromic
duplication sphere. For j = 1, (10a) - (10c) become x1 = x2 = · · · = xℓ+1. Therefore two
neighboring palindromic duplications can only result in the same word if they appear in one
run.

Lemma 13 The size of the palindromic duplication sphere S
ρℓ
1 (x) is upper bounded by

|S
ρℓ
1 (x)| ≤ n− ℓ+ 1−

n
∑

i=ℓ+1

(i− ℓ)r(i)(x).

Proof There are n− ℓ+ 1 possible positions for palindromic duplications of length ℓ. Now,
as seen before, duplications in the same run result in the same descendant. We therefore
subtract the additional i − ℓ entries of runs with length at least ℓ + 1 from the number of
possible positions for duplications to obtain an upper bound on the duplication sphere. ⊓⊔

Similar to the previous discussion, we start with deriving the size of the palindromic deletions
spheres for ℓ = 1 and ℓ = 2. For ℓ = 1, a palindromic deletion is a de-duplication of one
symbol. Therefore, the size of the error sphere becomes

|S
ρD1
1 (x)| = r(≥2)(x), (8)

where r(≥2)(x) is the number of runs of length at least 2. Further, we derive the following
lemma for binary words.

22 Andreas Lenz et al.

Lemma 14 The size of the palindromic deletion sphere |S
ρD2
1 (x)| for q = 2 is

|S
ρD2
1 (x)| = r

(2)
I (x) + r(≥4)(x),

where r
(2)
I (x) is the number of runs of length 2, that are located at the interior of x, i.e.,

between x2 and xn−1 and, r(≥4)(x) denotes the number of runs of length at least 4 in x.

Proof There are 4 possible patterns (0000), (1111), (0110), (1001), at which palindromic
deletions of length 2 can occur. Recall that, as we have seen in the proof of Lemma 12, two
palindromic deletions of length 2 at two distinct positions in a word x can only results in the
same outcome, if they appear in the same run. Every run of length at least 4 contains one
of the patterns (0000), (1111) and therefore will contribute one element to the palindromic
deletion sphere. The patterns (0110), (1001) contain a run of length exactly 2, that is located
in the interior of x, such that there is at least one symbol to the left and right of the run.
Thus, every run of length 2, that is located in the interior of x also contributes one unique
element in the palindromic deletion sphere. Therefore, the total size of the deletion sphere

is r
(2)
I (x) + r(≥4)(x). ⊓⊔

Let us define the matrix Aρℓ(x) ∈ Zℓ×n−2ℓ+1
q to be

Aρℓ(x) =

x2ℓ − x1 x2ℓ+1 − x2 . . . xn − xn−2ℓ+1

x2ℓ−1 − x2 x2ℓ − x3 . . . xn−1 − xn−2ℓ+2

.

..
.
..

. . .
.
..

xℓ+1 − xℓ xℓ+2 − xℓ+1 . . . xn−ℓ+1 − xn−ℓ

. (9)

With this definition it is directly possible to establish the following upper bound on the size
of the palindromic deletion spheres for arbitrary deletion length ℓ.

Lemma 15 The palindromic deletion sphere |S
ρDℓ
1 (x)| is upper bounded by

|S
ρDℓ
1 (x)| ≤ r(0) (Aρℓ(x)) ,

where r(0) (Aρℓ(x)) is the number of runs of all zero columns in (Aρℓ(x)).

Proof A palindrome of length ℓ in the word x corresponds to a zero column in the matrix
Aρℓ(x). Therefore palindromic deletions are only possible at positions i, where Aρℓ(x) has
a zero-column. Further, it can be shown that two neighboring zero columns are only possible
if xi+1 = xi+2 = · · · = xi+2ℓ+1, i.e. for a run of length 2ℓ + 1. However, two palindromic
deletions inside the same run result in the same words. Therefore, every run of all zero

columns in (Aρℓ(x)) contributes one unique element to S
ρDℓ
1 (x). ⊓⊔

Example 8 Consider the word x = (21011012210) ∈ Z11
3 . The palindromic deletion sphere

for deletions of length 3 is given by S
ρD3
1 (x) = {(21012210), (21011012)}. The matrix Aρ3(x)

is given by

Aρ3(x) =

1 0 2 1 0 0
0 0 0 1 2 0
1 0 2 1 1 0

 .

Applying Lemma 15, yields |S
ρDℓ
1 (x)| ≤ 2.

Duplication-Correcting Codes 23

B Equivalence of Palindromic Duplications Errors in One Word

In this section we derive conditions that two palindromic duplications, respectively deletions
at two different positions i and i+j with j > 0 result in the same word ρℓ(x, i) = ρℓ(x, i+j),
respectively ρD

ℓ
(x, i) = ρD

ℓ
(x, i + j) for palindromic deletions. For j < ℓ the condition

ρℓ(x, i) = ρℓ(x, i + j) can be expressed as (the left hand side of the equations corresponds
to ρℓ(x, i+ j) and the right hand side to ρℓ(x, i))

xi+ℓ+1+m = xi+ℓ−m, m ∈ {0, . . . , j − 1}, (10a)

xi+ℓ+2j−m = xi+ℓ−m, m ∈ {j, . . . , ℓ− 1}, (10b)

xi+ℓ+2j−m = xi+1+m, m ∈ {ℓ, . . . , ℓ+ j − 1}. (10c)

For j ≥ ℓ these conditions are

xi+ℓ+1+m = xi+ℓ−m, m ∈ {0, . . . , ℓ− 1}, (11a)

xi+ℓ+1+m = xi+1+m, m ∈ {ℓ, . . . , j − 1}, (11b)

xi+ℓ+2j−m = xi+1+m, m ∈ {j, . . . , ℓ+ j − 1}. (11c)

The conditions ρD
ℓ
(x, i) = ρD

ℓ
(x, i+ j) for j > 0 are

xi+ℓ+1+m = xi+ℓ−m, m ∈ {0, . . . , ℓ− 1}, (12a)

xi+ℓ+j+1+m = xi+ℓ+j−m, m ∈ {0, . . . , ℓ− 1}, (12b)

xi+2ℓ+1+m = xi+ℓ+1+m, m ∈ {0, . . . , j − 1}. (12c)

C Equivalence of Palindromic Duplications in Two Words

In this section we derive conditions that two palindromic duplications at two different po-
sitions i and i+ j with j > 0 result in the same word ρℓ(x, i) = ρℓ(y, i + j). For j < ℓ the
condition ρℓ(x, i) = ρℓ(y, i+ j) can be expressed as

xm = ym, m ∈ {1, . . . , i+ ℓ} ∪ {i+ j + ℓ+ 1, . . . , n}, (13a)

xi+ℓ−m = yi+ℓ+1+m, m ∈ {0, . . . , j − 1}, (13b)

xi+1+m = yi+2j+1+m, m ∈ {0, . . . , ℓ− j − 1}, (13c)

xi+ℓ+1+m = yi+2j−m, m ∈ {0, . . . , j − 1}. (13d)

For j ≥ ℓ these conditions are

xm = ym, m ∈ {1, . . . , i+ ℓ} ∪ {i+ j + ℓ+ 1, . . . , n}, (14a)

xi+ℓ−m = yi+ℓ+1+m, m ∈ {0, . . . , ℓ− 1}, (14b)

xi+ℓ+1+m = yi+2ℓ+1+m, m ∈ {0, . . . , j − ℓ− 1}, (14c)

xi+j+1+m = yi+j+ℓ−m, m ∈ {0, . . . , ℓ− 1}. (14d)

The conditions ρD
ℓ
(x, i) = ρD

ℓ
(y, i+ j) for j > 0 are

xm = ym, m ∈ {1, . . . , i+ ℓ} ∪ {i+ j + 2ℓ+ 1, . . . , n}, (15a)

xi+ℓ−m = xi+ℓ+1+m, m ∈ {0, . . . , ℓ− 1}, (15b)

yi+j+ℓ−m = yi+j+ℓ+1+m, m ∈ {0, . . . , ℓ− 1}, (15c)

xi+2ℓ+1+m = yi+ℓ+1+m, m ∈ {0, . . . , j − 1}. (15d)

References

1. Dolecek, L., Anantharam, V.: Repetition error correcting sets: Explicit constructions
and prefixing methods. SIAM J. Discrete Mathematics 23(4), 2120–2146 (2010)

24 Andreas Lenz et al.

2. Fazeli, A., Vardy, A., Yaakobi, E.: Generalized sphere packing bound. IEEE Trans. Inf.
Theory 61(5), 2313–2334 (2015)

3. Hansen, P.: Studies on graphs and discrete programming 11 (1981)
4. Jain, S., Farnoud, F., Schwartz, M., Bruck, J.: Duplication-correcting codes for data

storage in the DNA of living organisms. In: IEEE Int. Symp. Information Theory
(ISIT), Barcelona, pp. 1028–1032 (2016)

5. Kulkarni, A.A., Kiyavash, N.: Nonasymptotic upper bounds for deletion correcting
codes. IEEE Trans. Inf. Theory 59(8), 5115–5130 (2013)

6. Kurmaev, O.F.: Constant-weight and constant-charge binary run-length limited codes.
IEEE Trans. Inf. Theory 57(7), 4497–4515 (2011)

7. Lenz, A., Wachter-Zeh, A., Yaakobi, E.: Bounds on codes correcting tandem and palin-
dromic duplications. In: Workshop on Coding and Cryptography (WCC) (2017)

8. Levenshtein, V.: Binary codes capable of correcting spurious insertions and deletions of
ones. Problemy Peredachi Informatsii 1(1), 12–25 (1965)

9. Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10, 707–710 (1966)

10. Mahdavifar, H., Vardy, A.: Asymptotically optimal sticky-insertion-correcting codes
with efficient encoding and decoding. In: IEEE Int. Symp. Information Theory (ISIT),
Aachen, pp. 2688–2692 (2017)

11. Roth, R., Siegel, P.: Lee-metric bch codes and their application to constrained and
partial-response channels. IEEE Trans. Inf. Theory 40(4), 1083–1096 (1994)

12. Schoeny, C., Wachter-Zeh, A., Gabrys, R., Yaakobi, E.: Codes correcting a burst of
deletions or insertions. IEEE Trans. Inf. Theory 63(4), 1971–1985 (2017)

13. Varshamov, R.R., Tenengolts, G.M.: Codes which correct single asymmetric errors. Au-
tomation Remote Control 26(2), 286–290 (1965)

	1 Introduction
	2 Relationship between Duplication and Deletion Codes
	3 Upper Bounds on the Code Cardinalities
	4 Code Constructions
	5 Conclusion & Outlook
	A Sphere Sizes for Tandem and Palindromic Duplications and Deletions
	B Equivalence of Palindromic Duplications Errors in One Word
	C Equivalence of Palindromic Duplications in Two Words

