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Abstract The celebrated Primitive Normal Basis Theorem states that for any n≥ 2 and any

finite field Fq, there exists an element α ∈ Fqn that is simultaneously primitive and normal

over Fq. In this paper, we prove some variations of this result, completing the proof of a

conjecture proposed by Anderson and Mullen (2014). Our results also imply the existence

of elements of Fqn with multiplicative order (qn−1)/2 and prescribed trace over Fq.
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1 Introduction

Let Fq be the finite field with q elements, where q is a power of a prime p and let n ≥ 1 be

a positive integer. We recall that the multiplicative group F∗qn is cyclic and any generator of

this group is called primitive. Primitive elements have numerous applications in areas like

cryptography; perhaps the most notable such example is the widely used Diffie-Hellman key

exchange [4]. Also, Fqn can be regarded as a Fq-vector space of dimension n: an element

α ∈ Fqn is normal over Fq if B = {α , . . . ,αqn−1
} is a basis of Fqn . In this case, B is called a

normal basis. For many practical applications, such as cryptography and computer algebra

systems, it is more efficient to work with normal bases. For a comprehensive coverage on

normal bases and their importance, both in theory and applications, we refer to [5] and the

references therein.

Sometimes it is also desired that such normal bases are composed by primitive elements.

The Primitive Normal Basis Theorem states that there exists normal basis composed by
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primitive elements in any finite field extension. The proof of this result was first presented

by Lenstra and Schoof [8], and a proof without the use of a computer was given by Cohen

and Huczynska [3]. Recently, Hachenberger [6], using geometric tools, established sharp

estimates for the number of such bases.

A variation of normal elements was recently introduced by Huczynska et al. [7], yielding

k-normal elements. There are many equivalent definitions for such elements and here we

pick the most natural.

Definition 1.1 For α ∈ Fqn , consider the set Sα = {α ,αq, . . . ,αqn−1
} comprising the con-

jugates of α by the action of the Galois group of Fqn over Fq. The element α is k-normal

over Fq if the Fq-vector space Vα generated by Sα has dimension n− k, i.e., Vα ⊆ Fqn has

co-dimension k.

Following this definition, 0-normal elements are just the usual normal elements and

0 ∈ Fqn is the only n-normal element. Also, we note that the definition of k-normal depends

strongly on the base field that we are working and, unless otherwise stated, α ∈ Fqn is k-

normal if it is k-normal over Fq.

We recall that the multiplicative group F∗qn has qn− 1 elements and, for α ∈ F∗qn , the

multiplicative order of α ∈ F∗qn is the least positive integer d such that αd = 1. We write

d = ord(α). Since αqn−1 = 1, d is always a divisor of qn− 1. For instance, the primitive

elements are the ones of order qn − 1. We know that, for each divisor e of qn − 1, there

exist ϕ(e) elements in Fqn with order e, where ϕ is the Euler Phi function. We introduce a

variation of primitive elements in finite fields.

Definition 1.2 For α ∈ F∗qn and r a divisor of qn−1, α is r-primitive if ord(α) = qn−1
r

.

From definition, the 1-primitive elements correspond to the primitive elements in the usual

sense. Motivated by the Primitive Normal Basis Theorem, in 2014, Anderson and Mullen

propose the following problem (see [10], Conjecture 3).

Conjecture 1.3 (Anderson-Mullen) Suppose that p≥ 5 is a prime and n ≥ 3. Then, for a =
1,2 and k = 0,1, there exists some k-normal element α ∈ Fpn with multiplicative order

(pn−1)/a.

In other words, if p≥ 5 and n≥ 3, there exists an element α ∈ Fpn that is simultaneously

a-primitive and k-normal, for a = 1,2 and k = 0,1. We notice that the case (a,k) = (1,0) is

the Primitive Normal Basis Theorem, which holds for arbitrary finite fields. Also, the case

(a,k) = (1,1) was recently proved for arbitrary q and n≥ 3 (see [11]), yielding the Primitive

1-normal Basis Theorem.

In this paper, we complete the proof of Conjecture 1.3 above, adding the case a = 2. In

fact, we prove a stronger version of this conjecture.

Theorem 1.4 Let q be a power of a prime p and let n be a positive integer.

1. If p≥ 3 and n≥ 3, there exists an element α ∈Fqn that is simultaneously 2-primitive and

normal over Fq, with the sole exception (q,n) = (3,4). Furthermore, with the exception

of the case q = 3, there is no 2-primitive normal element of Fq2 over Fq.

2. If p ≥ 5 and n ≥ 2, there exists an element α ∈ Fqn that is simultaneously 2-primitive

and 1-normal over Fq.
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Moreover, in Theorem 5.1, given q a power of an odd prime p, we prove the existence

of 2-primitive elements of Fqn with prescribed trace over Fq provided that p ∤ n and p,n≥ 3

or that p | n, n≥ 3 and p≥ 5.

We make a brief comment on the techniques used in this paper. We use standard charac-

teristic functions to describe a special class of 2-primitive, k-normal elements (for k = 0,1)

over finite fields: these characteristic functions can be described via character sums. This

characterization provides sieve inequalities for the existence of such elements and then we

study these inequalities in both theoretical and computational aspects.

2 Preliminaries

In this section, we provide a background material for k-normal elements, as well as some

particular artihmetic functions and their polynomial version.

Definition 2.1 (a) Let f be a monic polynomial with coefficients in Fq. The Euler Phi

Function for polynomials over Fq is given by

Φ( f ) =

∣

∣

∣

∣

(

Fq[x]

〈 f 〉

)∗∣
∣

∣

∣

,

where 〈 f 〉 is the ideal generated by f (x) in Fq[x].
(b) If t is a positive integer (or a monic polynomial over Fq), W (t) denotes the number of

square-free (monic) divisors of t.

(c) If f is a monic polynomial with coefficients in Fq, the Polynomial Möbius Function µq

is given by µq( f ) = 0 is f is not square-free and µq( f ) = (−1)r if f writes as a product

of r distinct irreducible factors over Fq.

2.1 Additive order of elements and k-normals

If f ∈ Fq[x], f = ∑s
i=0 aix

i, we define L f (x) = ∑s
i=0 aix

qi
as the q-associate of f . Also, for

α ∈ Fqn , set f ◦α = L f (α) = ∑s
i=0 aiα

qi
. As follows, the q-associates have a good behavior

through basic operations of polynomials.

Lemma 2.2 ([9], Theorem 3.62) Let f ,g ∈ Fq[x]. The following hold:

(i) L f (Lg(x)) = L f g(x),
(ii) L f (x)+Lg(x) = L f+g(x).

Notice that, for any element α in some extension of Fq, (xn−1) ◦α = αqn
−α = 0 if

and only if α ∈ Fqn . If we set Iα = {g(x) ∈ Fq[x] |g(x)◦α = 0}, the previous lemma shows

that Iα is an ideal of Fq[x]. In particular, for α ∈ Fqn , xn−1 ∈Iα and so Iα is a non zero

ideal, hence is generated by a polynomial, say mα(x). Notice that, if we require mα(x) to be

monic, such mα(x) is unquely determined by α . We define mα(x) as the Fq-order of α . This

concept works as an “additive” analogue of multiplicative order over finite fields.

Clearly, for α ∈ Fqn , mα(x) divides xn−1 and then its degree is at most n. For instance,

if deg(mα(x)) = 0, then mα(x) = 1 and α = 0. The following result shows a connection

between k-normal elements and their Fq-order.

Proposition 2.3 ([7], Theorem 3.2) Let α ∈ Fqn . Then α is k-normal if and only if mα(x)
has degree n− k.
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For instance, normal elements α ∈ Fqn are the ones such that mα(x) = xn−1. The previous

proposition shows that the existence of k-normal elements depends on the existence of a

polynomial of degree n−k dividing xn−1 over Fq. In fact, according to Theorem 3.5 of [7],

if g∈ Fq[x] is a divisor of xn−1 degree k, there exist Φ(g) elements α ∈ Fq with mα(x) = g.

Since x− 1 divides xn− 1 for any n ≥ 1, we see that 1-normal elements exist in any

extension of Fq. Clearly, this also implies the existence of (n−1)-normal elements. Recall

that 0 ∈ Fqn is n-normal and that 0-normal elements always exist. These are the only values

of k for which the existence of k-normal elements is guaranteed in any finite field extension.

In fact, suppose that n is a prime and q is primitive (mod n): the polynomial xn−1 factors

as (x−1)(xn−1 + · · ·+ x+1) over Fq. In particular, from the previous proposition, there are

no k-normal elements in Fqn for any 1 < k < n− 1. Of course, in this paper, we are only

interested in 0 and 1-normal elements.

2.2 Application of the method of Lenstra and Schoof

Here we present the traditional method of Lenstra and Schoof [8] in the characterization of

elements in Fqn with special properties like normal, primitive and of a given prescribed trace

over some subfield Fqm of Fqn . We start with the concept of freeness.

Definition 2.4 1. If m divides qn − 1, an element α ∈ F∗qn is m-free if α = β d for any

divisor d of m implies d = 1.

2. If m ∈ Fq[x] divides xn−1, an element α ∈ Fqn is m-free if α = h◦β for any divisor h

of m implies h = 1.

From definition, the primitive elements correspond to the (qn−1)-free elements. Also, the

(xn−1)-free elements are just the normal elements. Using the concept of freeness, we char-

acterize special classes of 1-normal elements, via trace functions. First, we have the follow-

ing lemma.

Lemma 2.5 ([7], Theorem 5.4) Let α be any element in Fqn and let f (x) = mα(x) be its

Fq-order. For any divisor g(x) of xn−1, the following are equivalent:

(a) α is g(x)−free,

(b) g(x) and xn−1
f (x) are coprime.

As follows, we show that we have a characterization of elements α ∈ Fqn for which

mα(x) =
xn−1
x−1

.

Proposition 2.6 Let q be a power of a prime p and n = pku, where k≥ 0 and gcd(u, p) = 1.

Write T (x) = xu−1
x−1

. Then α ∈ Fqn is such that mα(x) =
xn−1
x−1

if and only if α is T (x)-free and

β = Tr
qn/qpk (α) is such that mβ (x) =

xpk
−1

x−1
.

Proof If mα(x) =
xn−1
x−1

, since β = Tr
qn/qpk (α) = xn−1

xpk
−1
◦α , it follows that mβ (x) =

xpt
−1

x−1
.

Conversely, suppose that mβ (x) =
xpt
−1

x−1
and β = Tr

qn/qpk (α). Clearly xn−1
x−1
◦α = xpk

−1
x−1
◦

( xn−1

xpk
−1
◦α) = xpk

−1
x−1
◦β = 0. Since α is T (x)-free, it follows from Lemma 2.5 that mα(x) =

T (x)pk
(x−1)d for some d ≥ 0 with d ≤ pk−1. Since mβ (x) =

xpk
−1

x−1
, from the minimality

of mβ we have d = pk−1, i.e. mα(x) =
xn−1
x−1

. ⊓⊔
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In the case when n is divisible by p2, as noticed in [11], we have an alternative charac-

terization for such 1-normal elements.

Proposition 2.7 Suppose that n = p2s and let α ∈ Fqn such that Trqn/qps(α) = β . Then

mα = xn−1
x−1

if and only if mβ = xps−1
x−1

.

The proof of this proposition quite simple and can be found in Lemma 5.2 of [11].

2.3 Some characteristic functions

The concept of freeness derives some characteristic functions for primitive and normal ele-

ments. We pick the notation of [7].

Multiplicative component.
∫

d|m

ηd stands for the sum ∑d|m
µ(d)
ϕ(d) ∑(d) ηd , where µ and ϕ are

the Möbius and Euler functions for integers, respectively, ηd is a typical multiplicative char-

acter of Fqn of order d, and the sum ∑(d) ηd runs through all the multiplicative characters of

order d.

Additive component. χ is the canonical additive character on Fqn , i.e.

χ(ω) = λ (Trqn/q(ω)), ω ∈ Fqn ,

where λ is the canonical additive character of Fq to Fp. If D is a monic divisor of xn− 1

over Fq, a typical character χ∗ of Fqn of Fq-order D is one such that χ∗(D◦
q ·) is the trivial

additive character in Fqn and D is minimal (in terms of degree) with this property. Here, ∆D

denotes the set of all δ ∈ Fqn such that χδ has Fq-order D, where χδ (ω) = χ(δ ω) for any

ω ∈ Fqn . For instance, ∆1 = {0} and ∆x−1 = F∗q. Furthermore, it is well-known that

|∆D|= Φ(D).

Following our notation,
∫

D|T

χδD
stands for the sum

∑
D|T

µq(D)

Φ(D) ∑
(δD)

χδD
,

where µq and Φ are the Möbius and Euler functions for polynomials over Fq respectively,

χδD
is a typical additive character of Fqn of Fq-order D and the sum ∑(δD) χδD

runs through

all the additive characters of Fq-order D, i.e. all δD ∈ ∆D.

For each divisor t of qn− 1 and each monic divisor D of xn− 1, set θ(t) = ϕ(t)
t

and

Θ(D) = Φ(D)

qdegD . The sums above yield characteristic functions.

Theorem 2.8 ([7], Section 5.2)

1. For w ∈ F∗qn and t be a positive divisor of qn−1,

ωt(w) = θ(t)

∫

d|t
ηd(w) =

{

1 if w is t-free,

0 otherwise.
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2. For w ∈ Fqn and D be a monic divisor of xn−1,

ΩD(w) =Θ(D)
∫

E|D
χδE

(w) =

{

1 if w is D-free,

0 otherwise.

For any divisor m of n, we know that Fqm is a subfield of Fqn . Let

Tm,β (w) =

{

1 if Trqn/qm(w) = β ,

0 otherwise.

We need a character sum formula for Tm,β . Let λ and λm be the canonical additive characters

of Fq and Fqm , respectively: the character λ lifts λm and χ to Fqm and Fqn , respectively. In

other words, λm(w) = λ (Trqm/q(w)) and χ(w) = λ (Trqn/q(w)) = λ (Trqm/q(Trqn/qm(w))) =
λm(Trqn/qm(w)), since the trace function is transitive. We observe that Tm,β can be written as

Tm,β (w) =
1

qm ∑
d∈Fqm

λm(d(Trqn/qm(w)−β )) =
1

qm ∑
d∈Fqm

λm(d ·Trqn/qm(w−α)),

for any α ∈ Fqn such that Trqn/qm(α) = β , since

∑
d∈Fqm

λm(d ·Trqn/qm(w−α)) = qm

if and only if Trqn/qm(w) = Trqn/qm(α) = β and, otherwise, this sum equals 0. In particular,

Tm,β (w) =
1

qm ∑
d∈Fqm

χd(w−α) =
1

qm ∑
d∈Fqm

χd(w)χd(α)−1.

More specifically, for t = qn−1 and D = xn−1, we obtain characteristic functions for

primitive and normal elements, respectively. We write ωqn−1 = ω and Ωxn−1 = Ω . As usual,

we may extend the multiplicative characters to 0 by setting η1(0) = 1, where η1 is the trivial

multiplicative character and η(0) = 0 if η is not trivial.

For a more detailed account of the above, we refer the interested reader to [2] and the

references therein.

Also, write Ω (1) the characteristic function for elements α ∈ Fqn such that mα(x) =
xn−1
x−1

; from Proposition 2.6, if n = ptu with gcd(u, p) = 1 and β is any element of F
qpt such

that mβ (x) =
xpt
−1

x−1
, then

Ω (1) = ΩT ·Tpt ,β ,

where T (x) = xu−1
x−1

.

We may characterize (0 and 1)-normal elements with prescribed multiplicative order

(qn−1)/2 (i.e., 2-primitive); the element b ∈ Fqn has order (qn−1)/2 if and only if b = a2

for some primitive element a.

The following result is straightforward.

Proposition 2.9 For w ∈ Fqn , the following hold:

1. w2 is 2-primitive and normal if and only if ω(w) ·Ω (w2) = 1.

2. w2 is 2-primitive with mw2(x) = xn−1
x−1

if and only if ω(w) ·Ω (1)(w2) = 1.

The following two results provide some character sum estimates that are useful.
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Lemma 2.10 ([9], Theorem 5.41) Let χ be an additive character of Fqn and f ∈ Fqn [x] be

a monic polynomial of positive degree, not of the form g(x)p−g(x)+ y for any g ∈ Fqn [x].
Suppose that e is the number of distinct roots of f in its splitting field over Fqn . For every

a ∈ Fqn ,
∣

∣

∣

∣

∣

∣

∑
c∈Fqn

χ(a f (c))

∣

∣

∣

∣

∣

∣

≤ (e−1)qn/2.

Theorem 2.11 ([12], Theorem 2G) Let η be a multiplicative character of Fq of order d 6= 1

and χ a non-trivial additive character of Fq. If f ,g ∈ Fq[x] are such that f has exactly m

roots and deg(g) = n with gcd(d,deg( f )) = gcd(n,q) = 1, then

∣

∣

∣

∣

∣

∑
c∈Fq

η( f (c))χ(g(c))

∣

∣

∣

∣

∣

≤ (m+n−1)q1/2.

3 Sieving inequalities for 2-primitive, f -free elements with prescribed trace

For χ and η , additive and multiplicative characters of Fqn respectively, G2(η ,χ) stands for

the sum ∑w∈Fqn η(w)χ(w2).

Theorem 3.1 Write n = pku, with gcd(u, p) = 1 and let Fqn ) Fqm ⊇ Fq. Let f be a poly-

nomial not divisible by x−1 such that f divides xu−1. Let N( f ,m,β ) denote the number of

elements w ∈ Fqn such that w is primitive, w2 is f -free over Fq and Trqn/qm(w2) = β , where

β ∈ Fqm . suppose that m = 1 or m is a power of p if f 6= 1. Additionally, let N2(n) be the

number of primitive elements w ∈ Fqn such that w2 is normal (i.e., xn−1-free) over Fq.

(i) If α is any element of Fqn such that Trqn/qm(α) = β and ac = χc(α)−1, the following

holds

N( f ,m,β )

θ(qn−1)Θ( f )
=

1

qm



qn + ∑
c∈Fqm

ac

∫

d|qn−1
d 6=1

∫

D| f
D6=1

G2(ηd,χδD+c)+ ∑
c∈F∗

qm

ac

∫

d|qn−1
d 6=1

G2(ηd ,χc)









.

In particular, we have the following inequality:

N( f ,m,β )

θ(qn−1)Θ( f )
> qn−m−2qn/2W (qn−1)W ( f ). (1)

(ii) We have that
N2(n)

θ(qn−1) = qn +
∫

d|qn−1
d 6=1

∫

D|xn−1
D6=1

G2(ηd,χδD
) and, in particular,

N2(n)

θ(qn−1)
> qn−2qn/2W (xn−1)W (qn−1).

Proof We just prove item (i) since item (ii) is easier and follows by similar ideas. Com-

bining the characteristic functions for primitivity, f -free and prescribed trace, we obtain the

following equality:

N( f ,m,β ) = ∑
w∈Fqn

Ω f (w
2)Tm,β (w

2)ω(w),
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hence

N( f ,m,β )

θ(qn−1)Θ( f )
=

1

qm ∑
c∈Fqm

ac

∫

d|qn−1

∫

D| f

G2(ηd ,χδD+c).

We first simplify the sum above by eliminating the trivial sums G2(ηd,χδD+c). We ob-

serve that δD +c 6= 0, unless D = 1 and c = 0: for this, we note that for f = 1, we only have

D = 1 and so δD = 0, hence δD+c 6= 0 unless c = 0. If f 6= 1, from hypothesis, m = 1 or m is

a power of p. Since f is not divisible by x−1 and xm−1 = (x−1)m, δD is never an element

of Fqm , unless δD = 0, i.e., D = 1. In particular, since c ∈ Fqm , it follows that δD + c 6= 0

unless D = 1 and c = 0.

This shows that G2(η1,χδD+c) = qn if D = 1 and c = 0 and, otherwise the orthogonality

relations and Lemma 2.10 imply, G2(η1,χδD+c) = 0. Also, for D = 1, c = 0 and d 6= 1,

G2(ηd ,χδD+c) = 0. In particular, we obtain the following simplified expression:

N( f ,m,β )

θ(qn−1)Θ( f )
=

1

qm



qn + ∑
c∈Fqm

ac

∫

d|qn−1
d 6=1

∫

D| f
D6=1

G2(ηd,χδD+c)+ ∑
c∈F∗

qm

ac

∫

d|qn−1
d 6=1

G2(ηd ,χc)









,

as desired. From Theorem 2.11, the remaining Gauss sums above satisfy the inequality

|G2(ηd ,χδD+c)| ≤ 2qn/2. Since |ac| = 1 for any c ∈ Fqm , taking estimates in the previous

sum we obtain the following inequality:

N( f ,m,β ) ·qm

θ(qn−1)Θ( f )
≥

qn−2qn/2 · [qm(W (qn−1)−1)(W ( f )−1)+(qm−1) · (W (qn−1)−1)],

hence
N( f ,m,β )

θ(qn−1)Θ( f )
> qn−m−2qn/2W (qn−1)W ( f ).

⊓⊔

Additionally, with some persistent cases in mind, we introduce some sieving techniques, as

presented in [3]. We note though, that for our cause it suffices to apply sieving solely on the

multiplicative part. To this end, write N( f ,m,β )l as the number of l-free elements w ∈ Fqn

such that w2 is f -free over Fq and Trqn/qm(w2) = β , where l | q′ and q′ is the square-free part

of qn−1. Similarly, we set N2(n)l as the number of l-free w ∈ Fqn such that w2 is normal

over Fq. In particular, N( f ,m,β )q′ = N( f ,m,β ) and N2(n)q′ = N2(n).

Proposition 3.2 (Sieving inequality) Let m, f ,β be as in Theorem 3.1 and let {r1, . . . ,rs}
be divisors of q′, such that gcd(ri,r j) = q0 for all i 6= j and lcm(r1, . . . ,rs) = q′, then

N( f ,m,β )l ≥
s

∑
i=1

N( f ,m,β )ri
− (r−1)N( f ,m,β )q0

and

N2(n)l ≥
s

∑
i=1

N2(n)ri
− (r−1)N2(n)q0

.
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Proof We just prove the first inequality, since the second follows in a similar way. Let S(l)
be the set of l-free elements of Fqn whose squares have trace β over Fqm and are f -free

over Fq, where l | qn − 1. We will use induction on s. The result is trivial for s = 1. For

s = 2, we have that S(r1)∪S(r2)⊆ S(q0) and S(r1)∩S(r2) = S(q′). The result follows after

considering the cardinalities of the above sets.

Next, suppose the desired result holds for some s ≥ 2. For s+ 1, if we denote by r0

the least common multiplier of r2, . . . ,rs+1, we observe that r0,r1 satisfy the conditions for

s = 2. The desired result follows from the induction hypothesis. ⊓⊔

Corollary 3.3 Let {p1, . . . , ps} be a set of distinct prime divisors of q′, the square-free part

of qn−1 (this set may be /0, in which case s = 0), such that δ := 1−∑s
i=1 p−1

1 > 0. Also, let

n = pku, where gcd(u, p) = 1. The following hold.

(a) If

qn/2 > 2 ·W (q0)W (xu−1)

(

s−1

δ
+2

)

, (2)

there exists a normal element in Fqn that is 2-primitive.

(b) If

qpk(u/2−1) >W (q0)W (xu−1)

(

s−1

δ
+2

)

, (3)

there exists an 1-normal element in Fqn that is 2-primitive.

Proof We begin with the second item. Take β and T as in Proposition 2.6. It then follows

from Proposition 2.9 that it suffices to show that N(T, pk,β )> 0. Proposition 3.2 implies

N(T, pk,β )≥
s

∑
i=1

N(T, pk,β )q0 pi
− (s−1)N(T, pk,β )q0

.

Next, we follow the same steps as in the proof of Theorem 3.1 and get:

N(T, pk,β )

θ(q0)
≥ δ qn−pk

−qn/2W (q0)W (xu−1)

(

1+
s

∑
i=1

(

θ(pi)
W (q0 pi)

W (q0)
−1

)

)

.

The above, combined with the fact that W (q0 pi)/W (q0) = 2, yields

N(T, pk,β )

θ(q0)
≥ δ qpk(u−1)−qn/2W (q0)W (xu−1)(s−1+2δ ),

which implies the desired result. The proof of the first item is almost identical and ommited.

⊓⊔

The following corollary is also useful.

Corollary 3.4 Let n = pku, where gcd(u, p) = 1 and p≥ 5. If k≥ 2, then for any β ∈ Fqn/p ,

there exists a 2-primitive element α ∈ Fqn such that Trqn/qn/p(α) = β .

Proof According to Theorem 3.1, is enough to prove that N(1,n/p,β )> 0. From the same

theorem, the last inequality holds if

qn−n/p > 2qn/2W (qn−1).
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According to Proposition A.1, W ( qn−1
qu−1

) ≤ 2q
(pk−1)u
2+log2 p < 2q

(pk−1)u
4.3 for p ≥ 5 and we have

the trivial bound W (qu−1) ≤ 2qu/2. Therefore,

W (qn−1)≤ 4q
n+1.15u

4.3 ,

and so 2qn/2W (qn−1) ≤ 8q
3.15n+1.15u

4.3 . Since k ≥ 2 and p≥ 5,

n−
n

p
−

3.15n+1.15u

4.3
≥

1.15(pk−1)u

4.3
−

n

5
=

(0.29pk−1.15)u

4.3
.

The expression
(0.29pk−1.15)u

4.3 achieves its minimum at u = 1, p = 5 and k = 2, with value

0.29·25−1.15
4.3 > 1.4. In particular, qn−n/p− 3.15n+1.15u

4 ≥ q1.4 ≥ 51.4 > 8 and so we obtain the

desired result. ⊓⊔

4 Existence results

In this section, we use the theory developed in the previous ones in order to complete our

results. Our procedure, in general, relies on verifying the inequalities of Corollary 3.3 to

obtain the existence of 2-primitive, k-normal elements in Fqn for k = 0,1. For the mentioned

computations, the SAGEMATH software was used.

First, notice that the case n = 2 is elementary and the following lemma summarizes the

results.

Lemma 4.1 If q > 3 is an odd prime power, then all 2-primitive c ∈ Fq2 are normal over

Fq. In contrast, all 2-primitive elements of F32 are 1-normal over F3.

Proof Observe that any nonzero element of Fq2 is either normal or 1-normal. If α ∈ F∗
q2

is 1-normal, then (x− b) ◦α = 0 for some b ∈ F∗q, hence αq = bα and so α (q−1)2
= 1.

In particular, any element in Fq2 with multiplicative order greater than (q− 1)2 is normal.

For q > 3, (q2− 1)/2 > (q− 1)2 and this implies the normality over Fq of all 2-primitive

elements. If c ∈ F32 is 2-primitive, then it has multiplicative order 4, and so cq = c3 = ±c.

In other words, c is 1-normal. ⊓⊔

So, from now on we assume that n ≥ 3. Before we move to the computational part, we

note that exact calculations or estimations of W (t) will be needed. A simple combinatorial

argument yields

W (t) = 2d(t), (4)

where d(t) stands for the number of distinct prime numbers or monic irreducible polynomi-

als dividing t, where t can be a positive integer or a monic polynomial over Fq, respectively.

Additionally, the following bounds hold.

Lemma 4.2 Let t,a be positive integers, then W (t)≤ ct,at1/a, where ct,a = 2s/(p1 · · · ps)
1/a

and p1, . . . , ps are the primes ≤ 2a dividing t. In particular we are interested in ct := ct,4

and dt := ct,8, and for every t we have that ct < 4.9 and dt < 4514.7.

Proof The statement is an immediate generalization of Lemma 3.3 of [3] and can be proved

using multiplicativity. The bounds for ct and dt can be easily computed. ⊓⊔
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Remark 4.3 From the above, ct,a depends on the primes < 2a that divide t. It takes its maxi-

mum value when all primes < 2a divide t and this is how the above bounds were computed.

Nonetheless, since it is uncommon for all such primes to actually divide t, it turns out to

be quite smaller for most t and, in any case, easily computable. In addition, if we know in

advance that some prime does not divide t, then sharper estimates for ct,a can be used. For

instance if q = 5t , then 5 ∤ qn−1, hence dqn−1 = cqn−1,8 < 2760.39.

Lemma 4.4 We have that W (xu−1) ≤ 2(u+gcd(u,q−1))/2. In particular,

1. for every q, W (xu−1) ≤ 2(u+min(u,q−1))/2,

2. for q = 5, W (xu−1)≤ 2(u/3)+6 and

3. for q = 3, W (xu−1)≤ 2(u+1)/3, for u 6= 4,6,8.

Proof For the initial statement see Eq. (2.10) of [8]. The first item is a direct consequence

of this and for the other two see Lemma 2.11 in [8]. ⊓⊔

4.1 Existence of normal, 2-primitive elements

In this stage we are ready to investigate the existence of normal elements of Fqn over Fq with

multiplicative order (qn−1)/2. First, we combine the first item of Corollary 3.3 with Eq. (4),

Lemma 4.2 and the various estimates of Lemma 4.4 and get several (similar) conditions for

the existence of the elements of our interest. By using these conditions, we compile Table 1.

These results cover all cases, with the exception of 468 pairs (q,n). Nonetheless, this list is

q ≥ 336 ≥ 157 ≥ 100 ≥ 74 ≥ 51 ≥ 25 ≥ 17 ≥ 9 = 7 = 5 = 3

n ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 8 ≥ 18 ≥ 21 ≥ 25 ≥ 29 ≥ 35 ≥ 53

Table 1 Values for q and n such that Eq. (2) holds for k = 0.

shortened to a total of 165 pairs (q,n) after cqn−1 is explicitly computed and, among those,

only 34 pairs fail after all quantities are replaced by their exact values. For those pairs we

employ Corollary 3.3 with s > 0 and apply a sieving algorithm, based on the one presented

in Appendix B. This enables us to exclude additional 12 pairs. So we are left with the 22

pairs (3,3), (5,3), (7,3), (11,3), (13,3), (19,3), (25,3), (31,3), (3,4), (5,4), (7,4), (9,4),
(11,4), (13,4), (17,4), (3,5), (11,5), (3,6), (5,6), (7,6), (3,8) and (5,8).

We define S0 as the set of the 22 pairs above. In particular, if (q,n) 6∈ S0, it follows

that there exist 2-primitive, normal elements of Fqn over Fq. For the pairs (q,n) in S0, we

verify directly the existence of 2-primitive, normal elements, for all pairs in S0 with the sole

exception of (3,4), which, in fact, is a genuine exception. The SAGEMATH program used for

this verification is described in Appendix B. In conclusion, we obtain the following result.

Theorem 4.5 Let q be a power of a prime p ≥ 3 and let n ≥ 3 be a positive integer. Then

there exist 2-primitive, normal elements of Fqn over Fq, unless (q,n) = (3,4).

4.2 Existence of 1-normal, 2-primitive elements

Next, we proceed to the 1-normal and 2-primitive case. We separate the study of Eq. (3)

in two cases whether n is divisible by p or not, i.e., k = 0 or k > 0, while for the former
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we study the case n = 3 separately, since this case requires special attention and a different

strategy is adopted. Also, we confine ourselves to p≥ 5.

4.2.1 The case p 6= 3 and n = 3

Here we assume that n = 3 and p≥ 5. For this case, it is clear that a 2-primitive element of

Fq3 can be either normal or 1-normal over Fq; for this, we see that any 2-normal element

α ∈ Fq3 is such that αq−1 is in Fq, hence α (q−1)2
= 1 but (q−1)2 < (q3−1)/2 for q ≥ 5.

Additionally, some w ∈ Fq3 such that Trq3/q(w) = 0 cannot be normal, that is it suffices to

search for a primitive element w ∈ Fq3 such that Trq3/q(w
2) = 0, so Theorem 3.1 implies

that it is enough to show that N(1,1,0)> 0. A treatment similar to Corollary 3.3 yields the

following.

Corollary 4.6 Let {p1, . . . , ps} be a set of distinct prime divisors of q′, the square-free part

of q3−1 (this set may be /0, in which case s = 0), such that δ := 1−∑s
i=1 p−1

1 > 0. If

q1/2 > 2W (q0)

(

s−1

δ
+2

)

,

where q0 := q′/(p1 · · · ps), then there exists a 2-primitive 1-normal element of Fq3 over Fq.

We begin without any sieving primes, i.e. s = 0, so a sufficient condition would be

q1/2 > 2 ·W (q3−1). (5)

With the help of Lemma 4.2, this gives q > (2 ·dq3−1)
8, where dq3−1 < 4514.7. This is true

for q≥ qmax = 9029.48 ∼ 4.42 ·1031 . Recall that d(t) denoted the number of distinct prime

divisors of t. A quick computation shows that the product of any 52 distinct primes is larger

than q3
max−1, which implies that the case d(q′) ≥ 52 is settled.

Next, we focus on q with 19 ≤ d(q′) ≤ 51. We sieve the largest 15 prime divisors, say

p1, . . . , p15, of q′ and we get that δ ≥ 0.32 and dq′/p1 ···p15
< 2618.07. The resulting condition

is satisfied for q≥ 8261356. However, for all q < 8261356, we have that d(q′)< 19, i.e. this

possibility is also settled.

We employ the same technique for 11≤ d(q′)< 19 and resolve the case q≥ 906561 for

that case. For the remaing cases, it is clear that Eq. (5) remains unsatisfied for q < 222. So,

since 222 > 906561, it suffices to investigate q < 222.

First, we check that all, but 42304 q’s satisfy Eq. (5), with the bound W (q3 − 1) ≤
cq3−1,12q1/4. Amongst them, 10067 do not satisfy this with W (q3 − 1) being excplicitly

computed. For those q’s we apply a sieving algorithm, as presented in Appendix B, that is

succesfull for all but 191 values of q. These prime powers are presented in Table 2 and for

them, we are able to find examples of 2-primitive 1-normal elements, using the algorithm

presented in Appendix B. All in all, we have the following.

Proposition 4.7 If p > 3, there exists a 2-primitive 1-normal element of Fq3 over Fq.

4.2.2 The case gcd(n, p) = 1, n, p > 3

If n is not divisible by p, then n = u and Eq. (3) is equivalent to

qn/2−1 >W (qn−1)W (xn−1). (6)
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The cases n ≤ 3 have already been settled, so from now on we may assume that n ≥ 4. For

n = 4, we check that for q≥ 5217924120, we have that

q3n/8−1 ≥ dqn−1 ·W (xu−1), (7)

for dqn−1 ≤ 4514.7 and W (xu−1)≤ 2n. Within the range 3< q< 5217924120 we check that

there are 4598 prime powers co-prime to 6, that do not satisfy Eq. (7), if we substitute dqn−1

by its exact value, with q = 1658623 being the largest amongst them. We check them and

verify that 433 prime powers q fail to satisfy Eq. (6) with all quantities explicitly computed.

Then, we follow the same steps for n = 5, . . . ,10.

For 11 ≤ n < 20, Eq. (7) holds for q≥ 170, when dqn−1 ≤ 4514.7 and W (xu−1) ≤ 2n.

In this region, 41 pairs do not satisfy Eq. (7), once we replace dqn−1 by its exact value

and among them only 3 fail to satisfy Eq. (6) with all quantities explicitly computed. For

21 ≤ n < 25, we follow the same procedure and initially we have get the desired result for

q ≥ 31, then, with the same steps, we reduce the list to 18 pairs, but eventually we have no

new possible exceptions. Finally, we note that Eq. (7) holds for n ≥ 25 and q ≥ 22, so the

cases q < 21 and n > 26 are left to investigate.

So we start with q = 19. A quick computation reveals that Eq. (7) holds for q = 19

and n ≥ 23, for dqn−1 < 3261.7 (as 19 ∤ qn− 1) and W (xu− 1) ≤ 2(n+q−1)/2, so we have

no additional exceptions for q = 19. Similar arguments for q = 17,13,11,7 and 5 yield no

further exceptions. We only describe q = 5 as an example: in this case, we assume dqn−1 <
2760.39 and Eq. (6) is true for n≥ 43, while in the region 26 ≤ n < 43, Eq. (6) is satisfied.

From the above procedure we have identified 472 possible exception pairs (q,n). The

sieving algorithm, as presented in Appendix B, yields a succesfull result for roughly half

of them, in particular for those with large components, while the remaining 283 pairs are

presented in Table 2.

We define S1 as the set of the pairs in Table 2. In particular, if (q,n) 6∈ S1, it follows

from Theorem 3.1 that there exist 2-primitive, 1-normal elements of Fqn over Fq. For the

pairs (q,n) in S1, we verify directly the existence of 2-primitive, 1-normal elements: see

Appendix B for the pseudocode. In conclusion, we obtain the following result.

Proposition 4.8 Let q be a power of a prime p≥ 3 and let n≥ 3 be a positive integer such

that gcd(n, p) = 1. Then there exist 2-primitive, 1-normal elements of Fqn over Fq.

n q #

3 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131,

137, 139, 149, 151, 157, 163, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281, 283, 289,

307, 311, 313, 331, 337, 343, 347, 349, 359, 361, 367, 373, 379, 397, 401, 409, 419, 421, 431, 439, 443, 457, 461, 463, 487, 491, 499, 521,

523, 529, 541, 547, 571, 601, 607, 613, 619, 625, 631, 643, 661, 691, 709, 733, 739, 751, 757, 809, 811, 821, 823, 841, 859, 877, 907, 919,

961, 967, 991, 997, 1009, 1021, 1031, 1033, 1051, 1069, 1087, 1093, 1123, 1129, 1171, 1201, 1231, 1291, 1303, 1321, 1327, 1369, 1381,

1429, 1451, 1453, 1471, 1531, 1597, 1621, 1681, 1741, 1759, 1831, 1849, 1871, 1873, 1933, 1951, 2011, 2209, 2221, 2311, 2341, 2347,

2401, 2473, 2521, 2531, 2551, 2557, 2671, 2731, 2851, 2857, 2971, 3061, 3301, 3481, 3541, 3571, 3691, 3721, 3931, 4111, 4561, 4621,

4951, 5791, 5821, 6091, 9181, 9811

191

4 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131,

137, 139, 149, 151, 157, 167, 169, 173, 179, 181, 191, 193, 197, 211, 229, 233, 239, 241, 257, 269, 277, 281, 293, 307, 313, 317, 337, 349,

353, 361, 373, 389, 397, 401, 421, 433, 461, 463, 701, 853

74

5 7, 11, 31, 61 4

6 5, 7, 11, 13, 19, 25, 31, 37, 43 9

8 5, 7 2

10 11 1

12 5, 7 2

Total: 283

Table 2 Possible exceptions pairs (q,n) for 2-primitive and 1-normal, when p≥ 5, n≥ 3 and gcd(p,n) = 1.
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4.2.3 The case n is divisible by p

Here, we confine ourselves to the case p 6= 3. Following the ideas of [11], we first proceed

with the case when n is divisible by p2, i.e., k ≥ 2. We obtain the following result.

Lemma 4.9 Suppose that n = p2s, where s ≥ 1 and p ≥ 5. There exists a 2-primitive, 1-

normal element of Fqn over Fq.

Proof Let β ∈ Fqps be such that mβ = xps−1
x−1

. From Corollary 3.4, there exists a 2-primitive

element α ∈ Fqn such that Trqn/qps(α) = β . From Proposition 2.7, it follows that such an α

satifies mα = xn−1
x−1

, i.e. α is 2-primitive and 1-normal. ⊓⊔

We proceed with the case u≥ 3 and k = 1.

Proposition 4.10 Let q = pt and n = pu, where p > 3, gcd(p,u) = 1, u > 2 and k≥ 1. Then

there exists an 1-normal and 2-primitive element of Fqn over Fq.

Proof We start with the delicate case u = 3. Write q = pt . For p = 5, Lemma 4.2 implies

W (qn− 1) < dqn−1 · q
n/8 and Lemma 4.4 W (xu− 1) ≤ 23. In particular, we use the bound

dqn−1 < 2760.39. We attach these bounds to Eq. (3) and get that we have our desired result

for t ≥ 10. We use the same technique for 7≤ p≤ 17 and settle the cases for t larger than a

specific number and for p = 17 (with dqn−1 < 3216.66) we settle the case t ≥ 2. Finally, for

p≥ 19 and t = 1, we use the generic bound dqn−1 < 4514.7 and Eq. (3) holds for q≥ 29. In

short, there remain 22 pairs (q,n) to deal with.

We continue with the remaining cases. We observe that Eq. (3) is always satisfied (with

the generic bounds W (qn − 1) < 4.9 · qn/4 and W (xu − 1) ≤ 2u) for u ≥ 8. With similar

techniques, we identify the possible exceptions for 4≤ u≤ 7 and we end up with additional

30 pairs (q,n) to deal with.

The combined list of 52 pairs (q,n) of possible exceptions is reduced to 7, once we use

the bound W (qn−1)≤ dqn−1qn/8 in Eq. (3), but compute dqn−1 and W (xu−1) explicitly for

every pair. Amongst those we find the persistent pairs (5,15), (5,20) and (25,15) that do

not satisfy Eq. (3), with all quantities explicitly computed, but we succesfully apply sieving

on them. ⊓⊔

We now add the cases n = p,2p. We note that Eq. (3) is not useful in these cases. In the

following proposition, we combine Eq. (1) with some combinatorial arguments in order to

obtain the desired existence result.

Proposition 4.11 Let p ≥ 5 be a prime and n = p,2p. If there is no 2-primitive, 1-normal

element of Fqn over Fq, then

1. n = p and
1

θ(qp−1)
> q−2q2− p

2 W (qp−1), (8)

which is violated, except for q = p = 5.

2. n = 2p and
q

(q−1)θ(q2p−1)
> q−4q2−pW (q2p−1), (9)

which is violated for any q.

Proof We split the proof into cases.
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– Case n = p. Let N be the number of 2-primitive, 1-normal elements of Fqn . We observe

that if α ∈ Fqn is 2-primitive and has 0-trace over Fq, then mα = (x− 1)d for some

0≤ d≤ p−1. With the notation of Theorem 3.1, we know that the number of 2-primitive

elements of 0-trace equals N(1,1,0). Clearly, if N = 0, then any 2-primitive element α of

0-trace satisfies (x−1)p−2 ◦α = 0: this equation has at most qp−2 solutions. This shows

that, if there is no 2-primitive, 1-normal element in Fqn , N(1,1,0) ≤ qp−2. However,

according to Eq. (1),

N(1,1,0)

θ(qp−1)
> qp−1−2qp/2W (qp−1),

hence
qp−2

θ(qp−1)
> qp−1−2qp/2W (qp−1),

and so
1

θ(qp−1)
> q−2q2− p

2 W (qp−1).

According to Lemma A.2, 1
θ(qp−1) ≤ 3.6logq. The later implies the following inequal-

ity:

3.6log q > q−2q2− p
2 W (qp−1). (10)

We first suppose that q 6= 5. According to Proposition A.1, W ( qp−1
q−1

) ≤ q
p−1
4.3 . We have

the trivial bound W (q− 1) ≤ 2q1/2 and so W (qp − 1) ≤ 2q
p+1.15

4.3 . In particular, from

Eq. (10), it follows that

3.6logq > q−4q
9.75−1.15p

4.3 .

Write q = pt . If p = 5, the last inequality implies 3.6logq > q− 4q
4

4.3 , which is true

only for t ≤ 12. For p = 7, we get 3.6logq > q−4q
1.7
4.3 , which is true only for t = 1. For

p≥ 11, we have 3.6logq > q−4, which is true only for q≤ 13.

For the remaining cases q = 5t , t ≤ 12, q = 7,11 and 13, we go back to Eq. (8) and,

replacing q and p by their exact values, we see that with the exception of the case q = 5,

Eq. (8) does not hold.

– Case n= 2p. Let N be the number of 2-primitive, 1-normal elements of Fqn . We note that

if α ∈Fqn is 2-primitive, (x+1)-free and has 0-trace over Fq, then mα =(x+1)p(x−1)d

for some 0 ≤ d ≤ p−1. With the notation of Theorem 3.1, we observe that the number

of 2-primitive elements of 0-trace equals N(x+1,1,0). If N = 0, it follows that any 2-

primitive element that has trace 0 over Fq and is (x+1)-free satisfies (x+1)p(x−1)p−2 ◦
α = 0; this equation has at most qn−2 solutions. In particular, if there is no 2-primitive,

1-normal element in Fqn , N(x+1,1,0)≤ qp−2. However, according to Eq. (1),

N(x+1,1,0)

θ(q2p−1)Θ(x+1)
> q2p−1−2qp/2W (q2p−1)W (x+1),

hence
q2p−1

(q−1)θ(q2p−1)
> q2p−1−4qpW (q2p−1),

and so
q

(q−1)θ(q2p−1)
> q−4q2−pW (q2p−1).
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According to Lemma A.2, 1
θ(q2p−1)

≤ 3.6logq+1.8log 2 < 3.6logq+1.25; this implies

the following inequality

q

q−1
(3.6logq+1.25) > q−2q2−pW (q2p−1).

We first suppose that q 6= 5. From Proposition A.1, W ( q2p−1

q2−1
) ≤ q

2(p−1)
4.3 . We have the

trivial bound W (q2−1)≤ 2q and so W (q2p−1)≤ 2q
2p+2.3

4.3 . In particular, from Eq. (10),

it follows that

q

q−1
(3.6logq+1.25) > q−8q

10.9−2.3p
4.3 ≥ q−8q

−0.6
4.3 .

A simple verification shows that this last inequality holds only for q≤ 17. For the cases

q = 5,7,11,13,17, we go back to Eq. (9) and, replacing q and p by their exact values,

we see that Eq. (9) does not hold for any of these values of q. ⊓⊔

As a final step, we find an example of 2-primitive and 1-normal element of F55 over F5 with

Algorithm 2 and this concludes the proof of Theorem 1.4.

Remark 4.12 In the present text, the case of 2-primitive, 1-normal elements of Fqn over Fq

is absent for fields of characteristic p = 3. However, partial existence results for this case are

feasible with our tools, but the absence of this case in Conjecture 1.3 suggest that a pursuit

for a complete result may be unrealistic.

5 A note on 2-primitive elements with prescribed trace

Before concluding, we make a small note regarding the existence of 2-primitive elements

with prescribes trace. First observe that, although for our purposes we expected the trace of

our elements to take specific values, the conditions that were used, that led to the compilation

of Table 2, are identical for every possible trace.

This implies that for every odd prime power q and positive integer n ≥ 3, such that

gcd(q,n) = 1 and (q,n) not present in Table 2, and for every α ∈ Fq, there exists some

2-primitive β ∈ Fqn such that Trqn/q(β ) = α . In addition to the pairs present in Table 2,

we also consider 11 pairs (q,n), with q a power of 3, that would appear in the table, if the

powers of 3 were not explicitly excluded.

For those 294 pairs, we first check the condition

qn/2−1 > 2W (q0)

(

s−1

δ
+2

)

,

where q0 and s as in Corollary 3.3. That settles some pairs and for the remaining 208 pairs

we utilize Algorithm 3 from Appendix B to find 2-primitive elements of Fqn with trace equal

to every element of Fq.

Likewise, the only possible exception for the case gcd(q,n)> 1 and p≥ 5 would be the

pair (q,n) = (5,5), which we also verify with Algorithm 3. So, summing up, we have the

following.

Theorem 5.1 Let q be a power of an odd prime number p and n ≥ 3 such that either

gcd(p,n) = 1 or p≥ 5, then for every α ∈ Fq there exists some 2-primitive element β ∈ Fqn

such that Trqn/q(β ) = α .
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A Estimates for W (qn−1) and θ(qn−1)

Here we present some estimates to the numbers W(qn−1) and θ (qn−1) with n = pk ·u, k≥ 1: the estimates

are based in elementary results in number theory and follows the same ideas contained in Appendix A of

[11]. For this reason, we skip some details and just apply the results of [11].

Proposition A.1 Let q be a power of an odd prime p and n = pk ·u, where k≥ 1 and gcd(u, p) = 1. If p≥ 5,

the following holds

W

(

qpku−1

qu−1

)

≤ ε(q) ·q
(pk−1)u
2+log2 p ,

where ε(q) = 2 if q = 5 and ε(q) = 1 if q 6= 5.

Proof For 1 ≤ i ≤ k, set ℓi =
q

p
i−1−1

qi−1−1
, where qi = qpiu. Notice that

qpku−1
qu−1

= ∏k
i=1 ℓi, hence W

(

qpku−1
qu−1

)

≤

∏k
i=1 W(ℓi). According to item (i) of Proposition A.8 in [11],

W(ℓi)≤ q

(p−1)
2+log2 p

i−1

with the exception of qi = 5. Notice that qi = 5 only if i = 0, q = 5 and u = 1: in this case, W(ℓ1) =

W
(

55−1
5−1

)

= 8 < 2 ·54/(2+log2 5) = 2q

(p−1)
2+log2 p

0 . This shows that, for any p≥ 5,

k

∏
i=1

W(ℓi)≤ ε(q) ·

(

k−1

∏
i=0

qi

)

(p−1)
2+log2 p

= ε(q) ·q
(pk−1)u
2+log2 p .

⊓⊔

http://arxiv.org/abs/1710.06131
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Lemma A.2 Suppose that q is a power of a prime p, where p≥ 5. For u≥ 1, we have

θ (qpu−1)−1 =
qpu−1

ϕ(qpu−1)
< 3.6log q+1.8log u.

Proof It is well known that n
ϕ(n)
≤ eγ log log n+ 3

loglogn
, for all n ≥ 3, where γ is the Euler constant and

1.7 < eγ < 1.8. Also, since ex ≥ 1+ x for any x ≥ 0, we have log log q≤ logq−1. Therefore,

log log(qpu−1)< log p+ logu+ log logq≤ log u+2log q−1.

By the hypothesis, log log(qpu− 1) ≥ log log(55− 1) > 2, hence 3
loglog(qpu−1)

≤ 1.5 and so we get the

following:

θ (qpu−1)−1 ≤ 1.8(2log q+ logu−1)+1.5 < 3.6log q+1.8log u.

⊓⊔

B Pseudocode for search for primitive 1-normals

In this section we explain the main algorithms used to verify our results in this paper. In Algorithm 1, we

present the sieving algorithm pseudocode we used to exclude pairs (q,n) from the list of possible exceptions

for the existence of 2-primitive 1-normal elements of Fqn over Fq. The other sieving algorithms mentioned in

the text follow the same pattern.

Algorithm 1 Pseudocode for sieving algorithm

Input: positive integers q,n
Returns:

– (“Success”, {pm, . . . , pm−t}) if sieving works with the mentioned primes;

– (“Fail”, “δ ≤ 0”) if during the procedure we get δ ≤ 0;

– (“Fail”, “No more primes”) if there are no more primes to sieve

calculate: u, pk ,W (xu−1) from q,n
divs = {p1, . . . , pm} ⊲ The prime divisors of qn−1 in increasing order

δ ← 1

sieving primes←{}
while δ > 0 do

t← #sieving primes

∆ ← (k−1)/δ +2

if qpk(u/2−1) > 2m−kW(xu−1)∆ then

return (“Success”, sieving primes)

end if

if k is m then

return (“Fail”, “No more primes”)

end if

δ ← δ −1/pm−k

sieving primes← sieving primes∪{pm−k}
end while

return (“Fail”, “δ ≤ 0”)

Following the approach of [11], Algorithm 2 presents a search routine for 2-primitive, 1-normal elements

of Fqn over Fq. This search is based on the original characterization of k-normal elements from [7].

Theorem B.1 Let α ∈ Fqn and let gα (x) = ∑n−1
i=0 αqi

xn−1−i ∈ Fqn [x]. Then gcd(xn−1,gα (x)) has degree k if

and only if α is a k-normal element of Fqn over Fq.

Algorithm 2 proceeds as follows. Let Fqn ∼= Fq[x]/( f ) with f a primitive polynomial, and let g be a root

of f . Hence, g is a generator of F∗qn and gi is 2-primitive if and only if gcd(i,qn−1) = 2. For each 2-primitive

element, check its k-normality using Theorem B.1. If k = 1, the resulting element is 2-primitive, 1-normal
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Algorithm 2 Pseudocode for 2-primitive 1-normal element search algorithm

Input: positive integers q,n
Returns: 2-primitive 2-normal element: elt ∈ Fqn ; otherwise “Fail”

mult order← qn−1

g← generator(F∗qn )

cyclo← xn−1 ∈ Fqn [x]

function check k normal(v) ⊲ See Theorem B.1

gv(x)← vxn−1 + vqxn−2 + · · ·+ vqn−1

k← deg(gcd(gv,cyclo))
return k

end function

i← 1

while True do

if i is mult order then ⊲ No 2−primitive 1-normals found in Fqn

return “Fail”

end if

if gcd(i,mult order) 6= 2 then ⊲ Only check 2-primitive elements

i← i+1

continue

end if

elt← gi

k← check k normal(elt)
if k is 1 then

return elt

end if

i← i+1

end while

and is returned. The algorithm returns “Fail” if no 2-primitive 1-normal is found after qn− 2 iterations; that

is, if all of F∗qn is traversed.

Finally, Algorithm 3 computes the traces of the 2-primitive elements of Fqn and stores the possible

distinct values to a set. If, at any point, the set grows enough to reach cardinality q, this means that ∀α ∈ Fq,

there exists some 2-primitive β ∈ Fqn such that Trqn/q(β) = α . If not, then we have an exception.

We implemented all algorithms with the SAGEMATH computer algebra system.

Algorithm 3 Pseudocode for 2-primitive elements with prescribed trace search algorithm

Input: positive integers q,n
Returns: “Success” if such elements are found; otherwise “Fail”

mult order← qn−1

g← generator(F∗qn )
traces← /0

i← 1

while i < mult order do

if #traces is q then

return “Success”

end if

if gcd(i,mult order) is 2 then ⊲ Only check 2-primitive elements

traces← traces∪{Trqn/q(g
i)}

end if

i← i+1

end while

return “Fail”
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