Classifying optimal binary subspace codes
of length 8, constant dimension 4 and
minimum distance 6

Daniel Heinlein Thomas Honold Michael Kiermaier
Sascha Kurz Alfred Wassermann*

November 17, 2017

The maximum size A3(8,6;4) of a binary subspace code of packet length
v = 8, minimum subspace distance d = 6, and constant dimension k = 4
is 257, where the 2 isomorphism types are extended lifted maximum rank
distance codes. In Finite Geometry terms the maximum number of solids in
PG(7,2), mutually intersecting in at most a point, is 257. The result was
obtained by combining the classification of substructures with integer linear
programming techniques. This implies that the maximum size As(8,6) of
a binary mixed-dimension code of packet length 8 and minimum subspace
distance 6 is also 257.
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1 Introduction

Let ¢ be a prime power, F; be the field with ¢ elements, and V' = F{ a v-dimensional
vector space over Fy. By L(V) we denote the set of all subspaces of V, or flats of the
projective geometry PG(V) = PG(Fy) =: PG(v — 1,¢). It forms a metric space with
respect to the subspace distance dg(U, W) := dim(U + W) — dim(U N W) = dim(U) +
dim(W) — 2dim(U N W) and may be viewed as a g-analogue of the Hamming space
(F%, dfam)- Coding for L(V') is motivated by the subspace channel model introduced
in [1] to describe error-resilient data transmission in packet networks employing random
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linear network coding. A constant dimension code (CDC) is a subset of [Y ], where

[‘lg] denotes the set of all k-dimensional subspaces in V. For 0 < k < v, we have
v k+i__ 1

# [‘lg] =7 ] = Hl s . We denote the parameters of a CDC by (v, N, d; k),;

v and ¢ refer to V = Fy, d is the minimum (subspace) distance, N is the cardinality,
and k the dimension of each element. As usual, each element of a CDC C is called
codeword and C has minimum distance d, if d < dg(U,W) for all U # W € C and
equality is attained at least once. In a (v, N, d; k), code the minimum distance d has to
be an even number satisfying 2 < d < 2min{k,v — k}.

The determination of the corresponding maximum size A, (v, d; k) and the classification
of maximum codes is known as the main problem of subspace coding, since it forms a
g-analogue of the main problem of classical coding theory (cf. [22, Page 23]).

The other extremal case is called mized-dimension code (MDC) which is a subset
C C L(V). The maximum cardinality of an MDC in V having subspace distance d is
denoted as A4(v,d).

By fixing an arbitrary non-degenerate bilinear form for - we can we almost bisect
the parameter space. For a (v, N,d; k), CDC C the code C* = 7(C) = {U+ | U € C} is
called the orthogonal code of C and has the parameters (v, N,d;v—k)g, i.e., A4(v,d; k) =
Ay(v,d;v—k), so that we can assume k < v—Fk in the following. The iterative application
of the so-called Johnson type bound II ([26, Theorem 3|, [, Theorem 4,5]), which is a
g-generalization of [18, Inequality (5)], gives the following rather tight upper bound
Ag(v, di k) <

¢’ —1 qwl_l qv—k+d/2+1_1 '

It is attained with equality at Ag(ak,2k;k) for £ > 1 and a > 2 and A3(13,4;3) =
1597245, see [3]. Using ¢"-divisible linear codes over F, with respect to the Hamming
metric, this bound was sharpened very recently, see [19], to Ag(v,d; k) <

qv -1 qv—l -1 qvq_l —1 S
gc-—1 ) gFt—1 | " WAq(Uvd»d) 7 (2)
d'+1 k—2

k—17

where d' = d/2, v = v — k+ d', and {a/ [’f]q}k := b with maximal b € N permitting
a representation of a — b - [’f]q as non-negative integer combination of the summands
g qi%ll_l for 0 <i <k —1." Of course, Inequality (1) is implied by Inequality (2).
Both bounds refer back to bounds for so-called partial spreads, i.e., A4(v,2k; k), where

'As an example we consider A2(9;6;4) < {[{], A2(8,6;3)/[1],}, = {¥2*},, using A2(8,6;3) = 34.
We have |12 | = 1158, 17374 — 1158 - 15 = 4, 17374 — 1157 15 =19, and 17374 — 1156 - 15 = 34.
Since 4 and 19 cannot be written as a non-negative linear combination of 8, 12, 14, and 15, but
34 = 14 4+ 12 4+ 8, we have A2(9;6;4) < 1156, which improves upon the iterative Johnson bound
by two. We remark that [19] contains an easy and fast algorithm to check the presentability as

non-negative integer combination as specified above.




the minimum distance is maximal. For upper bounds in this special subclass of CDCs,
there is a recent series of improvements [20, 21, 23]. The underlying techniques can
possibly be best explained using the language of projective ¢*~!-divisible codes and the
linear programming method, see [17]. While a lot of upper bounds for the maximum
sizes of CDCs have been proposed in the literature, most of them are provable dominated
by Inequality (1), see [12]. Indeed, besides Inequality (2), the only known improvements
are A2(6,4;3) = 77 < 81, see [11], and A2(8,6;4) < 272 < 289 [13]. The cited conference
paper, for the later result, is the predecessor of and replaced by this paper. For numer-
ical values of the known lower and upper bounds the sizes of subspace codes we refer
the reader to the online tables http://subspacecodes.uni-bayreuth.de associated
with [I1]. A survey on Galois geometries and coding theory can be found in [7].

The so-called Echelon—Ferrers construction, see e.g. [], gives A2(8,6;4) > 257. More
precisely, the corresponding code is a lifted maximum rank distance (LMRD) code plus
a codeword. Codes containing the LMRD code have a size of at most 257, see [0,
Theorem 10]. Our main theorem states that this construction gives all maximal codes.

Theorem 1. A3(8,6;4) = 257 and up to isomorphism there are two maximum codes,
which are LMRD codes plus a codeword, see Corollary 11.

Theorem 2 ([16, Theorem 3.3(1)]). Ifv = 2k > 8 even then Ay(v,v—2) = Ay(v,v—2,k).
Both theorems together imply the maximum cardinality in the MDC case:
Corollary 3. A2(8,6) = 257

Given Theorem 1 and Corollary 11, one may ask whether there exists an integer & > 4
with As(2k,2k — 2;k) > 2% + 1 or an k x k MRD code with minimum rank distance
k — 1 that is not equivalent to the Gabidulin code.

The remaining part of the paper is structured as follows. In Section 2 we provide
the necessary preliminaries like a detailed definition of lifted maximum rank distance
codes, acting symmetry groups, and upper bounds for code sizes based on the number
of incidences of codewords with a fixed subspace. As in [14], we want to apply integer
linear programming methods in order to determine the exact maximum size of CDCs
with the specified parameters. Since this algorithmic approach suffers from the presence
of a large symmetry group”, we use the inherent symmetry to prescribe some carefully
chosen substructures up to isomorphism. The involved substructures are described in
Section 3 and the integer linear programming formulations are described in Section 4.
Those parts are put together to the proof of our main theorem in Section 5.

2 Preliminaries

Let m,n be positive integers. The rank distance of m x n matrices A and B over Fy is
defined as d;(4, B) = 1k(A — B). The rank distance provides a metric on F;"*". Any

2 Algorithmic methods taking into account known symmetries of integer linear programming formula-
tions automatically are presented in the literature. However, we are not aware of any paper, where
those approaches have been successfully applied to compute tightened upper bounds for CDCs.
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subset C of the metric space (IFZJ”X", d;) is called rank metric code. Tts minimum distance
d is the minimum of the rank distance between pairs of distinct codewords (defined for
#C > 2). If C is a subspace of the Fy-vector space Fg™™, then C is called linear.
If m < n (otherwise transpose), then #C < ¢(™=4+)n by [1 Theorem 5.4]. Codes
achieving this bound are called mazimum rank distance (MRD) codes. In fact, MRD
codes do always exist. A suitable construction has independently been found in [4, 9, 25].
Today, these codes are known as the Gabidulin codes. In the square case m = n, after the
choice of a Fy-basis of Fg» the Gabidulin code is given by the matrices representing the
[F,-linear maps given by the g-polynomials aoz? + a1zt 4 +ap_gz? " € Fgn[z]. The
lifting map A: Fg**" — [Ffz::"] maps an (m x n)-matrix A to the row space ((I,,]|A)),
where [, denotes the m x m identity matrix. The mapping A is injective and its image
is given by all m-dimensional subspaces of IFZ”” having trivial intersection with the
special subspace S = (em11,.--,emin) of Fy'™™ (e; denoting the ith unit vector). In
fact, the lifting map is an isometry (F7**™,2d,) — (Fy**™,d;). Of particular interest are
the LMRD codes, which are CDCs of fairly large, though not maximum size.

Although we use the algebraic dimension v instead of the geometric dimension v — 1
in this paper, we would like to partially use the geometric language. Abbreviating k-
dimensional subspaces k-spaces, we call 1-spaces points, 2-spaces lines, 3-spaces planes,
4-spaces solids, and (v — 1)-spaces hyperplanes.

For dimensions v > 3 the automorphism group of the metric space (L(V'), ds) is given
by the group (PTL(V),n), with 7 : [‘ﬂ > [vkk] ,U +— U'. When we later speak
of classifications up to isomorphism for CDCs in [ Y], then we refer to (PTL(V),) if
v = 2k and to PI'L(V) otherwise.

In order to describe suitable substructures of (8, N, 6;4)s codes with large cardinality
N, we will consider incidences with fixed subspaces. To this end, let Z (S, X) be the set
of subspaces in S C L(V) that are incident to X <V, ie, Z(S,X)={U € S|U <
X VX <U}. Asspecial subspaces X we explicitly label a point P= ((0,0,0,0,0,0,0,1))
and a hyperplane H = {z € V | zg = 0}. Note that P and H are not incident. By
L: IE‘; — H we denote the canonical embedding, which we will apply to subspaces and
sets of subspaces.

To keep the paper self-contained, we restate upper bounds for #Z (S, X) and N from
the preceding conference paper [13] with their complete but short proofs.

Lemma 4. Let C be a (v,#C,d;k)q CDC and X < V. Then we have #ZI (C,X) <
A (dim(X),d; k) if dim(X) > k and #Z (C, X) < Ay(v —dim(X),d; k — dim(X)) other-

wise.

Proof. Note that Z (C,X) is a (dim(X),#Z (C,X),d;k); CDC. For the second part
we write V= X @ V' and U; = X @ U] for all U; € Z(C,X). With this we have
dy(U3,Uj) = 2k — 2dim(U; N U;) < 2 (k — dim(X)) — 2dim(U} 0 UY) = dy(U}, U}).

(]
Corollary 5. LetC be a (2k, #C,2k—2;k), CDC fork > 1 andb € Z. Then #I (C,H) <
¢" +1 and #I (C,P) < ¢* + 1 for all hyperplanes H and points P.



Proof. We have Ay(v,2k; k) = Z::(ll —q+1forv=1 (mod k) and 2 < k < v, see [2],
so that Lemma 4 gives #Z (C, P) < Ay(2k — 1,2k — 2,k — 1) = ¢* + 1 and #Z (C, H) <
Ay(2k — 1,2k — 2; k) = Ay(2k — 1,2k — 2k — 1) = ¢F + 1.

O

In particular, Corollary 5 shows that each point and each hyperplane is incident to
at most 17 codewords of an (8, N, 6;4); CDC. The next lemma refines this counting by
including points which are not incident to a fixed hyperplane.

Lemma 6. Let C be an (8, #C,6;4)y CDC with #C > 255 and H a hyperplane. Then
there is a point P with P' £ H with Z (C,P") > 14. Moreover, if T (C,P) < 16 for all
points P, then there is a point P" with P" £ H with T (C, P") > 15.

Proof. Abbreviating P = []Fl% }, double counting of

#{PU)ePXC|P<UY=#C-[{]l,= Y #I(C,P)+ Y _ #I(C.P)

PEZ(P,H) PEI(P,H)

yields the statement in both cases via contradiction. In the first case, we use Z (C, P) <
17 for all points P by Corollary 5 and assume Z (C, P) < 13 for all points P < H, hence
the right hand side is < 127 - 17 4 128 - 13 < 255 - 15 and in the second case, assume
Z(C,P) < 14 for all points P < H, hence the right hand side is < 12716 + 128 - 14 <
255 - 15. O

3 Substructures of (8, N,6;4), CDCs for N > 257

Let C be an (8, N, 6;4), CDC with N > 257. From Corollary 5 we conclude #Z (C, H) <
17 for any hyperplane H. If #7 (C,H) < 15 for each hyperplane H, then #C < [}], -
15/ [1], = 255 < 257, since every solid is contained in [g:i]g = [}], hyperplanes.
So, there exists at least one hyperplane H with #Z (C, H) € {16,17}. Since PTL(F§) =

GL(F$) acts transitively on the set of hyperplanes, we can assume #Z (C, ﬁ) € {16,17}.

~ 1 ~
Then (Fl (I <C ,H ))) , 1.e., the corresponding dual in H, is a set of pairwise disjoint

planes in H, i.e., a (7,N’,6;3); CDC with N’ € {16,17}, which have already been
classified:

Theorem 7. ([15, Theorem 1]) A2(7,6;3) = 17 and there are 715 isomorphism types of
(7,17,6;3)2 CDCs. Their automorphism groups have orders: 1551 270 327 419 g6 71 g8
122 167 245 325 42! 48° 642 96! 112! 1281 192! 2688!.

Theorem 8. ([15, Theorem 2]) There are 14445 isomorphism types of (7,16, 6;3)2
CDCs. Their automorphism groups have orders: 113587 2511 3143 4107 20 74 gl9 g3
1224 161 18! 20! 211 249 36! 42! 483 64! 96! 112! 1682 288! 384! 960" 2688!.



We call those configurations hyperplane configurations and denote a transversal of the
isomorphism classes of sets of planes of Theorem 7 and of Theorem 8 by A;7 and Ajg,

respectively. So, (L_l (I (C, ﬁ)))l is isomorphic to exactly one set in A15U.A17. Com-
puting the LP relaxation of a suitable integer linear programming formulation, see the
next section, one can check easily that most of the 715414445 hyperplane configurations
can not be extended to (8,257,6;4)2 CDCs. In Table 3 we list the remaining hyperplane
configurations using the following notation. It is well known that any plane in F has a
unique binary 3 X 7 generator matrix in reduced row echelon form and vice versa. Each
plane is denoted by an integer with seven digits, one for each column of the generator
matrix in such a way that the three entries in each column are coefficients of a 2-adic

number, i.e., (c1,c2,¢c3)7 ¢ c1 - 2% 4+ o - 21 + ¢3 - 22, Leading zeroes are here omitted.

. 1000000 .
For example the number 1024062 is the subspace <8 01001 5) Note that since we are

encoding matrices in reduced row echelon form, the three pivot columns are the first
numbers 1, 2, and 4 appearing in this order and no digit is larger than 7. The sets of
planes in Table 3 are labeled with indices 1 < ¢ < 38. By F; we denote the corresponding
sets of solids in F§.

Next we want to enlarge some of the possible hyperplane configurations to larger
substructures, more precisely those with indices 1 < ¢ < 7 in Table 3. Therefore we

distinguish both possibilities for #Z (C,ﬁ ) If it is 17, then Lemma 6 guarantees a
point P £ H such that #7 (cﬁl) FHT(C,P) > 17+ 14 = 31. If #T (cfi) — 16

then we can assume w.l.o.g. that #Z (C, P) < 16 for all points P, since otherwise we
can apply the orthogonality and have the first case. Then Lemma 6 guarantees a point

P £ H such that #7 (cf{r) + #I(C,P) > 16 + 15 = 31. Since the stabilizer of H

in GL(F§) acts transitively® on the set of points not incident to H, we can assume
H#T (C,]B) + H#T (C,I:I: ) > 31. We call sets of a solids in H and b solids containing

P, where 16 < a < 17 and a + b = 31, with minimum subspace distance 6, 31-point-
hyperplane configurations.

We build up a graph G; = (V;, E;), whose vertex set V; consists of all solids in []P:S}

that contain P and intersect the elements from F; in at most a point. For U, W € Vj,
we have {U,W} € E; iff Un'W = P. Using Cliquer [21] we enumerate all cliques of
size 31 — #F; of G; and compute a transversal T'(F;) of the action of the stabilizer of
F;. The clique computations for 1 < ¢ < 7, ¢ # 5 took between 27 and 589 hours, see
Table 1 for details about the running times and #V;, while the computation time for the
transversal, was negligible. The traversal is denoted by T'(F;), see the sixth column of
Table 2 for the corresponding orbit lengths. The clique computation for G5 was aborted
after 600 hours and then performed in parallel using the following rather easy technique
to split problems into multiple subproblems.

3 Since StabGL(Fg) (ﬁ) = {('g ?) € GL (Fg) ’ A€ GL (]F;) and b € F5 }, any point that is not incident
) o P
L .

I

to H, i.e., ((p ] 1)) with p € F%, can be mapped via ( o



Lemma 9. Let X be a finite set and f: 2% — {0,1} be a function. A bijection m: X —
X is called an automorphism (with respect to f) if f(S) = f(n(S)) for all S C X. Let T’
be a group of automorphisms, T = {t1,...,tm} be a transversal of T acting on X, where
the corresponding orbit sizes are decreasing, and 7: X — {1,...,m} such that x € X s
in the same orbit as t.(y). If S C X and i = min{r(z) : = € S}, then there exists an
automorphism v € T with {t;} € ~(S), £(S) = f(7(5)), and min{r(z) : = € v(S)} =1.
Proof. Choose z € X with 7(z) =i and v € " with y(z) = t;. Note that 7(7/(2)) =
7(2) for all v/ € T and all 2’ € X.

O

Here we apply Lemma 9 with X as the vertex set of G5, I' the automorphism group
of F5, and f(95) equals 1 iff S is a clique in G5. In general, we label the elements of
T in decreasing size of the corresponding orbit lengths, since large orbits admit small
stabilizers and forbid many elements from X in the subsequent subproblems, i.e., we
get few rather asymmetrical large subproblems and many small subproblems. The 1258
vertices of G5 are partitioned into 24 orbits of size 1 and 617 orbits of size 2 by I', which
leaves us 641 graphs where we have to enumerate all cliques of size 31 — #F5 — 1 = 14.
Since some of these graphs still consist of many vertices, we iteratively apply Lemma 9
with the identity group as I' for at most two further times: After the first round we split
the 68 subproblems, which lead to graphs with at least 700 vertices. Then, we split the
81 subproblems, which lead to graphs with at least 600 vertices. Finally, we end up with
104 029 graphs, where we have to enumerate all cliques of size 14, 13 or 12. All of these
instances have been solved in parallel with Cliquer to get a superset of the transversal
of all cliques of size 15 of G5. Applying the action of the automorphism group of order
2 allowed then to get a transversal as well as all cliques, simply as union of the orbits.
This took about 750 hours in cpu-time, were the smaller problems where preprocessed
on a single computer and the remaining 55420 larger subproblems were processed in
parallel with 16 cores.

Anticipating the results from Section 5, we state that just 242 non-isomorphic 31-
point-hyperplane configurations can be extended to CDCs with cardinality 257. More-
over, we will verify indirectly that in all those extensions exists a codeword c such that
C\{c} is an LMRD code.

Theorem 10. (/10]) The Gabidulin construction gives the unique isomorphism type of
(not necessarily linear) 4 x 4 MRD codes with minimum rank distance 3.

This result has been achieved computationally in the context of the work [10]. How-
ever, to make this article as self-contained as possible, we decided to include the idea of
the proof.

Proof. Let C be a 4 x 4 MRD code of minimum rank distance 3. Then #C' = 256.
For each vector v € 3, there are exactly 16 matrices in C having v as their last row.
After removing this common row, those 16 matrices form a binary 3 x 4 MRD code
of minimum rank distance 3. These MRD codes have been classified in [15] into 37
isomorphism classes.



Let C” be one of these codes, extended to size 4 x 4 by appending the zero vector as
a last row to all the matrices in C’. Up to isomorphism, C is the extension of one of
these 37 codes C' by 256 — 16 = 248 matrices. In particular, for each v € F3\{0}, it
must be possible to add 16 matrices of size 4 x 4 with last row v without violating the
rank distance. For fixed v, this question can be formulated as a clique problem: We
define a graph G,, whose vertex set is given by all 4 x 4 matrices with last row v having
rank distance > 3 to all matrices in C’. Two vertices are connected by an edge if the
corresponding matrices have the rank distance > 3. Now the question is if the graph G,
admits a clique of size 16 for all v € F3\{0}. Using Cliquer [24], we get that out of the
37 types of codes C’, this is possible only for a single type.

For this remaining type, the full extension problem to a 4 x 4 MRD code is again
formulated as a clique problem. The graph is defined in a similar way, but without the
restriction on the last row of the matrices in the vertex set. This yields a graph with
1920 vertices. The maximum clique problem is solved within seconds for this graph.?
The result are 8 cliques of maximum possible size 248, such that we get 8 extensions to
a rank distance code of size 16 4+ 248 = 256, which are MRD codes. Those 8 codes turn
out to be isomorphic to the Gabidulin code.

O

We remark that the corresponding Gabidulin code is linear, its lifted version is self-
dual with respect to - and unique up to isomorphism.

Corollary 11. Let C be an (8,257,6;4)y CDC that contains an LMRD code C', then
C is isomorphic to either {((I4 | B)) | B € M} U{((Oaxa | 14))} or {{(Is | B)) | B €
MY U{{(Os4x3 | 11 | O4x1))}, where M is the 4 x 4 Gabidulin code with minimum rank
distance 3, Iy is the 4 X 4 unit matriz, and Op,xn 1S the m X n-all-zero matriz.

Proof. From Theorem 10 we conclude that the contained LMRD code C’ is the lifted
Gadidulin code M. It has a stabilizer of cardinality 230400, which partitions the 451
solids intersecting each codeword of C’ in at most a point in two orbits: the special solid
of C’, which intersects all codewords of C’ trivially, and an orbit consisting of 450 solids

which all intersect the special solid of C’ in a plane.
O

4 Integer linear programming models

It is well known that the determination of A4(v,d;k) can be formulated as an integer
linear programming problem with binary variables (BLP). If all constraints of the form
x € {0,1} are replaced by x € R>g we speak of the corresponding linear programming
relaxation (LP). Suppose that we already know that a CDC C contains the solids from
F C [ig] and that each point and hyperplane is incident to at most f codewords, then
we can state the following upper bounds on #C:

4We noticed that the order of the vertices makes a huge difference for the running time. For fast results,
matrices with the same last row should be numbered consecutively.



Lemma 12. Let F C [Izé] and f € N, then any (8,#C,6;4)y CDC C with F C C such
that each point and hyperplane is incident to at most f codewords has #C < ZSBLP(F, f) <
2P (F, f), where Varg = [ig], 2E¥ is the LP relazation of 28'Y, and

2BLP(F, f) := max Z Ty

U&Varg
st Z zy < f VP e [Ifﬂg] Yw e {1,7}
UeZ(Varg,W)
Yo oap<i VL € [¥3] Yw € {2,6}
UeZ(Varg,W)
zy =1 YU € F
zy € {0,1} VU € Varg.

Proof. Interpreting (xy)vevars as incidence vector of C, the objective function equals
#C. The first two sets of constraints are feasible by Lemma 4 and the choice of f. The

third set of constraints is feasible since ' C C.
d

If #F is rather small, then the computation of zELF (F, f) would take too much time,
so that we also consider a linear programming formulation for #{UNH : U € C}, i.e.,
we consider the image of C in H.

Lemma 13. For F C [Ii;] let Var7(F) := {U € [IB;)Z] ‘ dim(UNS) <1VS e F} and
w(F,W) = max{#Q | Q@ C Z (Vary(F),W) Adim(U; N U2) < 1IVU; # Uy € Q}. If
#F € {16,17}, then any (8,#C,6;4)2 CDC C with #C > 255 and (F) C C such that
each point and hyperplane is incident to at most #F codewords satisfies #C < z]73LP(F),

where

2BLP(F) := max Z zy + #F

UEVar7(F)
st ST 0wy SHF - #I(FW) YW e (B2
UeZ(Var7(F),W) o
Z 2y <1 YW e ]F2§ \(USGF[‘E])
U€eZ(Var7(F),W) ST
Y a<t VWe_E}_\F

UeZ(Vary(F),W)



S 2y < minfw(® W), 7} WVG[?}US%WWSEF
UeZ(Vary(F),W)

S au SAFF-#T(EW)) W e [
UeZ(Vary(F),W)

> ay+#F >255
UeVary(F)
zy € {0,1} VU € Vary(F)

N~

Proof. Interpreting (7y)yevar,(7) @s incidence vector of {U N H|UeCAU % I:T},
one can check the objective function and the last two lines. Since two solids in C may
intersect in at most a point, any two elements in {U N H | U € C} may also intersect in
at most a point, which proves the constraints with dim(W) € {2,4}.

Any 5-space W contains at most w(F, W) planes by choice of w, also «(WW) is incident
to [g:g } , = 7 G-spaces, which in turn contain at most one codeword of C. If W contains
a solid of F', then any plane in W meets this solid in at least a line. This proves the
constraints with dim(W) = 5.

For any point W its embedding +(W) is incident to at most #F' codewords of C proving
the constraints with dim(W) = 1.

For any 6-subspace W its embedded ¢(W) is contained in [?:g ] , = 3 hyperplanes in F$
of which one of them is H. Since each hyperplane is incident to at most #F codewords
and H is incident to exactly #F codewords, i.e., t(F), the other two hyperplanes are each
incident to either #F codewords if W contains no element of F' or #F — 1 codewords if
W contains one element of F'. Obviously two solids in a 6-space intersect in at least a
line and hence W contains at most one element of F. This proves the constraints with
dim(W) = 6.

The single last inequality is for cutting the Branch & Bound Tree early since we are

only interested in solutions of cardinality at least 255.
O

5 Proof of the main theorem

The algorithmic proof of Theorem 1 is split into several phases that are described in
detail in the following subsections. Let C be an (8,#C, 6;4); CDC with #C > 257. As
argued in the beginning of Section 3, C has to contain one of the 7154 14445 hyperplane
configurations from A;7 U Ajg. This list is reduced in phase 1, see Subsection 5.1, and
then extended to 31-point-hyperplane configurations in phase 2, see Subsection 5.2. The
resulting list is reduced in phase 3, see Subsection 5.3, and then we deduce that C always
is an LMRD code extended by a single codeword, see Subsection 5.4. The classification
of those structures at the end of Section 3 concludes the proof. We remark that the
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termination of phase 1 proves A3(8,6;4) < 271 and the termination of phase 3 proves
A9 (8,6;4) = 257. The required computation times for the four phases are 42 087, 2214,
1804, and 2 168 hours, respectively, i.e., 48273 hours in total.

5.1 Excluding hyperplane configurations

For all A € AjgU Aj7 we computed z5F (1(A+), #A) and found that all but 33 elements
in Ajs (37251 hours) and 5 elements in A;7 (1021 hours) have an optimal value smaller
than 256.9, i.e., we have implemented a safety threshold of ¢ = 0.1. These 38 elements
are listed in Table 3 and their LP values are stated Table 2.

For indices 1 < i < 38 we computed 2P-F(,(F})) and obtained 6 elements in A and
2 elements in A;7 that may allow 2P (4 (F;)) > 256.9, cf. Table 2 for details. This
computation was aborted after 100 hours of wall time for each of these 38 subproblems.

Varz(1(Fg)) has exactly 948 planes which form 56 orbits (438'3162832!2) under the
action of the automorphism group of order 32. We apply Lemma 9 to obtain 56 sub-
problems. Less than 15 hours were needed to verify Z7BLP < 256 in all cases.

5.2 Extending hyperplane configurations to 31-point-hyperplane
configurations

The seven hyperplane configurations, with indices 1 < ¢ < 7 remaining after phase 1
are extended to 31-point-hyperplane configurations, see Section 3 for the computational
details. The extension of index 5 took 750 hours and the extension of the other indices
combined took 1464 hours. See Table 1 for details.

5.3 Excluding hyperplane configurations to 31-point-hyperplane
configurations

For the 73234 31-point-hyperplane configurations resulting from phase 2, we computed
zg;P(-) in 953 hours. The maximum value aggregated by the contained hyperplane config-
uration with index 7 is stated in the seventh column of Table 2 and Table 1. For index 1
there are 195, for index 3 there are 98, and for index 7 there are 240 31-point-hyperplane
configurations with 2i* > 256.9.

Next we computed ZELP for these remaining 195 4+ 98 + 240 cases in 851 hours, see the

eighth column of Table 2 and Table 1. The counts for value exactly 257 are 2 4 0 + 240.

5.4 Structural results for (8, N,6;4), CDCs with N > 257

So far we know that the hyperplane configuration of C in H is either F} € Ajg or
Fr; € A7 with 2 and 240 possible 31-point-hyperplane configurations, respectively.

For F there exists a unique solid S in F§ which is disjoint from the 31 prescribed
solids in both cases. Adding the constraint g = 0 to the BLP of Lemma 12 gives
an optimal target value of 256, i.e., S has to be a codeword in C, in about 2 hours of
computation time in each of the two cases. The codeword S covers its 15 contained
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points. Via xzg = 1 and ZP€I<[Y]7S> ZUGI(Varg,P) xy > 16 we can ensure that another

codeword of C meets S in a point. This modification of the BLP of Lemma 12 gives
again an optimal target value of 256 in about two hours of computation time in both
cases. Thus, C\{S} has to be an LMRD code.

For F; there exists a unique solid S in F§ which is disjoint from 30 of the prescribed
solids and meets the other prescribed solid S’ in a plane, in all 240 cases. By adding
ZPGI([‘{],S) 2 Uez(Vars,p) LU = 8 we can ensure that S is met by another codeword,

besides S’, from C in a point. The augmented BLP of Lemma 12 needs 9 hours compu-
tation time and end up with PP < 256 for each of the 240 cases. Thus, C\{S'} has to
be an LMRD code.
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Appendix

Table 1: Details for the computation of all 31-point-hyperplane configurations in phase 2

and phase 3.
Time in hours for
i | #V; | phase 2 LP in phase 3 BLP in phase 3
1] 1231 | 144 51 328
2| 1303 | 589 78
3| 1194 | 217 21 519
411243 | 278 22
5| 1258 | 750 419
6 | 1251 | 209 13
71864 |27 349 4
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