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The Graph Structure of Chebyshev Polynomials

over Finite Fields and Applications
Claudio Qureshi and Daniel Panario

Abstract

We completely describe the functional graph associated to iterations of Chebyshev polynomials

over finite fields. Then, we use our structural results to obtain estimates for the average rho length,

average number of connected components and the expected value for the period and preperiod of iterating

Chebyshev polynomials.

I. INTRODUCTION

The iteration of polynomials and rational functions over finite fields have recently become an active

research topic. These dynamical systems have found applications in diverse areas, including cryptography,

biology and physics. In cryptography, iterations of functions over finite fields were popularized by the

Pollard rho algorithm for integer factorization [12]; its variant for computing discrete logarithms is

considered the most efficient method against elliptic curve cryptography based on the discrete logarithm

problem [13]. Other cryptographical applications of iterations of functions include pseudorandom bit

generators [1], and integer factorization and primality tests [8], [9].

When we iterate functions over finite structures, there is an underlying natural functional graph. For

a function f over a finite field Fq, this graph has q nodes and a directed edge from vertex a to vertex

b if and only if f (a) = b. It is well known, combinatorially, that functional graphs are sets of connected

components, components are directed cycles of nodes, and each of these nodes is the root of a directed

tree from leaves to its root; see, for example, [6].

Some functions over finite fields when iterated present strong symmetry properties. These symmetries

allow mathematical proofs for some dynamical properties such as period and preperiod of a generic ele-

ment, (average) “rho length” (number of iterations until cycling back), number of connected components,
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cycle lengths, etc. In this paper we are interested on these kinds of properties for Chebyshev polynomials

over finite fields, closely related to Dickson polynomials over finite fields. These polynomials, specially

when they permute the elements of the field, have found applications in many areas including cryptography

and coding theory. See [10] for a monograph on Dickson polynomials and their applications, including

cryptography; for a more recent account on research in finite fields including Dickson polynomials, see

[11].

Previous results for quadratic functions are in [17]; iterations of x + x−1 have been dealt in [16] and

iterations of Rédei functions over non-binary finite fields appeared in [14], [15]. Related to this paper,

iterations of Chebyshev polynomials over finite fields have been treated in [7]. The graph and periodicity

properties for Chebyshev polynomials over finite fields when the degree of the polynomial is a prime

number are given in [7].

In this paper we study the action of Chebyshev functions of any degree over finite fields. We give a

structural theorem for the functional graph from which it is not hard to derive many periodicity properties

of these iterations. In the literature there are two kinds of Chebyshev polynomials: normalized and not

normalized. We use the latter ones, generally known as Dickson polynomials of the first kind. In odd

characteristic both kinds of Chebyshev polynomials are conjugates of each other, and so their functional

graphs are isomorphic. However, this is not the case in even characteristic. Using the normalized version

trivializes since we get Tn(x) = 1 if n is even, and Tn(x) = x if n is odd, where Tn is the nth degree

Chebyshev polynomial. As a consequence, we work with the non normalized version that is much richer

in characteristic 2. Not much is known about Chebyshev polynomials over binary fields; see [5] for

results over the 2-adic integers.

In Section II we introduce relevant concepts for this paper like ν-series and their associated trees.

These trees play a central role in the description of the Chebyshev functional graph. Several results

about a homomorphism of the Chebyshev functional graph, as well as a relevant covering notion, are

given in Section III. A decomposition of the Chebyshev’s functional graph is given in Section IV. This

decomposition leads naturally into three parts: the rational, the quadratic and the special component.

Section V treats the rational and quadratic components. The special component is dealt in Section VI.

The main result of this paper (Theorem 4), a structural theorem for Chebyshev polynomials, is given in

Section VII. We provide several examples to show applications of our main theorem. As a consequence

of our main structural theorem, in this section we also obtain exact results for the parameters N,C,T0,T

and R for Chebyshev polynomials, where N is the number of cycles (that is, the number of connected

components), T0 is the number of cyclic (periodic) points, C is the expected value of the period, T is the

expected value of the preperiod, and R is the expected rho length.
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II. PRELIMINARIES

We denote by Fq a finite field with q element, where q is a prime power, and Zd the ring of integers

modulo d. Let F∗q and Z∗
d

denote the multiplicative group of inverse elements of Fq and Zd, respectively.

Let n denote the equivalence class of n modulo d. For n, d ∈ Z+ with gcd(n, d) = 1, we denote by od(n)

and õd(n) the multiplicative order of n in Z∗
d

and Z∗
d
/{1,−1}, respectively. It is easy to see that if −1 ∈ 〈n〉

in Z∗
d
, then õd(n) = od(n)/2, otherwise õd(n) = od(n). For m ∈ Z+ we denote by rad(m) the radical of m

which is defined as the product of the distinct primes divisors of m. We can decompose m = νω where

rad(ν) | rad(n) and gcd(ω, n) = 1 which we refer as the n-decomposition of m. If f : X → X is a function

defined over a finite set X , we denote by G( f /X) its functional graph.

The main object of study of this paper is the action of Chebyshev polynomials over finite fields Fq. The

Chebyshev polynomial of the first kind of degree n is denoted by Tn. This is the only monic, degree-n

polynomial with integer coefficients verifying Tn(x + x−1) = xn + x−n for all x ∈ Z. Table I gives the first

Chebyshev polynomials.

T1(x) = x

T2(x) = x2 − 2

T3(x) = x3 − 3x

T4(x) = x4 − 4x2 + 2

T5(x) = x5 − 5x3 + 5x

T6(x) = x6 − 6x4 + 9x2 − 2

T7(x) = x7 − 7x5 + 14x3 − 7x

T8(x) = x8 − 8x6 + 20x4 − 16x2 + 2

T9(x) = x9 − 9x7 + 27x5 − 30x3 + 9x

T10(x) = x10 − 10x8 + 35x6 − 50x4 + 25x2 − 2

TABLE I

FIRST FEW CHEBYSHEV POLYNOMIALS Tn(x) FOR 1 ≤ n ≤ 10.

A remarkable property of these polynomials is that Tn ◦ Tm = Tnm for all m, n ∈ Z+. In particular,

T (k)n = Tnk , where f (k) denotes the composition of f with itself k times. Describing the dynamics of the

Chebyshev polynomial Tn acting on the finite field Fq is equivalent to describing the Chebyshev’s graph

G(Tn/Fq).

The case when n = ` is a prime number was dealt by Gassert; see [7, Theorem 2.3]. In this paper we

extend these results for any positive integer n.

Example 1. For n = 30 the corresponding Chebyshev polynomial is given by T30(x) = x30 − 30x28 +
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405x26−3250x24+17250x22−63756x20+168245x18−319770x16+436050x14−419900x12+277134x10−

119340x8 + 30940x6 − 4200x4 + 225x2 − 2. The graphs G(T30/Fq) for q = 19 and q = 23 are shown in

Fig. 1.

Fig. 1. a) The Chebyshev’s graph G(T30/F19). b) The Chebyshev’s graph G(T30/F23).

Next we review some concepts from [14]. For n and ν positive integers such that rad(ν) | rad(n),

the ν-series associated with n is the finite sequence ν(n) := (ν1, . . . , νD) defined by the recurrence

ν1 = gcd(ν, n), νk+1 = gcd
(

ν
ν1ν2 · · ·νk , n

)
for 1 ≤ k < D and ν1ν2 · · · νD = ν with νD > 1 if ν > 1,

and ν(n) = (1) if ν = 1.

We write A =
⊎

Bi to indicate that A is the union of pairwise disjoint sets Bi. If m ∈ Z+ and T is a

rooted tree, Cyc(m,T) denotes a graph with a unique directed cycle of length m, where every node in this

cycle is the root of a tree isomorphic to T . We also consider the disjoint union of the graphs G1, . . . ,Gk ,

denoted by
⊕k

i=1 Gi, and k ×G =
⊕k

i=1 G for k ∈ Z+. If T1, . . . ,Tk are rooted trees, 〈T1 ⊕ · · · ⊕ Tk〉 is a

rooted tree such that its root has exactly k predecessors v1, . . . , vk , and vi is the root of a tree isomorphic

to Ti for i = 1, . . . , k. If T is a tree that consists of a single node we simply write T = •. In particular,

Cyc(m, •) denotes a directed cycle with m nodes. The empty graph, denoted by ∅, is characterized by

the properties: ∅ ⊕ G = G for all graphs G, k × ∅ = ∅ for all k ∈ Z+ and 〈∅〉 = •.

We associate to each ν-series ν(n) a rooted tree, denoted by Tν(n), defined by the recurrence formula

(see Fig. 2): 
T0 = •,

Tk = 〈νk × Tk−1 ⊕
⊕k−1

i=1 (νi − νi+1) × T i−1〉, 1 ≤ i < D,

Tν(n) = 〈(νD − 1) × TD−1 ⊕
⊕D−1

i=1 (νi − νi+1) × T i−1〉.

(1)
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The tree Tν(n) has ν vertices and depth D; see Proposition 2.14 and Theorem 3.16 of [14].

The following theorem is a direct consequence of Corollary 3.8 and Theorem 3.16 of [14]. As usual,

ϕ denotes Euler’s totient function.

Theorem 1. Let n ∈ Z+ and m = νω be the n-decomposition of m. Denoting by G(n/Zm) the functional

graph of the multiplication-by-n map on the cyclic group Zm, the following isomorphism holds:

G(n/Zm) =
⊕
d |ω

ϕ(d)
od(n)

× Cyc
(
od(n),Tν(n)

)
.

Fig. 2. This figure (taken from [14]) illustrates the inductive definition of TV when V is a ν-series with four components

V = (ν1, ν2, ν3, ν4). A node v labelled by a rooted tree T indicates that v is the root of a tree isomorphic to T .

A strategy to describe a functional graph G( f /X) of a function f : X → X is decomposing the set

X in f -invariant components. A subset A ⊆ X is forward f -invariant when f (A) ⊆ A. In this case the

graph G( f /A) is a subgraph of G( f /X). If f −1(A) ⊆ A, the set A is backward f -invariant. The set A is

f -invariant if it is both forward and backward f -invariant. In this case G( f /A) is not only a subgraph

of G( f /X) but also a union of connected components and we can write G( f /X) = G( f /A) ⊕ G( f /Ac),

where Ac = X \ A. In this paper, we decompose the set Fq in Tn-invariant subsets A1, . . . , Aκ such

that each functional graph G(Tn/Ai) for i = 1, . . . , κ is easier to describe than the general case and

G(Tn/Fq) =
⊕κ

i=1 G(Tn/Ai).

To describe a functional graph we need to describe not only the cyclic part but also the rooted trees

attached to the periodic points. We introduce next some notation related to rooted trees (where the root

is not necessarily a periodic point). Let f : X → X , x ∈ X and Nf be the set of its non-periodic points.

We define the set of predecessors of x by

Predx( f /X) = {y ∈ Nf : f (k)(y) = x for some k ≥ 1} ∪ {x}.

We denote by Treex( f /X) the rooted tree with root x, vertex set V = Predx( f /X) and directed edges

(y, f (y)) for y ∈ V \ {x}.
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III. RESULTS ON HOMOMORPHISM OF FUNCTIONAL GRAPHS

A directed graph is a pair G = (V, E) where V is the vertex set and E ⊆ V × V is the edge set. A

homomorphism φ between two directed graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by φ : G1 → G2,

is a function φ : V1 → V2 such that if (v, v′) ∈ E1 then (φ(v), φ(v′)) ∈ E2. In the particular case of functional

graphs, a homomorphism φ : G( f1/X1) → G( f2/X2) is a function φ : X1 → X2 satisfying φ ◦ f1 = f2 ◦ φ,

or equivalently such that the following diagram commutes

X1
φ
// X2

X1
φ
//

f1

OO

X2

f2

OO
.

It is easy to prove by induction that the relation φ◦ f1 = f2 ◦φ implies φ◦ f (k)1 = f (k)2 ◦φ for all k ≥ 1, that

is, φ : G( f (k)1 /X1) → G( f (k)2 /X2) is also a homomorphism for all k ≥ 1. If in addition φ is bijective (as

function from X1 to X2) then φ : G( f1/X1) → G( f2/X2) is an isomorphism of functional graphs. In this

case the functional graphs are the same, up to the labelling of the vertices. The main result of this paper

(Theorem 4) is an explicit description of G(Tn/Fq), the functional graph of the Chebyshev polynomial

Tn over a finite field Fq.

In the first part of this section we introduce the concept of θ-covering between two functional graphs

and derive some properties. In the last part we apply these results to obtain some rooted tree isomorphism

formulas which are used in the next sections.

A. θ-coverings

In our case of study (functional graph of Chebyshev polynomials) we consider the set F̃q = F∗q ∪ H,

where H is the multiplicative subgroup of F∗
q2 of order q + 1, and the following maps:

• The inversion map i : F̃q → F̃q given by i(α) = α−1.

• The exponentiation map rn : F̃q → F̃q given by rn(α) = αn.

• The map η : F̃q → Fq given by η(α) = α + α−1.

A useful relationship between these maps and the Chebyshev map are Tn ◦η = η ◦ rn and rn ◦ i = i ◦ rn.

In other words we have the following commutative diagrams:

F̃q
η
// Fq

F̃q
η
//

rn

OO

Fq

Tn

OO
and F̃q

i // F̃q

F̃q
i //

rn

OO

F̃q

rn

OO
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To describe the Chebyshev functional graph G(Tn/Fq) it is helpful to consider the homomorphism

η : G(rn/F̃q) → G(Tn/Fq) and to relate properties between these functional graphs. This homomorphism

is not an isomorphism, but it has very nice properties that are captured in the next concept.

Definition 1. Let φ : G( f1/X1) → G( f2/X2) be a homomorphism of functional graphs and θ : X1 → X1

be a permutation (bijection) which commutes with f1 (that is, f1 ◦ θ = θ ◦ f1). Then φ is a θ-covering if

for every a ∈ X2 there is α ∈ X1 such that φ−1(a) = {θ(i)(α) : i ∈ Z} (in other words, if the preimage of

each point is a θ-orbit). The homomorphism φ is a covering if it is a θ-covering for some θ verifying

the above properties.

We remark that a covering is necessarily onto and every isomorphism φ : G( f1/X1) → G( f2/X2) is a

covering (with respect to the identity map id : X1 → X1, id(x) = x). We note that the condition of φ−1(a)

being a θ-orbit for all a ∈ X2 implies that φ ◦ θ = φ.

In [7] it is proved several properties of the map η. Namely η is surjective, η−1(2) = {1}, η−1(−2) = {−1},

and for a ∈ Fq, η−1(a) = {α, α−1} where α and α−1 are the roots (in F∗
q2) of x2 − ax + 1 = 0 which are

distinct if a , ±2. In particular, with our notation, we have that η : G(rn/F̃q) → G(Tn/Fq) is a i-covering

between these functional graphs.

Next we prove some general properties for coverings of functional graphs that are used in the next

section for the particular case of the covering η : G(rn/F̃q) → G(Tn/Fq). In the next propositions we

denote by Pf and Nf the set of periodic and non-periodic points with respect to the map f , respectively.

We note that if φ : G( f1/X1) → G( f2/X2) is a homomorphism and x ∈ Pf1 then there is a k ≥ 1 such that

f (k)1 (x) = x. This implies f (k)2 (φ(x)) = φ( f
(k)
1 (x)) = φ(x), thus x ∈ φ−1(Pf2) and we have Pf1 ⊆ φ−1(Pf2).

The next proposition shows that when φ is a covering this inclusion is in fact an equality.

Proposition 1. Let θ : X1 → X1 be a permutation satisfying f1 ◦ θ = θ ◦ f1. If φ : G( f1/X1) → G( f2/X2)

is a θ-covering then φ−1(Pf2) = Pf1 .

Proof. Let ` be the order of θ (i.e. θ(`) = id). It suffices to prove φ−1(Pf2) ⊆ Pf1 . If α ∈ φ−1(Pf2) then there

is a k ≥ 1 such that f (k)2 (φ(α)) = φ(α). Since f (k)2 (φ(α)) = φ( f
(k)
1 (α)) we conclude that f (k)1 (α) = θ

(i)(α)

for some i ∈ Z. Applying f (k)1 on both sides we obtain f (2k)1 (α) = f (k)1 (θ
(i)(α)) = θ(i)( f (k)1 (α)) = θ

(2i)(α).

In the same way, applying f (k)1 several times, we have by induction that f (mk)
1 (α) = θ(mi)(α) for all m ≥ 1.

With m = ` we obtain f (`k)1 (α) = θ(`i)(α) = α, thus α ∈ Pf1 . � �

Remark 1. The equation φ−1(Pf2) = Pf1 is equivalent to φ−1(Nf2) = Nf1 since φ−1(Xc) = φ−1(X)c.
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Proposition 2. Let φ : G( f1/X1) → G( f2/X2) be a homomorphism satisfying φ−1(Pf2) = Pf1 and α ∈ X1.

We have Predα( f1/X1) ⊆ φ−1(Predφ(α)( f2/X2)).

Proof. Let β ∈ Predα( f1/X1), β , α (in particular β ∈ Nf1). By definition, there is an integer k ≥ 1 such

that f (k)1 (β) = α. This implies f (k)2 (θ(β)) = θ( f
(k)
1 (β)) = θ(α). Since φ−1(Nf2) = Nf1 and β ∈ Nf1 we have

φ(β) ∈ Nf2 , thus φ(β) ∈ Predφ(α)( f2/X2). � �

Remark 2. If Predα( f1/X1) ⊆ φ−1(Predφ(α)( f2/X2)) then φ(Predα( f1/X1)) ⊆ Predφ(α)( f2/X2) since φ is

surjective.

Proposition 3. Let θ : X1 → X1 be a permutation satisfying f1 ◦ θ = θ ◦ f1, α ∈ X1 and φ : G( f1/X1) →

G( f2/X2) be a θ-covering. The equality φ(Predα( f1/X1)) = Predφ(α)( f2/X2) holds.

Proof. The inclusion φ(Predα( f1/X1)) ⊆ Predφ(α)( f2/X2) follows from Propositions 1 and 2 (see also

Remark 2). To prove the other inclusion we consider b ∈ Predφ(α)( f2/X2) with b , φ(α) (in particular

b ∈ Nf2) and β ∈ X1 such that b = φ(β) (this is possible because φ is surjective). We have to prove

that there is a point β′ ∈ Predα( f1/X1) such that φ(β′) = b. By definition there is an integer k ≥ 1

such that f (k)2 (b) = φ(α) and we have φ( f (k)1 (β)) = f (k)2 (φ(β)) = φ(α). Since φ is a θ-covering, from

φ( f (k)1 (β)) = φ(α) we have that α = θ(i)( f (k)1 (β)) for some integer i and define β′ = θ(i)(β). Using that

θ and f1 commute we obtain f (k)1 (β
′) = θ(i)( f (k)1 (β)) = α and φ(β′) = φ(θ(i)(β)) = φ(β) = b (because

φ ◦ θ = φ). To conclude the proof we have to show that β′ ∈ Predα( f1/X1) and it suffices to prove that

β′ ∈ Nf1 . Since φ(β′) = b ∈ Nf2 we have β′ ∈ φ−1(Nf2) = Nf1 by Proposition 1 (see also Remark 1).

� �

With the same notation and hypothesis of Proposition 3, if we denote by P1 = Predα( f1/X1) and

P2 = Predφ(α)( f2/X2) we have that the restricted function φ|P1 : P1 → P2 is onto. We want to find

conditions to guarantee that φ|P1 : P1 → P2 is a bijection. We recall that the order of a permutation

θ : X1 → X1 is the smallest positive integer ` ≥ 1 such that θ(`) = id. This implies that the cardinality of

the θ-orbit of a point α ∈ X1, given by {θ(i)(α) : 0 ≤ i < `}, is a divisor of `.

Definition 2. Let θ : X1 → X1 be a permutation of order `. A point α ∈ X1 is θ-maximal, if the sequence

of iterates: α, θ(α), θ(2)(α), . . . , θ(`−1)(α) are pairwise distinct (that is, if the θ-orbit of α has exactly `

elements).

Remark 3. An important particular case is when θ : X1 → X1 is the identity map. In this case every

point α ∈ X1 is θ-maximal.
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Proposition 4. Let θ : X1 → X1 be a permutation satisfying f1 ◦ θ = θ ◦ f1, α be a θ-maximal point

of X1 and φ : G( f1/X1) → G( f2/X2) be a θ-covering. We denote by P1 = Predα( f1/X1) and P2 =

Predφ(α)( f2/X2). Then the restricted map φ|P1 : P1 → P2 is a bijection.

Proof. By Proposition 3 we have that φ|P1 : P1 → P2 is onto. To prove that φ|P1 is 1-to-1 we consider

β1, β2 ∈ P1 such that φ(β1) = φ(β2). Then there is an integer i ∈ Z such that β2 = θ
(i)(β1). If the order

of the permutation θ is `, we can suppose that 0 ≤ i < ` and we also have β1 = θ
(`−i)(β2). We consider

the smallest integers s1, s2 ≥ 0 such that f (si )1 (βi) = α for i = 1, 2 (they exist because β1, β2 ∈ P1). We

want to prove that s1 = s2. Consider the smallest integer t ≥ 0 such that f (t)1 (α) ∈ Pf1 . We have that

θ : G( f1/X1) → G( f1/X1) is an isomorphism of a functional graph (since θ is bijective and θ◦ f1 = f1◦θ),

thus, by Proposition 1, θ−1(Pf1) = Pf1 . We have that f (t+s2)
1 (β1) = θ(`−i)( f (t+s2)

1 (β2)) = θ(`−i)( f (t)1 (α)) ∈

θ(`−i)(Pf1) = Pf1 (in particular t + s2 ≥ s1 because f (t+s2)
1 (β1) ∈ Pf1 and β1 is a predecessor of α). We

have that f (t+s2−s1)
1 (α) = f (t+s2−s1)

1 ( f s1
1 (β1)) = f (t+s2)

1 (β1) ∈ Pf1 and by the minimality of t we conclude

that s2 ≥ s1. In a similar way we prove the other inequality s2 ≤ s1 obtaining s2 = s1; let us denote by

s = s1 = s2. We have α = f (s)1 (β2) = f (s)i (θ(i)(β1)) = θ(i)( f (s)1 (β1)) = θ(i)(α) with 0 ≤ i < `. Using that α

is θ-maximal we conclude that i = 0 and β1 = β2 as desired. � �

B. Rooted tree isomorphism formulas

Let φ : G( f1/X1) → G( f2/X2) be a homomorphism of functional graph. We consider a point α ∈ X1

and the sets P1 = Predα( f1/X1) and P2 = Predφ(α)( f2/X2). When φ(P1) ⊆ P2 and the restricted map φ|P1 :

P1 → P2 is a bijection, this map determines an isomorphism between the rooted trees T1 = Treeα( f1/X1)

and T2 = Treeφ(α)( f2/X2) (i.e. a bijection between the vertices preserving directed edges). In this case

we say that φ|P1 : T1 → T2 is a rooted tree isomorphism and the trees T1 and T2 are isomorphic which

is denoted by T1 ' T2. Sometimes, when the context is clear, we abuse notation and write T1 = T2 when

these trees are isomorphic.

The first result is about the trees attached to the map rn(α) = αn. Since F∗q and H are closed under

multiplication we have rn(F∗q) ⊆ F∗q and rn(H) ⊆ H.

Proposition 5. Let q−1 = ν0ω0 and q+1 = ν1ω1 be the n-decomposition of q−1 and q+1, respectively.

Let α ∈ F∗q and β ∈ H be two rn-periodic points. Then Treeα(rn/F∗q) = Tν0(n) and Treeβ(rn/H) = Tν1(n).

Proof. The sets F∗q and H are multiplicative cyclic groups of order q−1 and q+1, respectively. In general,

if G is a multiplicative cyclic group of order m = νω with rad(ν) | rad(n), gcd(n, ω) = 1, and rn : G→ G

is the map given by rn(g) = gn we prove that Treeg0(rn/G) = Tν(n). Indeed, if ξ is a generator of G and
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φ : Zm → G is the map given by φ(i) = ξi, then rn ◦ φ(i) = (ξi)n = ξni = φ ◦ n(i) (where n denotes the

multiplication-by-n map). This implies that φ : G(n/Zm) → G(rn/G) is an isomorphism of functional

graphs. Since all the trees attached to periodic points in G(n/Zm) are isomorphic to Tν(n) (Theorem 1)

the same occurs for the trees attached to periodic points in G(rn/G). � �

Proposition 6. If n ≥ 1 is an odd integer and a ∈ Fq, then Treea(Tn/Fq) and Tree−a(Tn/Fq) are

isomorphic.

Proof. Consider the map op : Fq → Fq given by op(x) = −x. Since n is an odd integer, the Chebyshev

polynomial is an odd function and we have op ◦ Tn = Tn ◦ op. Thus op : G(Tn/Fq) → G(Tn/Fq) is an

isomorphism of functional graphs and the results follows from Proposition 4. � �

Proposition 7. Let α ∈ F̃q. Then, Treeα(rn/F̃q) and Treeα−1(rn/F̃q) are isomorphic.

Proof. We consider the isomorphism of functional graphs i : G(rn/F̃q) → G(rn/F̃q) given by i(x) = x−1

(it is an isomorphism because i : F̃q → F̃q is bijective and i ◦ rn = rn ◦ i). The results follows from

Proposition 4. � �

Proposition 8. Let α ∈ F̃q with α , ±1 and a = η(α). Then, Treeα(rn/F̃q) and Treea(Tn/Fq) are

isomorphic.

Proof. We consider the homomorphism η : G(rn/F̃q) → G(Tn/Fq) (it is a homomorphism because

η ◦ rn = Tn ◦ η). This homomorphism is in fact a i-covering because η−1(a) = {α, i(α) = α−1} where

α ∈ F̃q is a root of x2 − ax + 1 = 0. We note that α ∈ F̃q is not i-maximal if and only if α = α−1 since i

is a permutation of order 2; this is equivalent to α = ±1. If α , ±1, then α is i-maximal and the result

follows from Proposition 4. � �

IV. SPLITTING THE FUNCTIONAL GRAPH G(Tn/Fq) INTO UNIFORM COMPONENTS

The most simple case of functional graph is when the trees attached to the periodic points are

isomorphic. In this case describing the functional graph is equivalent to describing the cycle decomposition

of the periodic points and the rooted tree attached to any periodic point. We start with a definition.

Definition 3. A functional graph G( f /X) is uniform if for every pair of periodic points x, x ′ ∈ X the

trees Treex( f /X) and Treex′( f /X) are isomorphic.

In this section we decompose the set Fq in three Tn-invariant sets: R (the rational component), Q

(the quadratic component) and S (the special component), obtaining a decomposition of the Chebyshev
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functional graph

G(Tn/Fq) = G(Tn/R) ⊕ G(Tn/Q) ⊕ G(Tn/S). (2)

Moreover, we prove that the functional graphs of the right hand side are uniform (Proposition 10). We

describe each component separately.

Lemma 1. We have X ⊆ Fq is Tn-invariant if and only if η−1(X) is rn-invariant.

Proof. (⇒) Let α ∈ η−1(X). We have η(α) ∈ X and Tn(η(α)) ∈ X (because X is forward Tn-invariant).

Therefore η(rn(α)) = Tn(η(α)) ∈ X and then rn(α) ∈ η−1(X). This proves that η−1(X) is forward rn-

invariant. Now we consider β ∈ F̃q such that rn(β) = α ∈ η−1(X). Then Tn(η(β)) = η(rn(β)) ∈ X . Since

X is backward Tn-invariant η(β) ∈ X , thus β ∈ η−1(X). This proves that η−1(X) is backward rn-invariant.

(⇐) Let x ∈ X . Since η is surjective we can write x = η(α) for some α ∈ F̃q. We have α ∈ η−1(X) and

using that η−1(X) is forward rn-invariant we also have rn(α) ∈ η−1(X). Thus Tn(x) = Tn(η(α)) = η(rn(α)) ∈

X . This proves that X is forward Tn-invariant. Now we consider y ∈ Fq such that Tn(y) = x ∈ X and

we can write y = η(β) with β ∈ F̃q since η is surjective. We have that Tn(y) = Tn(η(β)) = η(rn(β)) ∈ X ,

thus rn(β) ∈ η−1(X). Using that η−1(X) is backward rn-invariant we conclude that β ∈ η−1(X). Therefore

y = η(β) ∈ X which proves that X is backward Tn-invariant. � �

Using the characterizations F∗q = {α ∈ F̃q : ord(α) | q − 1} and H = {α ∈ F̃q : ord(α) | q + 1}, we

obtain the following decomposition of F̃q into rn-invariant subsets.

Lemma 2. The subsets S̃ = {α ∈ F̃q : αnk
= ±1 for some k ≥ 0}, R̃ = F∗q \ S̃ and Q̃ = H \ S̃ form a

partition of F̃q in rn-invariant subsets.

Proof. Since (±1)n ⊆ {±1}, the set S̃ is forward rn-invariant. If αn ∈ S̃ there exists k ≥ 0 such that

(αn)nk
= αnk+1

= ±1. Thus α ∈ S̃ and S̃ is backward rn-invariant. This proves that S̃ is rn-invariant.

The proofs of the rn-invariance of R̃ and Q̃ are similar. We only prove that R̃ is rn-invariant. It is

easy to prove that the complement of an rn-invariant is rn-invariant and the intersection of two rn-

invariant sets is also rn-invariant. Since R = F∗q ∩ S̃c, it suffices to prove that F∗q is rn-invariant. It is clear

that F∗q is forward rn-invariant. To prove that F∗q is backward rn-invariant we use the characterization

F∗q = {α ∈ F̃q : ord(α) | q − 1}. We consider β ∈ F̃q such that rn(β) = βn ∈ F∗q. The multiplicative

order of βn is given by ord(βn) = ord(β)/d with d = gcd(ord(β), n). In particular ord(β) | q − 1 (because

ord(β) | ord(βn) and ord(βn) | q − 1), therefore β ∈ F∗q by the above characterization of F∗q. � �

Proposition 9. Let R = η(R̃),Q = η(Q̃) and S = η(S̃). The sets R,Q and S form a partition of Fq in

Tn-invariant sets. In particular the decomposition of G(Tn/Fq) given by (2) holds.
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Proof. It is straightforward to check that R̃, Q̃ and S̃ are i-invariant from which we obtain η−1(R) = R̃,

η−1(Q) = Q̃ and η−1(S) = S̃. By Lemma 2 these sets are rn-invariant, and by Lemma 1 R,Q and S are

Tn-invariant. � �

We finish this section proving that the functional graphs G(Tn/R),G(Tn/Q) and G(Tn/S) are uniform.

Proposition 10. The functional graphs G(Tn/R),G(Tn/Q) and G(Tn/S) are uniform. Moreover, every

tree attached to a Tn-periodic point in G(Tn/R) is isomorphic to Tν0(n) and every tree attached to a

Tn-periodic point in G(Tn/Q) is isomorphic to Tν1(n).

Proof. The easy case is to prove that G(Tn/S) is uniform, the other two cases are similar and we prove

only that G(Tn/R) is uniform. If n or q is even, the only Tn-periodic point in S is 2 and there is nothing

to prove. If n and q are odd there are two Tn-periodic points in S, 2 and −2, and the uniformity of

G(Tn/S) follows from Proposition 6.

We denote by Pf the set of periodic points with respect to f and consider a ∈ R∩Pf . We can write a =

η(α) for some α ∈ R̃ (in particular a ∈ F∗q and a , ±1). By Proposition 8, Treea(Tn/Fq) and Treeα(rn/F̃q)

are isomorphic. Using that F∗q is rn-invariant and a ∈ F∗q we have Treeα(rn/F̃q) = Treeα(rn/F∗q) and by

Proposition 1 (considering the i-covering η : G(rn/F̃q) → G(Tn/Fq)) we have that α is an rn-periodic

point. By Proposition 5 we have that Treeα(rn/F̃q) is isomorphic to Tν0(n) and by transitivity Treea(Tn/Fq)

is also isomorphic to Tν0(n). � �

V. THE RATIONAL AND QUADRATIC COMPONENTS

In this section we describe the functional graphs G(Tn/R) and G(Tn/Q).

The following proposition is a simple generalization of Proposition 2.1 of [7] for the general n case

and is proved in a similar way.

Proposition 11. Let a ∈ Fq, α ∈ F̃q such that a = α + α−1 and ord(α) = ud the n-decomposition of the

(multiplicative) order of α. Then per(a) = õd(n) and pper(a) = min{k ≥ 0 : u | nk}.
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Proof. Let π = per(a) and ρ = pper(a). Consider the following equivalences:

Tπ+ρn (a) = Tρn (a) ⇔ Tnπ+ρ (a) = Tnρ (a)

⇔ αnπ+ρ
+ α−n

π+ρ
= αnρ

+ α−n
ρ

⇔ (αnπ+ρ − αnρ )(αnπ+ρ − α−nρ ) = 0

⇔ αnπ+ρ
= αnρ

or αnπ+ρ
= α−n

ρ

⇔ nπ+ρ ≡ ±nρ (mod ud)

⇔ nπ ≡ ±1 (mod d) and u | nρ.

By minimality, we conclude that π = õd(n) and ρ = min{k ≥ 0 : u | nk}. � �

Corollary 1. Let α ∈ F̃q. The point a = α+α−1 ∈ Fq is Tn-periodic point if and only if the multiplicative

order of α (as element of F∗
q2) is coprime with n.

Proof. Let a = α + α−1 ∈ Fq and ord(α) = ud be the n-decomposition of the (multiplicative) order of α.

We have that a is Tn-periodic point if and only if pper(a) = 0 and by Proposition 11 this happens if and

only if u | 1, that is, if and only if u = 1 and gcd(ord(α), n) = 1. � �

Corollary 2. Let PTn be the set of Tn-periodic points, α ∈ F̃q and a = α + α−1.

1. a ∈ R ∩ PTn if and only if ord(α) > 2 and ord(α) | ω0;

2. a ∈ Q ∩ PTn if and only if ord(α) > 2 and ord(α) | ω1;

3. a ∈ S ∩ PTn if and only if ord(α) ≤ 2 and gcd(ord(α), n) = 1.

Proof. Since η is surjective, η(η−1(X)) = X for all X ⊆ Fq (in particular a ∈ X if and only if α ∈ η−1(X)).

Denote P̃Tn := η−1(PTn ). By Corollary 1, P̃ = {α ∈ F̃q : gcd(ord(α), n) = 1}. First we prove that

P̃Tn ∩ S̃ = P̃Tn ∩ {+1}. Indeed, if α ∈ P̃Tn ∩ S̃, then gcd(ord(α), n) = 1 and αnk
= ±1 for some k ≥ 0.

Thus ord(α) = ord(α)
gcd(ord(α),nk ) = ord(αnk ) = ord(±1)|2 which implies α = ±1. This proves that P̃Tn ∩ S̃ ⊆

P̃Tn ∩ {+1} and the other inclusion is clear. We note that this is equivalent to P̃Tn ∩ S̃c = P̃Tn ∩ {+1}c.

Now we prove the statements.

1. a ∈ R∩PTn if and only if α ∈ R̃∩ P̃Tn = F
∗
q ∩ S̃c ∩ P̃Tn = P̃Tn ∩F∗q ∩ {±1}c = {α ∈ F̃q: gcd(ord(α), n)=

1, ord(α)|q − 1, α , ±1} = {α ∈ F̃q: ord(α)|ω0, ord(α) > 2}.

2. This part is similar to 1.; here we use α ∈ H if and only if ord(α) | q + 1.

3. a ∈ S ∩ PTn if and only if α ∈ S̃ ∩ P̃Tn = P̃Tn ∩ {±1} = {α ∈ F̃q : gcd(ord(α), n) = 1, ord(α) ≤ 2}.

� �
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Next we obtain an isomorphism formula for the rational component and the quadratic component of

G(Tn/Fq).

Theorem 2. Let q − 1 = ν0ω0 and q + 1 = ν1ω1 be their n-decompositions. The rational component of

the Chebyshev’s graph G(Tn/Fq) is given by:

G(Tn/R) =
⊕
d |ω0
d>2

ϕ(d)
2õd(n)

× Cyc
(
õd(n),Tν0(n)

)
;

the quadratic component is given by

G(Tn/Q) =
⊕
d |ω1
d>2

ϕ(d)
2õd(n)

× Cyc
(
õd(n),Tν1(n)

)
.

Proof. We only prove the statement for the rational component since the proof for the quadratic component

is similar. Let PTn be the set of Tn-periodic points and Rd = {α + α−1 : α ∈ F̃q, ord(α) = d}. By

Corollary 2, R ∩ PTn is the disjoint union of Rd with d | ω0, d > 2. If ord(α) = d | ω0 we have that

gcd(d, n) = 1 and ord(αn) = ord(α)/gcd(ord(α), n) = ord(α). Then we have the following decomposition

G(Tn/R ∩ PTn ) =
⊕

d |ω0
d>2
G(Tn/Rd). By Proposition 11, every point in G(Tn/Rd) belongs to a cycle of

length õd(n). Thus,

G(Tn/R ∩ PTn ) =
⊕
d |ω0
d>2

#Rd

õd(n)
× Cyc (õd(n), •) . (3)

For each d | ω0, d > 2, we consider the set R̃d = {α ∈ F̃q : ord(α) = d}. By a standard counting

argument #R̃d = ϕ(d) and using that the restriction of η to R̃ is a 2-to-1 map from R̃ onto R we obtain

#R = #R̃/2 = ϕ(d)/2. Substituting this expression into Equation (3) and using the uniformity of G(Tn/R)

(Proposition 10) we obtain G(Tn/R) =
⊕

d |ω0
d>2

ϕ(d)
2õd (n) × Cyc

(
õd(n),Tν0(n)

)
. � �

VI. THE SPECIAL COMPONENT OF G(Tn/Fq)

In this section we describe the special component of the Chebyshev functional graph G(Tn/S) where

S = {a ∈ Fq : Tn(a)(k) = ±2, for some k ≥ 0}. If n and q are odd, Tn(−2) = −2 and Tn(2) = 2 then the

only periodic points of Tn in S are 2 and −2. In this case the trees attached to the fixed points 2 and

−2 are isomorphic (Proposition 10). If either n is even or q is even, Tn(−2) = 2 = Tn(2) and the only

periodic point of Tn in S is 2 (if q is even this is true because 2 = −2). The next proposition summarizes

the above discussion.
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Proposition 12. Let T = Tree2(Tn/Fq) be the rooted tree attached to the fixed point 2 for the Chebyshev

polynomial Tn restricted to the set S = {a ∈ Fq : Tn(a)(k) = ±2, for some k ≥ 0}. Then

G(Tn/S) =


2 × Cyc(1,T) if n is odd and q is odd;

Cyc(1,T) otherwise.

We remark that Tree2(Tn/S) = Tree2(Tn/Fq), which is a consequence of S being Tn-invariant (Propo-

sition 9). By Proposition 12, to describe the special component it suffices to describe the tree T =

Tree2(Tn/Fq). If q − 1 = ν0ω0 and q + 1 = ν1ω1 is the n-decomposition of q − 1 and q + 1, respectively,

the rooted trees attached to the periodic points are isomorphic to Tν0(n) in the rational component and

isomorphic to Tν1(n) in the quadratic component (Proposition 10). In the case of the special component

the situation is different, the tree T = Tree2(Tn/Fq) is not isomorphic to a tree associated to a ν-series

(that is, the trees associated to the multiplication by n map over Zm for some m ∈ Z+). However we

show in this section that the tree T can be expressed as a “mean” of the trees Tν0(n) and Tν10(n). In the

first part of this section we define the bisection of trees together some of their main properties. In the

second part we deduce an isomorphism formula for the special component of the Chebyshev graph.

A. Bisection of rooted trees

We start by defining the sum of rooted trees.

Definition 4. Let T = 〈T1 ⊕ T2 ⊕ · · · ⊕ Tr 〉 and T ′ = 〈T ′1 ⊕ T ′2 ⊕ · · · ⊕ T ′s〉 be two rooted trees. We define

their sum as T + T ′ = 〈T1 ⊕ T2 ⊕ · · · ⊕ Tr ⊕ T ′1 ⊕ T ′2 ⊕ · · · ⊕ T ′s〉.

We remark that the tree consisting of a unique node T = • = 〈∅〉 is the neutral element of the sum.

The tree T − T ′ denotes a tree such that T = T ′ + (T − T ′) in case this tree exists (if it exists, it is

unique up to isomorphism). We note that (T1 + T2) − T ′ is defined if and only if Ti − T ′ is defined for

some i = 1, 2. If T1 − T ′ is defined then (T1 + T2) − T ′ = (T1 − T ′) + T2 and if T2 − T ′ is defined then

(T1+T2)−T ′ = T1+ (T2−T ′). Therefore when (T1+T2)−T ′ is defined we can write this tree as T1+T2−T ′

without ambiguity.

A forest is a graph that can be expressed as a disjoint union of rooted trees. A tree T is even if it can be

expressed as T = 〈2×F〉 for some forest F and it is quasi-even if it can be expressed as T = 〈2×F ⊕T ′〉

for some forest F and some even tree T ′ (i.e. T ′ = 〈2 × F ′〉 for some forest F ′). In particular the tree

T = • is even because T = 〈2 × ∅〉. For these classes of trees we define the bisection as follows.

Definition 5. If T = 〈2 × F〉 is an even tree, its bisection is the tree 1
2T = 〈F〉. If T = 〈2 × F ⊕ 〈2 × F ′〉〉

is a quasi-even tree its bisection is defined as the tree 1
2T = 〈F ⊕ 〈F ′〉〉.
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Example 2. The tree associated with the v-series 18(30) = (6, 3) is given by T(6,3) = 〈2 × T ⊕ 3 × T ′〉

where T = 〈6×•〉 and T ′ = •. Thus T(6,3) is quasi-even since it can be written as T(6,3) = 〈2×F ⊕T ′〉 with

F = T ⊕T ′ and T ′ = 〈2×∅〉 is even. The bisection of this tree is given by 1
2T(6,3) = 〈F⊕〈∅〉〉 = 〈T ⊕2×T ′〉.

Even and quasi-even trees are very restricted classes of trees, however they contain all trees associated

with ν-series as stated in the following proposition.

Proposition 13. If Tν(n) is the tree associated with ν(n) = (ν1, . . . , νD), then Tν(n) is even when ν is odd

and quasi-even when ν is even.

Proof. By Equation (1) we have Tν(n) = 〈(νD − 1) × TD−1 ⊕
⊕D−1

i=1 (νi − νi+1) × T i−1〉, where the Ti are

pairwise non-isomorphic rooted trees. When ν is odd, νi is odd for 1 ≤ i ≤ D. Then, νD −1 and νi − νi+1

are even for 1 ≤ i ≤ D − 1 and the tree Tν(n) is even. When ν is even, we have that ν1, . . . , νk are even

and νk+1, . . . , νD are odd for some k, 1 ≤ k ≤ D. If k = D, then νD − 1 is odd and νi − νi+1 are even

for 1 ≤ i ≤ D − 1 and the tree Tν(n) is quasi-even. If k < D, then νD − 1 and νi − νi+1 are even for

1 ≤ i ≤ k − 1 and k + 1 ≤ i ≤ D, and νk − νk+1 is odd. Thus, Tν(n) is also quasi-even. � �

We note that the if T1 and T2 are rooted trees, then |T1 + T2 | = |T1 | + |T2 | − 1 where, as usual, |T |

denotes the number of nodes of T . The next proposition establishes a relation between |T | and | 12T |.

Proposition 14. Let T be a rooted tree with |T | = N nodes. We have

|1/2 · T | =


N+1
2 if T is even;

N+2
2 if T is quasi-even.

Proof. If T is even, there is a forest S with s nodes such that T = 〈2 × S〉. We have N = |T | = 1 + 2s

from which we obtain s = N−1
2 . Since 1

2T = 〈S〉, | 12T | = s + 1 = N−1
2 + 1 = N+1

2 . If T is quasi-even, there

is a pair of forests S and R with s and r nodes, respectively, such that T = 〈2 × S ⊕ 〈2 × R〉〉. We have

N = |T | = 1 + 2s + 1 + 2r = 2(r + s + 1) from which we obtain r + s + 1 = N
2 . Since 1

2T = 〈S ⊕ 〈R〉〉,

| 12T | = 1 + s + 1 + r = 1 + N
2 =

N+2
2 . � �

B. The tree Tree2(Tn/Fq)

The next theorem describe the rooted tree attached to the fixed point 2 for the Chebyshev polynomial

Tn : Fq → Fq. We require the following lemma.

Lemma 3. Let n > 1 be an even integer, Fq be an odd characteristic finite field and H be the multiplicative

subgroup of F∗
q2 with order q + 1.

(i) If q ≡ 3 (mod 4), the equation xn = −1 has no solution in F∗q.
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(ii) If q ≡ 1 (mod 4), the equation xn = −1 has no solution in H.

Proof. Let α ∈ F̃q be a solution of xn = −1. From the relations ord(αn) = ord(α)/gcd(ord(α), n) and

ord(−1) = 2, we conclude that if n is even, then 4 | ord(α). By Lagrange theorem, α ∈ F∗q implies 4 | q−1

and q . 3 (mod 4); and α ∈ H implies 4 | q − 3 and q . 1 (mod 4). � �

Theorem 3. Let q − 1 = ν0ω0 and q + 1 = ν1ω1 be their n-decompositions. The rooted tree associated

with the fixed point 2 is described as follows:

Tree2(Tn/Fq) =


1/2 · Tν0(n) + 1/2 · Tν1(n) if n is odd or q is even;

1/2 · Tν0(n) + 1/2 · Tν1(n) − 〈•〉 if n is even and q is odd.

Proof. The isomorphism formula is obtained after relating Tree2(Tn/Fq) and Tree1(rn/F̃q). First we

consider the case when n is odd or q is even. In this case rn(−1) = −1 or −1 = 1, in both cases

we have that the predecessors of 1 in Tree1(rn/F̃q) are in F∗q or in H (but not in both). Since the sets F∗q

and H are backward rn-invariant (Lemma 2), we have

Tree1(rn/F̃q) = Tree1(rn/F∗q) + Tree1(rn/H) = Tν0(n) + Tν1(n),

where in the last equality we use Proposition 5. Now, we write r−1
n (1) ∩ F∗q = {α1, . . . , α2s, 1} with

αs+i = α
−1
i , αi , ±1, for all i : 1 ≤ i ≤ s and r−1

n (1) ∩ H = {β1, . . . , β2t, 1} with βt+j = β−1
j , βj , ±1,

for all j : 1 ≤ j ≤ t. Denote by T̃(αi) := Treeαi (rn/F∗q) for 1 ≤ i ≤ 2s and T̃(βj) := Treeβ j (rn/H)

for 1 ≤ j ≤ 2t. Using Proposition 7 we have that Tν0(n) = Tree1(rn/F∗q) = 〈T̃(α1) ⊕ · · · ⊕ T̃(α2s)〉 =〈
2×

(
T̃(α1) ⊕ · · · ⊕ T̃(αs)

)〉
, from which we obtain

1/2 · Tν0(n) = 〈T̃(α1) ⊕ · · · ⊕ T̃(αs)〉.

In the same way we obtain

1/2 · Tν1(n) = 〈T̃(β1) ⊕ · · · ⊕ T̃(βt )〉.

Let ai = η(αi),T(ai) = Treeai (Tn/Fq), bj = η(αj) and T(bj) = Treeb j (Tn/Fq) for 1 ≤ i ≤ s, 1 ≤ j ≤ t. We

have T−1
n (2) = {a1, . . . , as, b1, . . . , bt, 2} and

Tree2(Tn/Fq) = 〈T(a1) ⊕ · · · ⊕ T(as) ⊕ T(b1) ⊕ · · · ⊕ T(bt )〉

= 〈T̃(α1) ⊕ · · · ⊕ T̃(αs) ⊕ T̃(β1) ⊕ · · · ⊕ T̃(βt )〉 (by Prop. 8)

= 〈T̃(α1) ⊕ · · · ⊕ T̃(αs)〉 + 〈T̃(β1) ⊕ · · · ⊕ T̃(βt )〉

= 1/2 · Tν0(n) + 1/2 · Tν1(n).
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Now we consider the case when n is even and q is odd. Here we can write r−1
n (1)∩F∗q = {α1, . . . , α2s,−1, 1}

with αs+i = α−1
i , αi , ±1, for all i : 1 ≤ i ≤ s, r−1

n (1)∩H = {β1, . . . , β2t,−1, 1} with βt+j = β
−1
j , βj , ±1,

for all j : 1 ≤ j ≤ t and r−1
n (−1) = {γ1, . . . , γ2r } with γr+k = γ

−1
k

, γk , ±1, for all k : 1 ≤ k ≤ r .

Denote by T̃(αi) := Treeαi (rn/F∗q) for 1 ≤ i ≤ 2s, T̃(βj) := Treeβ j (rn/H) for 1 ≤ j ≤ 2t, T̃(γk) :=

Treeγk (rn/F̃q) for 1 ≤ k ≤ 2r and T̃(−1) := Tree−1(rn/F̃q). In this case we have, by Proposition 7,

T̃(−1) = 〈T̃(γ1) ⊕ · · · ⊕ T̃(γ2r )〉 = 〈2 × (T̃(γ1) ⊕ · · · ⊕ T̃(γr ))〉, thus

1/2 · T̃(−1) = 〈T̃(γ1) ⊕ · · · ⊕ T̃(γr )〉. (4)

Let ai = η(αi),T(ai) = Treeai (Tn/Fq), bj = η(αj), T(bj) = Treeb j (Tn/Fq), ck = η(γk), T(ck) = Treeck (Tn/Fq)

for 1 ≤ i ≤ s, 1 ≤ j ≤ t, 1 ≤ k ≤ r and T(−2) = Tree−2(Tn/Fq). We have T−1
n (2) = {a1, . . . , as, b1, . . . , bt,−2, 2},

T−1
n (−2) = {c1, . . . , cr }. By Proposition 7 and Equation (4) we have T(−2) = 〈T(c1) ⊕ · · · ⊕ T(cr )〉 =

〈T̃(γ1) ⊕ · · · ⊕ T̃(γr )〉 = 1/2 · T̃(−1), thus

Tree2(Tn/Fq) = 〈T(a1) ⊕ · · · ⊕ T(as) ⊕ T(b1) ⊕ · · · ⊕ T(bt ) ⊕ T(−2)〉

= 〈T̃(α1) ⊕ · · · ⊕ T̃(αs) ⊕ T̃(β1) ⊕ · · · ⊕ T̃(βt ) ⊕ 1/2 · T̃(−1)〉. (5)

Now we consider two subcases: q ≡ 1 (mod 4) and q ≡ 3 (mod 4). First we consider the subcase q ≡ 1

(mod 4). By Lemma 3 we have r−1
n (−1) ∩ H = ∅ and r−1

n (−1) ⊆ F∗q. Thus T̃(−1) = Tree−1(Tn/F∗q)

and we have, by Propositions 5 and 7, Tν0(n) = Tree1(rn/F∗q) = 〈T̃(α1) ⊕ · · · ⊕ T̃(α2s) ⊕ T̃(−1)〉 =

〈2 × (T̃(α1) ⊕ · · · ⊕ T̃(αs)) ⊕ T̃(−1)〉. Therefore

1/2 · Tν0(n) = 〈T̃(α1) ⊕ · · · ⊕ T̃(αs) ⊕ 1/2 · T̃(−1)〉. (6)

Since r−1
n (−1) ∩ H = ∅, we have Tν1(n) = Tree1(rn/H) = 〈T̃(β1) ⊕ · · · ⊕ T̃(β2t ) ⊕ •〉 = 〈2 × (T̃(β1) ⊕ · · · ⊕

T̃(βt )) ⊕ •〉 and 1/2 ·Tν1(n) = 〈T̃(β1) ⊕ · · · ⊕ T̃(βt ) ⊕ •〉 = 〈T̃(β1) ⊕ · · · ⊕ T̃(βt )〉+ 〈•〉; from which we obtain

1/2 · Tν1(n) − 〈•〉 = 〈T̃(β1) ⊕ · · · ⊕ T̃(βt )〉. (7)

Substituting Equations (6) and (7) in Equation (5) we have

Tree2(Tn/Fq) = 〈T̃(α1) ⊕ · · · ⊕ T̃(αs) ⊕ T̃(β1) ⊕ · · · ⊕ T̃(βt ) ⊕ 1/2 · T̃(−1)〉

= 〈T̃(α1) ⊕ · · · ⊕ T̃(αs) ⊕ 1/2 · T̃(−1)〉 + 〈T̃(β1) ⊕ · · · ⊕ T̃(βt )〉

= 1/2 · Tν0(n) + 1/2 · Tν1(n) − 〈•〉.

The proof of the subcase q ≡ 3 (mod 4) is similar. In this case applying Lemma 3 we obtain T̃(−1) =

Tree−1(Tn/H) and using the same arguments used for the subcase q ≡ 1 (mod 4) we obtain

1/2 · Tν1(n) = 1/2 · Tree1(rn/H) = 〈T̃(β1) ⊕ · · · ⊕ T̃(βt ) ⊕ 1/2 · T̃(−1)〉 (8)
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and

1/2 · Tν0(n) − 〈•〉 = 〈T̃(α1) ⊕ · · · ⊕ T̃(αs)〉. (9)

Using Equations (5), (8) and (9) we have Tree2(Tn/Fq) = 1/2 · Tν0(n) + 1/2 · Tν1(n) − 〈•〉. � �

VII. STRUCTURE THEOREM FOR CHEBYSHEV POLYNOMIAL AND CONSEQUENCES

A. Isomorphism formula for G(Tn/Fq)

We summarize all the information in the following main theorem of this paper, which follows from

Theorems 2 and 3 and Proposition 12.

Theorem 4. Let q − 1 = ν0ω0 and q + 1 = ν1ω1 be the n-decomposition of q − 1 and q + 1, respectively.

The Chebyshev graph admits a decomposition of the form G(Tn/Fq) = GR ⊕GQ ⊕GS where the rational

component GR is given by

GR =
⊕
d |ω0
d>2

ϕ(d)
2õd(n)

× Cyc
(
õd(n),Tν0(n)

)
;

the quadratic component GQ is given by

GQ =
⊕
d |ω1
d>2

ϕ(d)
2õd(n)

× Cyc
(
õd(n),Tν1(n)

)
;

and the special component GS is given by

GS =


Cyc(1, 1/2 · Tν0(n) + 1/2 · Tν1(n) − 〈•〉) if n is even and q is odd;

2 × Cyc(1, 1/2 · Tν0(n) + 1/2 · Tν1(n)) if n is odd and q is odd;

Cyc(1, 1/2 · Tν0(n) + 1/2 · Tν1(n)) if q is even.

B. Examples

We provide a series of examples showing our main result.

Example 3. We consider the Chebyshev polynomial T30 over F19 (see Figure 1a). We have 19−1 = 18 =

ν0ω0 with ν0 = 18, ω0 = 1 and 19 + 1 = 20 = ν1ω1 with ν1 = 20, ω1 = 1. Since ω0, ω1 ≤ 2 both the

rational and the quadratic components of G(T30/F19) are empty. We calculate the ν-series 18(30) = (6, 3)

and 20(30) = (10, 2) obtaining

G(T30/F19) = Cyc
(
1,

1
2

T(6,3) +
1
2

T(10,2) − 〈•〉
)
.

Thus, the graph G(T30/F19) consist of a loop corresponding to the fix point 2 and a tree T = 1
2T(6,3) +

1
2T(10,2) − 〈•〉 attached to this point; see Figure 3.
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Fig. 3. Construction of the tree T = 1
2T(6,3) +

1
2T(10,2) − 〈•〉.

Example 4. Now we consider again the Chebyshev polynomial T30 but this time over F23 (see Figure

1b). We have 23 − 1 = 22 = ν0ω0 with ν0 = 2, ω0 = 11 and 23 + 1 = 24 = ν1ω1 with ν1 = 24, ω1 = 1.

In this case the quadratic component of G(T30/F23) is empty and the rational component is ϕ(11)
2õ11(30) ×

Cyc
(
õ11(30),T2(30)

)
. Since ϕ(11) = 10, õ11(30) = 5 and T2(30) = T(2) = 〈•〉, it is given by Cyc (5, 〈•〉). We

calculate the ν-series 24(30) = (6, 2, 2). Then, the Chebyshev’s graph of T30 over F23 is given by:

G(T30/F23) = Cyc (5, 〈•〉) ⊕ Cyc
(
1,

1
2

T(2) +
1
2

T(6,2,2) − 〈•〉
)
.

We have 1
2T(2) = 1

2 〈〈2 × ∅〉〉 = 〈〈∅〉〉 = 〈•〉 (i.e. T(2) is invariant under bisection), and after simplifying

we obtain G(T30/F23) = Cyc (5, 〈•〉) ⊕ Cyc
(
1, 1

2T(6,2,2)
)
. To obtain a more explicit formula we calculate

the bisection of T(6,2,2). Using the recursive formula (1), we obtain T(6,2,2) = 〈4 × • ⊕ T〉 where T =

〈4 × • ⊕ 2 × 〈6 × •〉〉, then T(6,2,2) is quasi-even and T is even. Since 1
2T = 〈2 × • ⊕ 〈6 × •〉〉, we have

1
2T(6,2,2) = 〈2 × • ⊕ 1

2T〉 = 〈2 × • ⊕ 〈2 × • ⊕ 〈6 × •〉〉.

Example 5. We consider again the Chebyshev polynomial T30, this time over the reasonably large finite

field F739 where the symmetries can be better appreciated; see Figure 4. We calculate the 30-decomposition

of 738 = 18 ·41 (ν0 = 18, ω0 = 41) and 740 = 120 ·37 (ν1 = 20, ω1 = 37). Since ϕ(41) = 40, õ41(30) = 20,

ϕ(37) = 36, õ37(30) = 9, the rational component GR and the quadratic component GQ are given by

GR = Cyc(20,T18(30)) and GQ = 2 × Cyc(9,T20(30)). We have 18(30) = (6, 3) and 20(30) = (10, 2). Thus

the special component is GS = Cyc
(
1, 1

2T(6,3) + 1
2T(10,2) − 〈•〉

)
and the structure of the whole graph is

given by G(T30/F739) = Cyc(20,T(6,3)) ⊕ 2 × Cyc(9,T(10,2)) ⊕ Cyc
(
1, 1

2T(6,3) + 1
2T(10,2) − 〈•〉

)
.
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Fig. 4. Structure of the functional graph G(T30/F739).

n GR GQ GS

2 Cyc(1, •) ⊕ Cyc(2, •) ⊕ Cyc(4, •) 2 × Cyc(4, •) Cyc(1, •)

3 Cyc(2, 〈2 × •〉) Cyc(8, •) Cyc(1, 〈•〉)

4 3 × Cyc(1, •) ⊕ 2 × Cyc(2, •) 4 × Cyc(2, •) Cyc(1, •)

5 Cyc(1, 〈4 × •〉) Cyc(8, •) Cyc(1, 〈2 × •〉)

6 2 × Cyc(1, 〈2 × •〉) Cyc(8, •) Cyc(1, 〈•〉)

7 Cyc(1, •) ⊕ Cyc(2, •) ⊕ Cyc(4, •) Cyc(8, •) Cyc(1, •)

8 Cyc(1, •) ⊕ Cyc(2, •) ⊕ Cyc(4, •) 2 × Cyc(4, •) Cyc(1, •)

9 2 × Cyc(1, 〈2 × •〉) 2 × Cyc(4, •) Cyc(1, 〈•〉)

10 Cyc(1, 〈4 × •〉) Cyc(8, •) Cyc(1, 〈2 × •〉)

15 ∅ 2 × Cyc(4, •) Cyc(1, 〈7 × •〉)

17 Cyc(1, •) ⊕ Cyc(2, •) ⊕ Cyc(4, •) ∅ Cyc(1, 〈8 × •〉)

34 3 × Cyc(1, •) ⊕ 2 × Cyc(2, •) ∅ Cyc(1, 〈8 × •〉)

255 ∅ ∅ Cyc(1, 〈15 × •〉)
TABLE II

GRAPH STRUCTURE FOR CHEBYSHEV POLYNOMIALS Tn OVER THE BINARY FIELD F16 . WE RECALL THAT T = 〈m × •〉
DENOTES A TREE CONSISTING OF A ROOT WITH m PREDECESSORS.

Example 6. We consider the action of Chebyshev polynomials over the binary field F16. Using Theorem

4 we obtain the structure of the rational component GR, the quadratic component GQ and the special

component GS of the Chebyshev graph G(Tn/F16) for 2 ≤ n ≤ 10 and n = 15, 17, 34 and 255; see Table

II.
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C. Chebyshev involutions and permutations

It is well known that the Chebyshev polynomial Tn is a permutation polynomial over Fq if and only

if gcd(q2 − 1, n) = 1. Using that Tν(n) = • if and only if ν = 1, this condition can be obtained as a direct

corollary of Theorem 4 together with the decomposition into disjoint cycles.

Corollary 3. The Chebyshev polynomial Tn is a permutation polynomial over Fq if and only if gcd(q2 −

1, n) = 1. In this case, if q−1 = ν0ω0 and q+1 = ν1ω1 are their n-decompositions, we have the following

decomposition of G(Tn/Fq) into disjoint cycles:⊕
d |ω0
d>2

ϕ(d)
2õd(n)

× Cyc (õd(n), •) ⊕
⊕
d |ω1
d>2

ϕ(d)
2õd(n)

× Cyc (õd(n), •) ⊕ k × Cyc(1, •),

where k = 2 if nq is odd, and k = 1 otherwise.

A particular case of cryptographic interest is permutation polynomials that are involutions [2], [3],

that is, when the composition with itself is the identity map. For Chebyshev polynomials we obtain the

following characterization.

Corollary 4. Let q − 1 = ν0ω0 and q + 1 = ν1ω1 be the n-decomposition of q − 1 and q + 1, respectively.

The Chebyshev polynomial Tn is an involution over Fq if and only if ν0 = ν1 = 1, n2 ≡ ±1 (mod ω1) and

n2 ≡ ±1 (mod ω2).

Proof. The condition ν0 = ν1 = 1 is equivalent to gcd(q2 − 1, n) = 1 which is equivalent to Tn being a

permutation by Corollary 3. If this condition is satisfied, Tn is an involution if and only if õd(n) ∈ {1, 2}

for all d such that d | ω0 or d | ω1, if and only if n2 ≡ ±1 for all d with d | ω0 or d | ω1, if and only if

n2 ≡ ±1 (mod ω1) and n2 ≡ ±1 (mod ω2). � �

Example 7. Consider the Chebyshev polynomial T31 over F25. Here n = 31, q = 25, ν0 = ν1 = 1, ω1 =

24, ω1 = 26. Since 312 ≡ 1 (mod 24) and 312 ≡ −1 (mod 26), the polynomial T31 is an involution over

F25.

D. Explicit formulas for N,T0,C,T and R

Let G = G( f /X) be a functional graph where X is a finite set. Given x0 ∈ X there are integers c ≥ 1

and t ≥ 0 such that xc+t0 = xt0. The smallest integers with this property are denoted by per(x0) := c (the

period of x0) and pper(x0) := t (the preperiod of x0). The rho length of x0 is rho(x0) := per(x0)+pper(x0).

We also consider the parameters N,T0,C,T and R where

• N(G) is the number of connected component of G;
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• T0(G) is the number of periodic points;

• C(G) = 1
|X |

∑
x∈X per(x) is the expected value of the period;

• T(G) = 1
|X |

∑
x∈X pper(x) is the expected value of the preperiod and

• R(G) = 1
|X |

∑
x∈X rho(x) is the expected value of the rho length.

We apply our structural theorem to deduce explicit formulas for the parameters N , T0, C and T for

Chebyshev polynomials over Fq (the average rho length can be obtained from R = C + T). These

parameters were studied in [4] for the exponentiation map and in [15] for Rédei functions.

We remark that the above parameters are invariant under isomorphism (i.e. isomorphic functional

graphs have the same value). Related to C and T we consider the parameters Ĉ and T̂ defined as the

sum of the values of the periods and preperiods, respectively, from which we can easily obtain C and

T . The advantage of working with these parameters instead of C and T is that they are additive (i.e.

Ĉ(G1 ⊕ G2) = Ĉ(G1) + Ĉ(G2) and T̂(G1 ⊕ G2) = T̂(G1) + T̂(G2)) as well as the parameters N and T0.

For additive parameters it suffices to know their values on each connected component. In the case of

Chebyshev polynomials over finite fields, each connected component of its functional graph is uniform.

It is immediate to check that if G = Cyc(m,T) where T is a rooted tree with depth D, then N(G) = 1;

T0(G) = m; Ĉ(G) = m2 |T | and T̂(G) = m
∑D

j=1 jh( j) where h( j) denotes the number of nodes in T at

depth1 j. When the rooted tree T is the tree attached to a ν-series T = Tν(n) we have the following

formulas, whose proof is the same as the given one in [15] for Rédei functions.

Lemma 4 ([15], Proposition 2.2.). Let n, ν,m be positive integers with rad(ν) | rad(n). Consider ν(n) =

(ν1, ν2, . . . , νD) and G = Cyc(m,Tν(n)). Then N(G) = 1,T0(G) = m, Ĉ(G) = m2ν and T̂(G) = m
∑D−1

j=1 ν1 · · · νj .

The next lemma shows how the parameter T̂ behaves regarding to addition and bisection of trees.

Lemma 5. The following statements hold.

1) If G1 = Cyc(1,T1), G2 = Cyc(1,T2) and G = Cyc(1,T1 + T2), then T̂(G) = T̂(G1) + T̂(G2).

2) If G = Cyc(1,T) where T is an even or quasi-even rooted tree and G′ = Cyc(1, 1
2T), then T̂(G′) =

T̂ (G)
2 if T is even;

T̂ (G)+1
2 if T is quasi-even.

Proof. 1. Denote by h1( j), h2( j) and h( j) the number of nodes at depth j in T1, T2 and T1+T2, respectively.

Clearly we have h(0) = 1 and h( j) = h1( j) + h2( j) for j ≥ 1, from which we obtain T̂(G) = ∑
jh( j) =∑

jh1( j) +
∑

jh2( j) = T̂(G1) + T̂(G2).

1The depth of a node x in a rooted tree T with root r is the length of the smallest path connecting x to r . If T is a rooted

tree attached to a cyclic node in a functional graph, the depth of a node is the same as its preperiod.
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2. First we consider the case when T is even. We can write T = 〈2 × S〉 for some forest S. We denote

by hS( j) the number of nodes at depth j in 1
2T = 〈S〉. We have that T̂(G) = ∑

j · 2hS( j) = 2
∑

jhS( j) =

2T̂(G′). Now we consider the case when T is quasi-even. We can write T = 〈2 × S ⊕ 〈2 × R〉〉. We

denote by hS( j) and hR( j) the number of nodes at depth j in 〈S〉 and 〈R〉, respectively. We have

that T̂(G) = (∑ j · 2hR( j)) + 1 +
∑( j + 1) · 2hS( j) and T̂(G′) = (∑ jhR( j)) + 1 +

∑( j + 1)hS( j). Thus

2T̂(G′) = T̂(G) + 1. � �

Next we calculate formulas for Ĉ and T̂ for the special component GS of the Chebyshev functional

graph G(Tn/Fq).

Lemma 6. Let n be a positive integer, q − 1 = ν0ω0 and q + 1 = ν1ω1 be the n-decompositions of

q − 1 and q + 1, respectively. Let ν0(n) = (a1, . . . , aD), ν1(n) = (b0, . . . , bD′), A =
∑D−1

i=1 a1 · · · ai and

B =
∑D′−1

i=1 b1 · · · bi. Denote by GS the special component of the Chebyshev graph G(Tn/Fq). The following

formulas for Ĉ and T̂ hold.

Ĉ(GS) =

ν0 + ν1, if nq is odd;
ν0+ν1

2 , otherwise.
and T̂(GS) =


A + B, if nq is odd;
A+B

2 , otherwise.

Proof. First we consider the case when qn is odd. In this case both ν0 and ν1 are odd and, by Proposition

13, both rooted trees Tν0(n) and Tν1(n) are even. From Proposition 14, Theorem 4 and the fact that

|Tν(n) | = ν (see Equation (1) and the following paragraph), we have Ĉ(GS) = 2| 12Tν0(n) +
1
2Tν1(n) | =

2
(
ν0+1

2 +
ν1+1

2 − 1
)
= ν0 + ν1. Applying Lemmas 4 and 5 we obtain T̂(GS) = 2 · ( A2 +

B
2 ) = A + B.

Now we consider the case when q is even. In this case again both ν0 and ν1 are odd and consequently

both rooted trees Tν0(n) and Tν1(n) are even. By Proposition 14 and Theorem 4, we have Ĉ(GS) = | 12Tν0(n)+

1
2Tν0(n) | =

ν0+1
2 +

ν1+1
2 − 1 = ν0+ν1

2 . Applying Lemmas 4 and 5 we obtain T̂(GS) = A
2 +

B
2 =

A+B
2 .

The remainder case is when n is even and q is odd. In this case both ν0 and ν1 are even. By Proposition

13 both Tν0(n) and Tν1(n) are quasi-even. By Proposition 14 and Theorem 4 we have Ĉ(GS) = | 12Tν0(n) +

1
2Tν0(n)− 〈•〉| =

ν0+2
2 +

ν1+2
2 −1−1 = ν0+ν1

2 . Applying Lemmas 4 and 5 we obtain T̂(GS) = A+1
2 +

B+1
2 −1 =

A+B
2 . � �

Theorem 5. Let n be a positive integer. Let q − 1 = ν0ω0 and q + 1 = ν1ω1 be the n-decompositions

of q − 1 and q + 1, respectively. Let ν0(n) = (a1, . . . , aD) and ν1(n) = (b0, . . . , bD′). Then, the following

holds for G = G(Tn/Fq):

• the number of cycles in G(Tn/Fq) is N(G) = 1
2 (

∑
d |ω0

ϕ(d)
õd (n) +

∑
d |ω1

ϕ(d)
õd (n) );

• the number of periodic points is given by T0(G) = ω0+ω1
2 ;
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• the expected value of per(a) where a runs over the elements of Fq is

C(G) = q−1
2q (

1
ω0

∑
d |ω0 ϕ(d)õd(n)) +

q+1
2q (

1
ω1

∑
d |ω1 ϕ(d)õd(n));

• the expected value of pper(a) where a runs over the elements of Fq is

T(G) = q−1
2q (

1
ν0

∑D−1
i=1 a1 . . . ai) + q+1

2q (
1
ν1

∑D′−1
i=1 b1 . . . bi).

Proof. Applying Theorem 4 we have

N(G) = N(GR) + N(GQ) + N(GS)

=
∑
d |ω0
d>2

ϕ(d)
2õd(n)

+
∑
d |ω1
d>2

ϕ(d)
2õd(n)

+


2, if nq is odd;

1, if nq is even.
(10)

Since both ω0 and ω1 are even when nq is odd and both ω0 and ω1 are odd when nq is even, we have∑
d |ω0
d≤2

ϕ(d)
2õd(n)

+
∑
d |ω1
d≤2

ϕ(d)
2õd(n)

=


1 + 1 = 2, if nq is odd;
1
2 +

1
2 = 1, if nq is even.

(11)

By Equations (10) and (11) we have N(G) = ∑
d |ω0

ϕ(d)
2õd (n) +

∑
d |ω1

ϕ(d)
2õd (n) .

Applying Theorem 4 we have

T0(G) = T0(GR) + T0(GQ) + T0(GS)

=
∑
d |ω0
d>2

ϕ(d)
2õd(n)

· õd(n) +
∑
d |ω1
d>2

ϕ(d)
2õd(n)

· õd(n) + T0(GS)

=
∑
d |ω0
d>2

ϕ(d)
2
+

∑
d |ω1
d>2

ϕ(d)
2
+


2, if nq is odd;

1, if nq is even.
(12)

Since ω0 and ω1 are even when nq is odd and ω0 and ω1 are odd otherwise, we have

∑
d |ω0
d≤2

ϕ(d)
2
+

∑
d |ω1
d≤2

ϕ(d)
2
=


1 + 1 = 2, if nq is odd;
1
2 +

1
2 = 1, if nq is even.

(13)

By Equations (12) and (13) we have

T0(G) =
∑
d |ω0

ϕ(d)
2
+

∑
d |ω1

ϕ(d)
2
=
ω0
2
+
ω1
2
=
ω0 + ω1

2
.
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Using that Cyc(m,Tν(n)) has exactly mν nodes (see Equation (1) and the following paragraph) and

applying Theorem 4 and Lemma 6 we have

Ĉ(G) = Ĉ(GR) + Ĉ(GQ) + Ĉ(GS)

=
∑
d |ω0
d>2

ϕ(d)
2õd(n)

· õd(n) · õd(n)ν0 +
∑
d |ω1
d>2

ϕ(d)
2õd(n)

· õd(n) · õd(n)ν1 + Ĉ(GS)

=
ν0
2

∑
d |ω0
d>2

ϕ(d)õd(n) +
ν1
2

∑
d |ω1
d>2

ϕ(d)õd(n) +

ν0 + ν1, if nq is odd;
ν0+ν1

2 , otherwise.
(14)

Since ω0 and ω1 are even when nq is odd and ω0 and ω1 are odd otherwise, we have

ν0
2

∑
d |ω0
d≤2

ϕ(d)õd(n) +
ν1
2

∑
d |ω1
d≤2

ϕ(d)õd(n) =

ν0 + ν1, if nq is odd;
ν0+ν1

2 , otherwise.
(15)

By Equations (14) and (15) we have

Ĉ(G) = ν0
2

∑
d |ω0

ϕ(d)õd(n) +
ν1
2

∑
d |ω1

ϕ(d)õd(n)

=
q − 1

2
©« 1
ω0

∑
d |ω0

ϕ(d)õd(n)
ª®¬ + q + 1

2
©« 1
ω1

∑
d |ω1

ϕ(d)õd(n)
ª®¬ .

Dividing both sides by q we obtain the formula for C(G).

Now we deduce the formula for T . Denote A =
∑D−1

i=1 a1 · · · ai and B =
∑D′−1

i=1 B1 · · · Bi. Using Lemmas

4 and 6 and Theorem 4 we obtain

T̂(G) = T̂(GR) + T̂(GQ) + T̂(GS)

=
∑
d |ω0
d>2

ϕ(d)
2õd(n)

· õd(n)A +
∑
d |ω1
d>2

ϕ(d)
2õd(n)

· õd(n)B + T̂(GS)

=
A
2

∑
d |ω0
d>2

ϕ(d) + B
2

∑
d |ω1
d>2

ϕ(d) +


A + B, if nq is odd;
A+B

2 , otherwise.
(16)

Since ω0 and ω1 are even when nq is odd and ω0 and ω1 are odd otherwise, we have

A
2

∑
d |ω0
d≤2

ϕ(d) + B
2

∑
d |ω1
d≤2

ϕ(d) =


A + B, if nq is odd;
A+B

2 , otherwise.
(17)

By Equations (16) and (17) we have

T̂(G) = A
2

∑
d |ω0

ϕ(d) + B
2

∑
d |ω1

ϕ(d) = Aω0
2
+

Bω1
2

. =
q − 1

2
· A
ν0
+

q + 1
2
· B
ν1
.

Dividing both sides by q we obtain the formula for T(G). � �
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