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Abstract At EUROCRYPT 2016, Méaux et al. introduced a new design
strategy for symmetric ciphers for Fully Homomorphic Encryption (FHE),
which they dubbed filter permutators. Although less efficient than classical
stream ciphers, when used in conjunction with an adequate FHE scheme,
they allow constant and small noise growth when homomorphically evaluating
decryption circuit. In this article, we present a security proof up to the birthday
bound (with respect to the size of the IV and the size of the key space) for this
new structure in the random oracle model and in the multi-user setting. In
particular, this result justifies the theoretical soundness of filter permutators.
We also provide a related-key attack against all instances of FLIP, a stream
cipher based on this design.
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1 Introduction

Furry HoMOMORPHIC ENCRYPTION. Fully Homomorphic Encryption (FHE)
allows a user to delegate computations to a Cloud service, without compromising
the privacy of his data. Since Gentry’s initial breakthrough [Gen09], researchers
have been trying to improve the efficiency of FHE in order to allow more complex
applications, some of which are listed in [NLV11]. Many bottlenecks still remain,
as FHE algorithms require important computational and memory costs, both
on the user and the server side. Moreover, almost every existing FHE scheme
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have limited homomorphic capabilities: each operation increases the noise level
of the involved ciphertexts, preventing decryption if too many operations are
performed. Most FHE schemes offer some bootstrapping capabilities in order
to decrease noise levels, however at great computational costs. This step can
sometimes be avoided, for example in the case leveled Fully Homomorphic
Encryption [BGV12,CNT12], at the expense of having to know in advance a
(polynomial) upper bound on the multiplicative depth of the evaluated circuit.

HyYBRID FRAMEWORK. In order to alleviate the costs on the user side, a hybrid
framework has been designed. A typical application scenario consists of a
combination of five steps involving a FHE scheme H and a symmetric key
algorithm S as summarized below:

1. Initialization. The user (Alice) runs both key generation algorithms for H
and S and sends the Cloud (Bob) her homomorphic public key pk* and
the homomorphic ciphertext of her symmetric key C (sk?);

2. Storage. Alice encrypts her data m; using S and sends Bob the ciphertexts
C%(my);

3. Ewvaluation. Bob homomorphically evaluates the decryption circuit of S on
Alice’s data and gets the ciphertexts C (m;);

4. Computation. Bob homomorphically evaluates some function f on Alice’s
encrypted data;

5. Result. Bob sends the compressed encrypted result of the computation
cf(f(m;)), and Alice decrypts it.

In such a framework, the user is only required to evaluate the FHE scheme on the
symmetric key bits and the results of Bob’s computation, since the encryption
of her data uses a typically much faster symmetric primitive. However, Bob
now needs to evaluate a symmetric decryption circuit before being able to
actually exploit Alice’s data. This additional step will increase noise level in
Alice’s ciphertexts, effectively reducing homomorphic capability of the scheme.

In order to mitigate the impact of this new step, several works have tried
to reduce the homomorphic cost of evaluating the symmetric decryption algo-
rithm. Traditional block ciphers like AES were considered for this task [GHS12,
CLT14], culminating with the best performance result: 120 AES decryptions in
4 minutes. Since traditional block ciphers offer constant but high noise growth,
several new symmetric schemes have been purposefully built for FHE, most
notably the block cipher LowMC [ARS™15] and the stream ciphers Trivium
and Kreyvium [CCF116]. These two constructions led to reduced multiplicative
depths for the decryption algorithm, but were still limited by important draw-
backs. More specifically, LowMC, as a block cipher, offers constant noise growth
that is still large enough to significantly hamper homomorphic capability. As
for Kreyvium, the error level actually grows with number of decryptions, which
implies that, given a large enough data set, ciphertexts will become too noisy
to be decrypted and will either require a costly bootstrapping operation or a
re-initialization of the stream cipher.
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THE FLIP FAMILY oF STREAM CIPHERS. At EUROCRYPT 2016, Méaux et
al. [MJSC16] proposed a new family of stream ciphers dubbed FLIP which aims
at overcoming the drawbacks of LowMC and Kreyvium. In particular, FLIP
allows for constant and smaller noise growth by the use of a filter permutator, a
new construction that is related to a filter generator. The main difference is that
the key register is kept constant and is permuted before entering the filtering
function. This effectively keeps the noise growth constant, as permutating the
key register does not increase noise level of the ciphertexts. The multiplicative
depth of the circuit is also limited by the low degree of the filtering function.
An oversight in the security analysis of the first set of proposed parameters
for FLIP was spotted by Duval et al. [DLR16] who designed a guess-and-
determine attack against the first version of FLIP. This led to an update
of the original article [MJSC16], which now proposes a security analysis of
the filtering function with respect to guess-and-determine correlation attacks,
higher-order correlation attacks, algebraic attacks and fast algebraic attacks.
Unfortunately, this analysis only applies to the filtering function when it takes
as input uniformly random words of the size of the key. However, due to the
unusual structure of FLIP, the Hamming weight of the key register is constant.
Thus evaluating the security of the filtering function requires a deeper analysis
of the behavior of Boolean functions on restricted input sets which was started
in [CMR17].

OuRr CONTRIBUTION. QOur contribution is twofold. First we realize the first
analysis of the generic structure of filter permutators, upon which FLIP is
built. A filter permutator generates a key stream by applying a filter to a key
vector. A uniformly random IV s is used to initialize a stateful pseudorandom
bit generator whose output is fed to a permutation generator. At each round,
the components of the key vector k are permuted using fresh outputs of the
permutation generator, and the filter is then applied to the new value of the key
vector to generate an output. Figure 1 illustrates this structure. We analyze the
security of filter permutators in the multi-user, known IV setting when the filter
and the pseudorandom bit generator (PRG) are modeled as public random
functions. In particular we prove that the advantage of a distinguisher against
the security of a filter permutator following the design of FLIP is negligible as
long as the number ¢, of adversarial queries to the construction, the filter and

the pseudorandom bit generator satisfies ¢, < min (2"/2/,‘{, 2b+1 /2 \/|IC\)

where n is the size of the IV, b the output size of the stateful pseudorandom bit
generator, IC is the key space, x the number of components of the key vectors.
We also describe and provide security bounds for two specific choices of key
spaces for filter permutators over a finite field F),:

— if the prime p is small, we can choose the key space of all k-tuples containing
an equal number of each element from IFp;
— if the prime p is large, we simply set the key space to (IF,)".

These constructions generalize the high-level structure of FLIP to every finite
field, and could prove interesting in applications. Indeed, some FHE schemes
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Fig. 1 Structure of a filter permutator
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are built over some finite field of odd characteristic. In this case, it would be
preferable to rely on a symmetric-key algorithm whose output is in the same
field to keep the amount of required computation to a minimum. We leave it as
an interesting open problem to define and analyze filters for odd characteristic.

Second we describe a chosen-1V related-key attack on the FLIP family of
stream ciphers. This attack relies on the combination of an algebraic attack
combined with related internal states (see e.g [ALP05] for other attacks follow-
ing this strategy) and allows key recovery with overwhelming probability using
at most 75 known bits of key stream and one related-key query per key bit.
Since filter permutators are most likely used in a hybrid FHE framework, such
a related key attack seems especially devastating when used by a malicious
server. However, its impact can be mitigated by the fact that a malicious server
alone would not be able to directly apply it, unless it is also able to break the
FHE scheme or it relies on the behavior of the user. In the former case, the
server would not need to attack FLIP, while in the latter case, it could already
use software fault injection attacks [CGG16] to recover the key bits.

DISCUSSION ON THE MODEL. In this paper, we model the filter and PRG as
random oracles (i.e. public uniformly random functions). This strong abstraction
deviates from the design of a real filter permutator (e.g. FLIP), which implies
limitations on the usefulness of our result. Indeed, our bounds will only provide
security guarantees against generic adversaries', while most cryptanalysis will
focus on specific weaknesses of the filter. However, our results indicate that
filter permutators, as a generic structure, are sound. This suggests that, even if
the FLIP ciphers were proven to be insecure, it may still be possible to design
a secure instantiation of filter permutators by strengthening the filter function.

1 In a sense, this model amounts to restrict the adversarial knowledge of the PRG and
filter to the (black-box) queries it issued.
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ORGANIZATION. In section 2 we present general notation and security def-
initions. Section 3 is devoted to the study of the generic filter permutator
structure. In section 4 we discuss security parameters for the structure of the
FLIP family of stream ciphers and describe our related-key attack.

2 Preliminaries
2.1 Notation and General Definitions

GENERAL NOTATION. In all the following, we fix an integer n > 1. The set of
all permutations of {0,1}"™ will be denoted Perm(n). Given a non-empty set X,
we denote by x <—¢ X the draw of an element x from X uniformly at random
and by Perm(X) the set of all permutations of X.

Let m > 1 be an integer and let E be any non-empty set. We sometimes
write [m] for the set {1,...,m}. For any permutation P € Perm([m]) and
any vector z = (z1,...,2m) € E™, we denote by P(z) the permuted vector
(2p(1)s -+ -»2P(m))- For any vector z € E™, we denote by Cpgm the set of all
P € Perm([m]) such that P(z) = z. We also denote by Cgm the average over
E™ of Cgm. A subset E/ C E™ will be said stable if, for every vector z € E’
and any permutation P € Perm([m]), P(z) € E'.

PSEUDORANDOM BIT GENERATORS. A standard pseudorandom bit generator
(PRG) is a function G : {0,1}* — {0,1}""* that takes as input a s-bit seed
and returns a longer (b + s)-bit string. We recall the classical (computational)
security definition for PRGs from [BYO01]. Let D be a distinguishing algorithm
that given a b 4 s bit string returns a bit. We let

)

AQVERS(D) = [Pr[DC = 1] — Pr [D® 1]

AdvERC (1) = max (AdngG (D)) ,

where Pr [DG — 1} (resp. Pr [D$ — l]) denotes the probability that D outputs
1 when it receives string G(z) for a uniformly random z € {0,1}* (resp. a
uniformly random string from {0,1}***) and the maximum is taken over all
adversaries running in time at most ¢.

One can for example create two pseudorandom generators G; and Go
respectively based on the AES158 and AESssg block cipher as follows:

Gy : {0,1}"% — {0,1}*°
x + AES125(x,0)||AES128(x, 1),
G : {0,1}%% — {0,1}°"
> AESgs6(z, 0)||AES 256 (, 1)||AESas6 (2, 2)| |AES 256 (, 3).

Then, for any non-negative integer ¢, one has

AdveRO(t) < Advire (2,1),
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AdveiG(t) < Advage,  (4,1),

where Advigsi (¢,t) denotes the maximum advantage of an adversary trying
to distinguish AESy from a uniformly random function in time at most ¢ and
using at most g queries.

These notions are usual when considering security in the standard, com-
putational model. In our case, the PRG will be used to derive a sequence of
pseudorandom outputs based on a public value. Hence, we will not be able
to directly use such a security definition. However, since we are aiming at a
purely information-theoretic security proof in the random oracle model, we are
going to also model the PRG by a public uniformly random function.

STATEFUL GENERATORS. We also adapt the notion of stateful generator
from [BYO01] to our context. A stateful pseudorandom bit generator (sPRG)

GEN[G] = (GEN[G].init, GEN[G].next, b, n)

is specified by a pair of algorithms and a pair of positive integers. The ini-
tialization algorithm GEN[G].init takes as input a n-bit string and uses it to
initialize the state of the generator. The next step algorithm, given the current
state, returns a pair consisting of a b-bit output block and the next state of
the generator. This generation process is application controlled. Whenever the
algorithm relying on GEN[G] needs a new block of pseudorandom bits, it simply
calls the algorithm GEN[G].next to get the next output. It is a well-known fact
(see [BYO01, Theorem 2.3]) that, in the standard model, a secure pseudorandom
bit generator G : {0,1}" — {0,1}"*" can be turned into a secure stateful pseu-
dorandom bit generator GEN[G] as follows. The algorithm GEN[G].init takes as
input a n-bit string and returns the same string. The algorithm GEN[G].next
takes as input a n-bit string s, computes G(s) and returns the first b bits
(which we denote G°"*(s)) as output block and the last n bits (which we denote
G*(s)) as the new state. The authors of [MJSC16] suggest this construction
with the aforementioned PRG based on the AES blockcipher. That is why we
are also going to rely on this construction, albeit using an underlying idealized
PRG (that we model as a random oracle).

3 Security Analysis of Filter Permutators
3.1 High-level structure

For the remaining of the section, we fix three integers b, n, x > 1, two non-empty
sets A, B, a non-empty stable set L C A" and a Stateful Pseudorandom bit
Generator GEN[G] = (GEN[G].init, GEN[G].next, n,b) based on an underlying
Pseudorandom bit Generator G : {0,1}" — {0,1}"**. Then, for any filtering
function F' : A" —— B, we define the Filter Permutator FPgenjg),F). Given a
key k = (k1,...,ks) € K and a public IV s € {0,1}", it generates a key stream
z = (z1,...,2q.) = FPcenja), F1 (K, 5, ¢«) as follows:
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1. the IV s is used to initialize the state of the sPRG with GEN[G].init;
2. foreachi=1,...,¢.,

(a) the next x outputs of GEN[G].next are given as input to a permutation
generator based on the Fisher-Yates shuffle, as per Algorithm 1, which
shuffles the s key variables by generating a permutation P;;

(b) the filtering function F is then applied to the permuted key to generate
Zi-

Figure 1 illustrates this high-level structure.

Algorithm 1 Fisher-Yates shuffle

1: procedure SHUFFLE(a) > The array to be shuffled
2 for i=k; i>1; i-=1do

3: j < (GEN[G].next() mod ¢) + 1

4: Exchange a[j] and ali]

5 return a > the shuffled array

3.2 Security Notions and Statement of the Result

Our main result is a bound on the multi-user security of filter permutators,
when the filtering function F' and the PRG are modeled as uniformly random
public functions. In particular, adversaries are computationally unbounded.
They are only limited in the number of queries they can issue to their different
oracles. This model amounts to giving an upper bound on the adversarial
knowledge about the underlying filter and PRG.

Let us fix a number [ of users. An Adversary D is then modeled as
an algorithm which interacts with [ + 2 oracles that we denote generically
(F,G, Fy,..., F}) where syntactically F' (resp. G) are functions with input space
A% (resp. {0,1}") and output space B (resp. {0,1}"*?), and Fy,..., F} take
as input an integer j and output a tuple (s,z) € {0,1}" x B7. The goal of D
is to distinguish two worlds: the so-called real world where

— F: A" - Band G : {0,1}" — {0,1}"*" are uniformly random functions,
— for i =1,...,[] and any integer j,

. . def . n ;
Fi(j) = FP?GEN[G],F,ki](j) = (s, FPeenja), p)(kis 5,5)) € {0,1}" x B,
where s is a fresh uniformly random IV, and the keys k; for i = 1,...,[ are

drawn uniformly and independently at random in C, independently from
F;

and the so-called ideal world where

— F: A® - Band G : {0,1}" — {0,1}"*" are uniformly random functions,
— for i = 1,...,0 and any integer j, Fi(j) = (s,2z) is drawn uniformly at
random in {0,1}"™ x B?, independently from F' and every preceding query.
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We will refer to F' as the filtering oracle, to G as the PRG oracle and to F; as
the i-th construction oracle, for : =1,... 1.
The distinguishing advantage of a distinguisher D is defined as

£ $ $
AdV(D) de .G FPleeniar F a1 FPeenia] Fig ) N 1] — Pr [DF«,GvFlam«,FL N 1]

Pr [’D

)

where the first probability is taken over the random choice of the keys k1, ..., k;,
F, G and the I'Vs, and the second probability is taken over the random choice of
F, G, and the random draw of the outputs of Fy, ..., Fj. In all the following, we
consider computationally unbounded distinguishers, and we can thus assume
that they are deterministic.
For non-negative integers qr, qg, ¢+, we define
AV Y (g, qp,q6) = max Adv (D),

$
FP[GEN[GH

where the maximum is taken over all distinguishers making exactly gp queries
to the filtering oracle, q¢ queries to the PRG oracle and getting exactly g.
outputs from the construction oracles?. We also assume that they never make
pointless queries. In this context, it means that the distinguisher never repeats
a query to its filtering oracle or to its PRG oracle, since a construction query
always results in a fresh key stream.

Theorem 1 For any non-negative integers qr,qa, s, one has

mu— K —1)qs + (kK — 1)g«
Adv™y kIV (Q*,QF7QG) S( )q (qG ( )q)

FP?GEN[G]] 2n
Cf *K/2 + * *
P SO (gr +g:)q
T K|

The proof of this result relies on Patarin’s H-coefficients technique [Pat08]. We
will first give a brief overview of this technique in section 3.3 and proceed with
the proof of Theorem 1 in section 3.4.

3.3 The H-Coefficients Technique

We summarize the interaction of D with its oracles in what will be referred to
as the queries transcript (Qc, Qr, Qa, Q) of the attack, where Q¢ records
the queries to the constructions oracles, Qp records the queries to the filtering
oracle and Q¢ records the queries to the PRG oracle. More precisely, Q¢ is a
multiset containing all tuples

(i,q,8,2) € {1,...,1} x{1,...,¢.} x {0,1}" x BY

such that D queried ¢ outputs to the i-th construction oracle and received IV
s and outputs z, Qp contains all the pairs

(u,v) € A" x B

2 Note that IV blocks do not count as output blocks from the construction.
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such that D made the query u to its filtering oracle and received answer v and
Q¢ is the ordered set of all the pairs

(z,y) € {0,1}" x {0,1}°*"

such that D made the query z to its PRG oracle and received answer y. Note
that one has
1Qr| = qr, Y g=gq.
(i,9,8,2)EQc
since we assume that D never makes pointless queries.
In order to simplify the description of bad transcripts, we will also reveal
additional information to the adversary:

— at the same time the adversary receives an answer from a construction
query, we will offer him additional information corresponding to each state
of the PRG during the permutation generation step in the real world, along
with the corresponding evaluation of G (in the ideal world, we will just
mimic the real world); this will be summarized in an additional multiset
Q/, which will contain pairs (s, G(s)) for each state s of the PRG GEN[G],?

— at the end of its interaction with its oracles, but before it output its
answer, the actual keys (k;)1<i<; are revealed if we are in the real world,
or uniformly random dummy keys (k;)1<i<; drawn independently from the
queries transcript are given if we are in the ideal world.

A transcript 7 is thus defined as 7 = (Q¢, OF, Qa, O, k) with k = (k;)1<i<
and a transcript will be attainable with respect to a fixed distinguisher D if
and only if its associated queries transcript is attainable. We also denote © the
set of attainable transcripts. As usual, we denote T}, resp. Tiq the probability
distribution of the transcript 7 induced by the real world, resp. the ideal world,
and by extension we use the same notation for random variables distributed
according to each distribution. The main lemma of the H-coefficient technique
is the following one.

Lemma 1 ([Pat08]) Fiz a distinguisher D. Let © = Ogooq|J Ovaa be a parti-
tion of the attainable transcripts. Assume that there exists €1 such that for any
T € Ogood ONE has
PriT,.. =]
P’I’ [Tzd = T]

and that there exists €5 such that

>1—-e

Pr([Tiq € Opaa] < €2
Then Adv(D) < € + €.

This result is classical and proofs can be found in e.g. [CS14, CLL™14].

3 Note that, in the ideal world, construction oracles outputs do not depend on these values.
Also note that states of the stateful PRG can repeat and collide with PRG queries from the
adversary. That is why we record them in a separate multiset. Obviously, such collisions are
unwanted and will be our first bad event.
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3.4 Proof of Theorem 1

In this section, we prove Theorem 1 using the H-coefficients technique.

Let gr,qq, g« be three non-negative integers and let D be any (¢r, ¢c, ¢« )-
distinguisher against the multi-user security of FPgen(g),F in the known IV
setting, where F' and G are uniformly random public functions. We will denote
0, for j = 1,...,1, the total number of queries the adversary made to its
J-th construction oracle and Q¢ ; = {(i1,q1,51,21), ..., (4s,,5,, S5;,2s,) } the
subset of Q¢ consisting in all the construction queries to the j-th oracle (note
that this is a multiset which is ordered with an arbitrary ordering). We also
denote P ; the i-th permutation generated by Algorithm 1, given the outputs
of GEN[G] initiated with IV s.

As usual, our first step will be the definition of a set of bad transcripts.
Then we will lower bound the probability to obtain a bad transcript in the
ideal world in Lemma 2, and prove that good transcripts occur with the same
probability in both the real and the ideal world in Lemma 3. Theorem 1 will
follow by combining Lemma 1 with Lemmas 2 and 3 below.

Definition 1 We say that an attainable transcript 7 = (Q¢, Qr, Qq, O, k)
is bad if one of the following conditions if fulfilled:

(C-1) there exists a query (x,y) € Qf such that:

there exists a query (a/,y') € Q¢ such that x = 2’
or
there exists another query (z”,y”) € Qf, such that z = z”;

(C-2) there exists 1 < ¢ <[ and two distinct tuples (j1,72) € {1,...,0;} X
{1, a5}, (G1,55) € {1,..., 0} x {1,...,¢q;: } such that Py, j,(k;) =
LORALE

(C-3) there exists 1 < i < ¢/ < [ and two tuples ((i,q,5,2),j) € Qo X
{1,...,q}, ((¢,¢,5",2),j") € Qc.ir x {1,...,¢'} such that P, ;(k;) =
Py jo(kir);

(C-4) there exists (i,q,s,2) € Qc, 1 < j < ¢ and (u,v) € Qp such that
Ps,j(ki) = u.

We denote Opqq the set of bad transcripts, and Ogood = O \ Opad-

Remark 1 In the ideal world, the construction oracles give answers that are
independent from G and from F. This can allow an attacker to distinguish
between the two worlds in the case where the permutation generation step
results in a collision between inputs of F' in the real world, since in that case
the output of the construction oracle is already fixed by a previous query.
Conditions (C-2), (C-3) and (C-4) are here to ensure that no such collision
occurs. In the worst case, a state collision between two queries to the same
construction oracle could result in the same keystream in the real world, and
to uniformly random and independent outputs in the ideal world. Such a case
is taken care of in condition (C-1). This also implies that the birthday bound
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(with respect to the key and the IV size) is the best security bound we can
possibly achieve for filter permutators.

We first upper bound the probability to get a bad transcript in the ideal world.

Lemma 2 One has

—1)g« —1)q« Cx
Pr[ﬂd c @bad] < (I{ )q (qgn+ (’% )q ) +qz . ?"‘

Proof We denote ©; the set of attainable transcripts that satisfy condition
(C-i). We are going to lower bound the probability of obtaining a bad transcript
as follows:

Pr[Tiq € Opaq) <Pr[Tiq € ©1]+ Pr[Tiq € O3|Tiq & O1]
+ Pr [Tld S @3] + Pr [Tld S 94] .

CONDITION (C-1). Let (z,y) € Q. We are going to compute the probability
that it is the first query such that there exists a query («, ) € Q¢ such that
x = o or there exists a previous query (a, ) € Qy, such that 2 = «. First note
that, since we assume that the adversary never makes pointless queries, the
first event can only occur if the query (o, 8) € Qg occurred before the query
(z,y). Now recall that the value x can either be a freshly drawn IV, or can
consist in the last n bits of the output of the previous query. Moreover, we have
|Q4| = (k — 1)g.. In the first case, the probability that either type of collision
occur is smaller than (¢g + (k — 1)g«)/2". In the second case, since (z,y) is the
first query from Qf which is involved in a collision, the output of the previous
query is perfectly random and the probability that a collision occurs is also
smaller than (g¢ + ¢.(k — 1))/2". Summing over every query from Q. gives
(k = 1)q« (gc + (k — 1)gs)

Pr [Tld S @1] < on .

ConDITION (C-2). Let us denote v14 ;4 (i—1)(x—1) the j —th output of GEN[G]
that was used to generate the i-th permutation, for 1 <i<g¢q,, 0 <7 <K —2.
Let us denote U the event

Voo < (k= 5)[2°/(k = 5))
for every 1 <i < ¢q,, 0 < j <k — 2. Then one has

Pr(Tiq € ©2|Tiq & ©1] =Pr[(Tia € ©2) NU|Tiq & O1]
+Pr[(Tia € ©2) ANU|Tiq & 6] (1)
<Pr [Tld S 92|U A\ (Tld € @1)] + Pr [U|Tld g 91] .
(2)

Conditioned on the event Tiq € @1, no collision between the states of the PRG
occurs, and no state of the PRG collides with a query to the oracle G. This
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event only involves the values of the IV and of the last n bits of the queries
from Qf. This means that, conditioned on Tiq ¢ ©1, the first b bits of the
outputs of the queries from Q,, which correspond to the outputs of GEN[G],
are uniformly random and independent messages from {0, 1}°. Thus one has

qx K—2
Pr[U|Tiq € 61] < Pr [vit14G-1)m—1) = (5 — 5)[2°/(rk = 5)]]
i=1 j=0
qﬁ_zlﬁ—j—l q,»g—lj
DD =20 %
i=1 j=0 i=1 j=1
qik?
<oprt 3)

Fact 1. Conditioned on the event U A (Tiq € ©1), the values v;414(i—1)(x—1) are
independent and (vq4j4(i—1)(k—1) (mod & — j)) + 1 will be uniformly random
in{l,...,k—j}forevery 1 <i<gq, 0<j<k-—2

A proof of this fact can be found in the full version of this paper. This implies
that, when we condition on the event (Tiq € ©1) A U, the permutations
generated by Algorithm 1 are uniformly random and independent permutations
of {1,...,k}. Let us now fix s € {1,...,1} and two distinct tuples (j1,J2) €
{16 x {1, ..0,g5, ) (51, 43) € {1,...,6i} x {1,...,¢gj;}. Then, one has

Pr [Psh,jz (ki) = Py, 31 (k)|U A (Tia & 91)]

=Pr[P, P’ +g Perm([x]) : P(k;) = P'(k;)]
= Z Pr [P, P’ < Perm([x]) : (P(k;) = P"(k;)) A (P' = P")]
P ePerm([x])
= > Pr[P+sPem([x]) : (P(k;) = P"(k;))]
P ePerm([k])
X Pr [P’ +—g Perm([s]) : P’ = P"]

% Z Pr [P ¢+ Perm([x]) : (P""*(P(k;)) = k;)]
P’ €Perm([k])

= Pr[P <3 Perm([x]) : P(k;) = k]
= Z Pr [P < Perm([x]) : (P(a) =a) A (k; = a)]

-/
1,7
Jyr2

ack
_ Z C}C(a) _ C’i)(j
= KIK| Kl

Hence, by summing over every possible output values, we get

Pr [T1d S QQ‘U/\ (Tld Q/ @1)] < (q*l:ﬁ (4)
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Combining Eqgs (1), (3) and (4) yields

2 27
Pr [T € 0T ¢ 1] < 270 (1)CF
ConbITIiON (C-3). Let (i,q,s,2), (i',¢,5',2") where i # i’ be two queries to
distinct construction oracles and let j € {1,...,q}, 7/ € {1,...,¢'}. Recall that,
in the ideal world, the I-tuple of keys is drawn uniformly at random from K
independently from the queries transcript. The probability, over the random
draw of k; and k| that Ps j(k;) = Py ;s (k) is exactly 1/|K|. By summing over
every possible pair of output values, we get

2
Pr(Tiq € O3] < g

K]
CoONDITION (C-4). Similarly, let (Q¢, QF, Qa, Q) be any attainable queries
transcript. Let (i,¢q,s,2) € Q¢, j € {1,...,q} and (u,v) € Qp. The probability,
over the random draw of k;, that P ;(k;) = u is exactly I%I By summing over
every such pair of queries, we get
qFqx
K]

Pr(Tiq € O3] <

We then analyze good transcripts.
Lemma 3 For any good transcript T, one has

Pr(T,e=1]
PriTy=1]

Proof Let T = (Qc, Qr, Qa, 9, k) be a good transcript. Let us denote ¢ the
number of constructions queries. Note that, since 7 is a good transcript, the
total number of distinct queries to the function G (from Q¢ and Q) is exactly
gc + (k — 1)g« since no collision occurs.

In the ideal world, the outputs of F' are uniformly random and independent
from the uniformly random draw of the outputs of the construction oracles, G
and the keys. Thus one has

1 1 1 1
| B|d- ' | Blar ' K|t " 9qn+(b+n)(ga+(k—1)g.)

In the real world, since 7 is a good transcript, we know that the inputs
of the function F' are always pairwise distinct, its output are then perfectly
random. Since the I'Vs and the keys are also drawn uniformly at random, and
independently from each other and from F' and G, we have

1 1 1
getar |K[F " 2ant () (aat(s—1)a.) "

PriTyy=1] =

PrT,..=171]= G

So we indeed have, for a good transcript 7:

Pr[T,. = 7]

e 1.
Pr[Tid = T}
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3.5 Choice of Security Parameters

FHE schemes usually rely on arithmetic over finite fields. In order to maximize
the advantages of a filter permutator (i.e. constant and small growth noise),
it seems necessary to build a stream cipher over the same finite field. In
this section, we study two possible choices of parameters and derive the
corresponding security bound, depending on the relative size of k¥ and the
finite field. These two constructions can actually be seen as generalizations of
the high-level structure of the FLIP family of stream ciphers to arbitrary finite
fields.

A CONSTRUCTION WITHOUT WEAK KEYS. We follow and generalize the
design strategy of FLIP when relying on a finite field of small cardinality p.
In this case, it is possible to choose a multiple of p for x, and to propose a
construction without weak keys? as follows.

Let IF,, be a finite field. We denote FPgen(q),p,x, 7 the filter permutator using
a pseudorandom bit generator G (with its associated stateful generator GEN[G])
and such that the filter is a function F' from (F,)" to F,. For any multiple m
of p, we specify the key space as the set I, ;, of all vectors k € (F,)? such that
each z € F), is represented exactly m/p times. The following corollary states a
security bound for this construction when the filter and the PRG are modeled
as a uniformly random public functions.

Corollary 1 Assume that k is a multiple of p. For any non-negative integers
qr,qG,q«, one has

(k —1)gs (qa + (k — 1)g.)

Advmu_kIV (q*7 qr, qG) <

FP?GEN[G],;CN,,,] AL
[(+/D)]" | @k
+q.(qr + 2q.) - o
Proof It is easy to see that
K |_pl:[ (Iiili/p) _pl:f (k — ik /p)! _w!
A =L ) = GG =G Dol ~ T

Recall that Cx = Y oack Cﬁé‘a). Let us fix a key a € K. By definition, exactly
k/p of its coordinates are equal to i for every ¢ € F),. Thus the vector a is a
fixed point of a permutation in Perm([«]) if and only if, for every i € F,,, each
one of the x/p coordinates that is equal to i is sent to another coordinate that is
equal to ¢. This means that a is a fixed point for exactly [(k/p)!]? permutations

in Perm([x]). Then one has Cx = [(k/p)!]?.

4 A key k € K will be weak when Ci (k) is much higher than the average Cx, since in
this case collisions between inputs of the filter will occur with a higher probability.
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A CONSTRUCTION FOR LARGE PRIME NUMBERS. In the case of a large prime
number p, using a multiple of p for k becomes impractical. In this case we
simply specify the key space K as (IF,)*. Then one has the following result.

Corollary 2 For any non-negative integers qr,qc,qs« and any ¢ € {0,...,k —
1}, one has

- —1)gs (gc + (5 — 1)g.) % s
Advmu kIV , , <(K’ + * + ~>¢<
FP?GEN[G],(FP)“] (q* ar QG> - n (c+1)! an;c
L @R (et )
2b+1 pr :

Proof One has

Cr _|{(P.a) € Perm([x]) x (F,)"}]

Kl prK!
=Pr[(P,a) <—g Perm([s]) x (F,)" : P(a) = a].

Let ¢ € {0,...,k — 1} be an integer. The event P(a) = a can be rewritten as
the following disjunction:

(E1) the number of fixed points of P is smaller than ¢ and P(a) = a, or
(E2) the number of fixed points of P is strictly greater than ¢ and P(a) = a.

We first consider Event (E1). Conditioned on the fact that the number
of fixed points of P is smaller than ¢, the event P(a) = a will be equivalent
to at least | “5°| equations of the form ap(;) = a;, where i € {1,...,x} and
P(i) # i. Indeed, if P(i) = 4, the equation is automatically fulfilled. For indexes
i € {1,...,k} such that P(i) # i, some equations might be redundant. The
whole number of equations will depend on the number and size of the orbits

of P, and will be minimal when P is only constituted of cycles of length 2, in

which case there are exactly [“5¢| independent equations to be satisfied. Thus
one has )
Pr [(El)] S k—c |
plo=-!

We now cousider event (E2). This event is included in the event
(E’2) the number of fixed points of P is strictly greater than c.
The number of such permutations can be lower bounded as follows. First we
need to choose ¢ + 1 indices that will be fixed points. There are (Ci 1)

possible choices. Then, for every remaining indices, there are (k — ¢ — 1)!
possibilities. Thus one has
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4 A Note on the FLIP family of Stream Ciphers
4.1 Description of FLIP

The FLIP family of stream ciphers follow the filter permutator structure. It
has first been specified in [MJSC16]. One has A = B = {0,1}, G is a forward
secure PRG based on the AES-128 [BYO01],  is an even non-negative integer
and K is the subset of {0,1}" containing every word of Hamming weight «/2.
The filter F' is a k-variable Boolean function defined by the direct sum of three
Boolean functions f1, fo and f3 of respectively ny, no and ng variables, such
that:

ny—

1
- f&($0a~~~7xn1—1) = EB T,
=0

n2/271
- fQ(xnla s 7xn1+n271) = @ Ty +2iLny42i41)
i=0
— f3(@Tny4nss - - - Tny4natng—1) is the sum of nb triangular functions Ty, each

one operating on different and independent variables, where

k

i1
Tr(Yo, -+ 1 Ym-1) = @ H Ty (i—1)i/2s

i=1 j=0
m=k(k+1)/2 and ng =nb-k(k+1)/2.

In [MJSC16], an analysis of F' is provided. In particular, its resistance against
several types of attacks is proved, in the case where it is applied to uniformly
random elements of {0,1}*. Although the authors stress that this does not
directly translate into security arguments for FLIP instances, the authors
assume that the constant Hamming weight of the inputs of the filter will not
give rise to a significantly better attack and provide a table which is summarized
in Figure 2. The authors also indicate that keys should not be used to encrypt
more than 254 bits of data.

Instance [ N [ A ]

FLIP(42,128,8,9) 530 | 81
FLIP(46,136,4,15) | 662 | 80
FLIP(82,224,8,16) | 1394 | 134
FLIP(86,238,5,23) | 1704 | 128

Fig. 2 FLIP(n1,n2,nb, k) instances, with the associated number of variables N and the
expected security parameter A from [MJSC16].

Corollary 1, when applied to the finite field Fy and using k = N gives the
following bound in the random oracle model for the filter and the PRG:

(N = 1)q. (gc + (N — 1)q.)
2128

Adv Y (¢, 4 qc) <
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L &lor +2¢) | g
|’CN,2| 2129 ’
_ N —1)g« (g + (N — 1)q.)
Advmu kIV s , <(
FLIP?AE5256Y’CN,2](q ar QG) o 2256
+ Q*(QF+2q*) Q*N2
|’CN,2| 2257 :

This result suggests that FLIP might be secure against generic multi-user
known IV attacks (i.e. attacks that treat the filter and the PRG as a black

box) as long as one has max {qr, ¢g, ¢« } < min (264/N7 \/|ICN72|) for the first

variant, and as long as one has max {qr, ¢, ¢« } < min (2128/N7 \/|ICN72|> for

the second one.
In the next section, we present a related-key attack against FLIP and
discuss its practical impact.

4.2 A Related-Key attack
4.2.1 Attack Scenario and Computation Model

We suppose that we know a part of the plaintext with the corresponding
ciphertext, which implies that we know some of the bits of the key stream.
Moreover, we place ourselves in the context of a XOR-related key attack:

— the adversary is allowed to XOR any constant of its choice to the key;
— the adversary is allowed to feed its oracle with an IV that has already been
used (potentially with a modified key register).

In order to simplify the analysis of our attack, we assume that the underlying
stateful permutation generator outputs uniformly random and independent
values when fed with different I'Vs.

Regarding the complexity analysis of our attack, given its triviality, we only
take into account its query complexity.

First we describe and analyze our attack. Then we discuss the relevance of
our attack scenario in section 4.2.3

4.2.2 Description of the Attack

Recall that the filter permutator’s permutation generator relies on a public IV.
This means that an attacker can compute the sequence of key permutations that
will be used to feed the filter function. Thus, at each round of the construction,
because the filtering function is known, the attacker can know the exact
polynomial equation linking an output to the key variables. In particular, for
each output bit, it is trivial to identify which monomial each key variable is
involved in.
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Assuming the attacker wants to know the value of k;, he can then find an
output bit z; where k; will be involved in a quadratic term. Given the fact
that each key variable can only be involved in a single monomial, there exists
a polynomial R such that, for a particular j' # j:

2y = kjkj @ R(k‘l, ki kiR ke, k‘N),

From our hypothesis the attacker had the ability to XOR a constant to the
key, and query the corresponding key stream for the same value of the IV. The
same output bit 2] using the same IV and the key value (k1,...,kj_1,kj &
1,kji41,...,kn) becomes

Z: = k](kj/ D 1) @R(klv"'7kj—17kj+17"'akj'—lakj'-‘rla"'7k:N)
= kj @kjjk)j/ @R(lﬁ,...,kj_l,kj+1,...,kj/_l,kj/+1,...,kN)
= kj D z;.

It is thus easy to recover key bit k;, using a single related-key query. Note
that, by doing so, it might be possible to recover more than one key bit using
another keystream bit. This can be done for each key bit that is involved in
a quadratic term in at least one known keystream bit. We are now going to
lower bound the number of required known keystream bits for this attack to
allow complete key recovery with overwhelming probability.

Let ¢ be the number of known keystream bits, N the total number of
variables and nf, n}, njs respectively be the number of variables involved in
linear, quadratic, and of degree greater than 3 monomials. Let ¢ € {1,..., N}.
Then the probability, over the uniformly random and independent draw of the
outputs of the permutation generator, that k; is never involved in a quadratic

term, is exactly
ny +n5\?
- )

Our attack will fail to completely recover the key if there exists ¢ € {1,..., N},
which happens with probability at most

n +nh\? N —2nb —no\1
N2 8) (==
() = ()

for any instance of FLIP(nq,ng,nb,n) and N =ny +ng +nb-k(k+1)/2.

Overall, in order to completely recover the key of an instance of FLIP(ny, na,
nb,n) with a probability greater than 1 — &, we need at least %
known key stream bits and at most NV related key queries, where N = nj +ns+
nb - k(k + 1)/2. For example, if we consider the safest parameters suggested
in [MJSC16], where N = 1704, ny = 238 and nb = 8, our attack will succeed
with a probability greater than 0.99 using 75 known keystream bits and at
most 1704 related key queries.
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4.2.8 Discussion

Our attack scenario requires a powerful adversary. On a theoretical point of
view, it makes sense to consider such a model in order to achieve a better
understanding of FLIP. The particular weakness we exploit is the fact that
each key variable is only involved in exactly one monomial. Adding a linear
layer before the application of the filter does not seem to mitigate the impact
of this attack. A potential (though expensive) solution could be to use a more
complex filter, in which each variable is always involved in several monomials
of various degree. However, such a countermeasure would come at the expense
of a greater computational complexity.

On a practical point of view, since filter permutators are most likely used in
a hybrid FHE framework, such a related key attack seems especially threatening
when used by a malicious server. In that context, the server would then be in
possession of the encryption of the key bits for FLIP. It is thus trivial for it
to XOR any constant of its choice to the key, and to generate the associated
keystream for an already used IV. However, in order to recover the value of the
targeted key bit, an attacker would either have to be able to test the equality
of two ciphertexts under the FHE scheme, or rely on some interaction with the
user. In the former case, it essentially implies the ability of breaking the FHE
scheme, thus negating the need of this attack. In the latter case, the malicious
server could already use software fault injection attacks [CGG16] in order to
efficiently recover plaintext or secret key bits.
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