Skip to main content
Log in

Linear codes close to the Griesmer bound and the related geometric structures

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we study the behavior of the function \(t_q(k)\) defined as the maximal deviation from the Griesmer bound of the optimal length of a linear code with a fixed dimension k:

$$\begin{aligned} t_q(k)=\max _d(n_q(k,d)-g_q(k,d)), \end{aligned}$$

where the maximum is taken over all minimum distances d. Here \(n_q(k,d)\) is the shortest length of a q-ary linear code of dimension k and minimum distance d, \(g_q(k,d)\) is the Griesmer bound for a code of dimension k and minimum distance d. We give two equivalent geometric versions of this problem in terms of arcs and minihypers. We prove that \(t_q(k)\rightarrow \infty \) when \(k\rightarrow \infty \) which implies that the problem is non-trivial. We prove upper bounds on the function \(t_q(k)\). For codes of even dimension k we show that \(t_q(k)\le 2(q^{k/2}-1)/(q-1)-(k+q-1)\) which implies that \(t_q(k)\in O(q^{k/2})\) for all k. For three-dimensional codes and q even we prove the stronger estimate \(t_q(3)\le \log q-1\), as well as \(t_q(3)\le \sqrt{q}-1\) for the case q square.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ball S.: Table of bounds on three dimensional linear codes or (n,r) arcs in PG(2,q). https://mat-web.upc.edu/people/simeon.michael.ball/codebounds.html.

  2. Ball S., Hill R., Landjev I., Ward H.N.: On \((q^2+q+2, q+2)\)-arcs in the projective plane \(PG(2, q)\). Des. Codes Cryptogr. 24, 205–224 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. Belov B.I., Logachev V.N., Sandimirov V.P.: Construction of a class of linear binary codes achieving the Varshamov–Griesmer bound. Probl. Inf. Transm. 10(3), 211–217 (1974).

    Google Scholar 

  4. Brouwer A.: Bounds on the minimum distance of linear codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 295–461. Elsevier, New York (1998).

    Google Scholar 

  5. Dodunekov S.: Optimal codes, DSc Thesis, Institute of Mathematics, Sofia (1985).

  6. Dodunekov S., Simonis J.: Codes and projective multisets. Electron. J. Comb. 5(1), 37 (1998).

    MathSciNet  MATH  Google Scholar 

  7. Grassl M.: Bounds on the minimum dostance of linear odes and quantum codes. http://www.codetable.de.

  8. Griesmer J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  9. Hamada N., Maruta T.: Note on an improvement of the Griesmer bound for \(q\)-ary linear codes. Serdica J. Comput. 5, 199–206 (2011).

    MathSciNet  MATH  Google Scholar 

  10. Hamada N., Maruta T.: A survey of recent results on optimal linear codes and minihypers, manuscript.

  11. Hill R.: A First Course in Coding Theory. The Clarendon Press, Oxford University Press, New York (1986).

    MATH  Google Scholar 

  12. Hill R.: Optimal Linear Codes, Cryptography and Coding II, pp. 75–104. Oxford University Press, New York (1992).

    Google Scholar 

  13. Hill R., Mason J.R.M.: On \((k,n)\)-arcs and the Falsity of the Lunelli-Sce Conjecture, pp. 153–168. Finite Geometries and Designs, London Mathematical Society Lecture Note Series 49Cambridge University Press, Cambridge (1981).

    MATH  Google Scholar 

  14. Hirschfeld J., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. In: Blokhuis A., et al. (eds.) Finite Geometries, pp. 201–246. Kluwer, Alphen aan den Rijn (2001).

  15. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Pless, Cambridge (2003).

    Book  MATH  Google Scholar 

  16. Klein A.: On codes meeeting the Griesmer bound. Des. Codes Cryptogr. 274, 289–297 (2004).

    MATH  Google Scholar 

  17. Klein A., Metsch K.: Parameters for which the Griesmer bound is not sharp. Discret. Math. 307, 2695–2703 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. Landjev I., Storme L.: Galois geometries and coding theory, chapter 8. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, pp. 187–214. NOVA Science Publishers, Hauppauge (2012).

    Google Scholar 

  19. Landjev I., Vandendriesche P.: A study of \((xv_t, xv_{t-1})\) in \(\text{ PG }(t, q)\). J. Comb. Theory Ser. A 119, 1123–1131 (2012).

    Article  MATH  Google Scholar 

  20. Ling S., Xing C.: Coding Theory, a First Course. Cambridge University Press, Cambridge (2004).

    Book  Google Scholar 

  21. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing Co., Amsterdam (1977).

    MATH  Google Scholar 

  22. Maruta T.: On the nonexistence of Griesmer codes attaining the Griesmer bound. Geom. Dedicata 60, 1–7 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. Maruta T.: On the achievement of the Griesmer bound. Des. Codes Cryptogr. 12, 83–87 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. Maruta T.: Giesmer bound for linear codes over finite fields. http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/.

  25. Solomon G., Stiffler J.J.: Algebraically punctured cyclic codes. Inf. Control 8, 170–179 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  26. Vladut S., Nogin D., Tsfasman M.: Algebro-Geometric Codes. MCNMO, Independent Moscow University (2003) (in Russian).

Download references

Acknowledgements

This result was partially supported by the Research Scientific Fund of Sofia University “St. Kl. Ohridski” under Contract No. 80-10-55/19.04.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Rousseva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousseva, A., Landjev, I. Linear codes close to the Griesmer bound and the related geometric structures. Des. Codes Cryptogr. 87, 841–854 (2019). https://doi.org/10.1007/s10623-018-0565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-018-0565-3

Keywords

Mathematics Subject Classification

Navigation