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THE WEIGHT SPECTRUM OF CERTAIN
AFFINE GRASSMANN CODE

FERNANDO L. PINERO AND PRASANT SINGH

ABSTRACT. We consider the linear code C*4(2,m) associated to a special affine
part of the Grassmannian G2,,,. This affine part is the complement of the
Schubert divisor of G2,,,,. In view of this, we show that there is a projection of
Grassmann code onto the affine Grassmann code and the projection is a linear
isomorphism. Using this isomorphism, we give a skew-symmetric matrix in
some standard block form corresponding to every codeword of CA(2, m). The
weight of a codeword is given in terms of the rank of some blocks of this form
and it is shown that the weight of every codeword is divisible by some power
of q. We also count the number of skew-symmetric matrices in the block form

to compute the weight spectrum of the affine Grassmann code CA(2, m).

1. INTRODUCTION

Let F, be the finite field with ¢ elements, £ and m are positive integers satisfying

¢ <m. Let Gy m be the Grassmannian of all {-planes in F}", i.e.
Gom ={W CF;": W is a subspace and dim W = (}.

The Grassmannian Gy, can be embedded into the projective space P()-1 via
the Plicker map and via this embedding, it is a closed algebraic subset of the
projective space p(%)-1, Every subset of a projective space naturally corresponds
to a linear code [18], therefore it is natural to study the code associated with the
Grassmannian Gy ,,. The linear code associated to the Grassmannian Gy, is known
as the Grassmann code and is denoted by C(¢,m). The study of the Grassmann
code goes back to C.T. Ryan [[16],[17]] over Fs , and to Nogin [11] over any finite
field. Nogin [11] prove that the Grassmann code C'(¢,m) is an [n, k, d], linear code

with parameters n, k and d are given by

(1) n= [TZ] , k= (7;) and d = gm0
q

where [Tg] . is the Gaussian binomial coefficient. In the case when £ = 2, codewords

of the Grassmann code C(2,m) are in one-to-one correspondence with the space
of skew-symmetric matrices of dimension m x m. Nogin [11] used the classifica-

tion of skew-symmetric matrices to give the weight spectrum of the Grassmann
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code C(2,m). In later work, Nogin [12] and Kaipa-Pillai [9] computed the weight
spectrum of the Grassmann codes C(3,6) and C(3,7) respectively. In general, the
weight spectrum of Grassmann codes is not known.

Let a = (a,...,aq) € Z* be an (-tuple of positive integers satisfying 1 < a; <
ag < -+ < ap < m and let A; be the subspace of Fi* spanned by {e1,...,¢q,},
where e; is the jth canonical basis element of Fg*. The Schubert variety corre-

sponding to the sequence « is defined by
Qo(l,m) ={W € Gy : dim(W N A4;) > i for 1 <4 < £}

Since every W € Q,(¢,m) is contained in Ay, we may assume «y = m. Schubert va-
rieties are subvarieties of Graasmannian therefore, one may think them as a subset
of the projective space P(%)=1. Linear codes corresponding to Schubert varieties
are known as Schubert codes and are denoted by C, (¢, m). Ghorpade-Lachaud [4]
initiated the study of Schubert codes and gave an upper bound for the minimum
distance of these codes. They conjectured that the minimum distance of the Schu-
bert code C, (¢, m) is ¢°(®), where §(a) = Ele(ai —1). This conjecture is known as
the Minimum Distance Conjecture or the MDC. The MDC was proved, first by H.
Chen [3] and Guerra-Vincenti [8] when ¢ = 2, then by Ghorpade-Tsfasman [7] for
the Schubert divisor and finally by Xiang [19] and [6] for general Schubert codes.
It is now well known that the Schubert code Cy (¢, m) is an [ny, kq, do] linear code

where

Bla
where by 8= (81,...,8¢) <a=(ai,...,ar) we mean 3; < «; for each 1 <4 < /.
The weight spectrum of Schubert code is in general not known. Though an attempt
to understand the weight spectrum of Schubert code C,(2,m) was made by the
authors [15] and a formula for the weight spectrum has been given. It was shown
that unlike Grassmann code C(2,m), the weight spectrum of the Schubert code
C,(2,m) is given in terms of 2 parameters.

Let £, ¢ be two positive integers satisfying ¢ < ¢ and m = £ + ¢'. Let My be
the collection of all £ x ¢’ matrices over F,. Note that M, can be thought of as
the affine subset of Gy, given by setting the Pliicker coordinate corresponding to
the columns ¢+ 1,...,m to be non zero. Let X = (X;;) be the ¢ x ¢ matrix of
indeterminates X;; over F,. Let F(¢,m) denote the F, span of all i x i minors of
X for 0 < i < ¢, where by 0 minor we mean 1. As the set My, is an affine part
of the Grassmannian Gy ,,, the evaluation code obtained by evaluating functions
fe ]-'“4(67 m) at the points of My, is known as the affine Grassmann code and
is denoted by C4(¢,m). Affine Grassmann codes were introduced in [1] and it was
shown that the affine Grassmann code C4(¢,m) is an [n.4, k., d ] code where
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The dual code C4(¢, m)l of the affine Grassmann code C*4(¢,m) was studied
in [2] and classification of the minimum weight codewords of the affine Grassmann
code is also known. But the weight spectrum of this code is known in any but the
trivial cases.

In this article, we study the weight spectrum of the affine Grassmann code
CA(2,m). First, we discuss how the Grassmann code C(2,m), the Schubert code
Cy(2,m) associated to the Schubert divisor ,(2,m) and the affine Grassmann
code C4(2,m) are related. We use this to associate a skew-symmetric matrix in
some “block form” corresponding to each codeword of C*4(2,m). This allows us
to determine the weight distribution. As a corollary, we obtain that the weight of
each codeword is divisible by ¢™ 3 or ¢ 2.

2. THE GRASSMANN CODE C(2,m), THE SCHUBERT CODE C,(2,m) AND THE
AFFINE GRASSMANN CODE C4(2,m)

In this section, we consider the Grassmann code C(2,m) and show that every
codeword in C(2,m) can be written as the extension of a codeword in the affine
Grassmann code via a codeword in the Schubert code C,(2,m) corresponding to
the Schubert divisor, i.e., the Schubert code corresponding to the sequence @ =
(m — 2,m). In this way, we establish a projection of the Grassmann code C(2,m)
onto the affine Grassmann code C4(2,m). We will see that the projection is a
linear isomorphism of vector spaces. Throughout this article, by a skew-symmetric
matrix of size m (or dimension m x m) we mean, an m x m matrix A with diagonal
entries zero and A = —AT,

Let m be a positive integer, m > 4 and Gz ,,, be the corresponding Grassmannian.

For any W € G 1, let My, be a 2 X m matrix whose rows forms a basis of W. Let
Gom(A) = {My,.. .,M[m] }
2lq

be the set of 2 X m matrices in some order, corresponding to distinct points of the
Grassmannian G ,,. Let X = (X;;) be the 2 x m matrix of indeterminates Xj;
over Fy and [m] = {1,2,...,m}. For I C [m] with I = {3,}, let det;(X) = Xy; ;3
be the 2 x 2 minor of X with respect to columns of X whose first column is labeled
by ¢ and second column is labeled by j. Let F(2,m) be the vector space over Fy
spanned by all possible minors det;(X). Consider the evaluation map

7,

(4) Ev : F(2,m) — Fy frver = (F(ML), o, f(Mpy ).

q
where f(M;) is the evaluation of the function f on the matrix M;. This is a linear,

injective map and the image of this map is the Grassmann code C(2,m). Note
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that a different set of choices of matrices M; gives an equivalent code. As functions
on matrices, det;(X) is a linear and alternating function on I, every codeword of
C (2, m) corresponds to a unique skew-symmetric m X m matrix. More precisely, for
any codeword ¢ € C(2,m), there exists a unique f € F(2,m) such that ¢ = cy. Let

[= 2 aidetg ;3(X) be the corresponding function. Clearly, we have a; = 0
1<i,j<m
and a;; = —aj; for all 1 <4i,j < m. If F = (a;;) be the coefficient matrix then F

is a skew-symmetric matrix. This is the associated matrix. Also, for M € G, (A)
we have f(M) = xFy”, where x and y are the first and the second rows of M
respectively. The matrix F is called as the standard form corresponding to the
codeword ¢. For any matrix A, we denote by r(A) the rank of the matrix A. We
know that the rank of a skew-symmetric matrix F is always even, therefore we set
2rg = r(F). In the following theorem, we state the result of Nogin [11] to calculate

the weight spectrum of the Grassmann code C(2,m).

Theorem 2.1. Let ¢ € C(2,m) be a codeword and F be the corresponding standard
form. The weight of the codeword c is given by
2(m—rp—1 qT(F) -1
(5) wt(c) = q ( ¥ )(]27_1
Furthermore, for any positive integers r, the number of codewords in C(2,m) of
2(m—r—1) q27" —1
2

weight q is given by N(m,2r), where
2r—1 )
I (g =1)
(6) N(m,2r) = ¢ S
[T (¢*=9 —1)
i=0

The number N(m,2r) is the number of skew-symmetric matrices of size m and
rank 2r.

Fix o = (m—2,m) and let A; be the m — 2 dimensional subspace of Fj* spanned
by the first m — 2 canonical (standard) basis of Fj*. Let 2,(2,m) be the corre-
sponding Schubert variety. For any W € ,(2,m) choose a matrix My, whose
rows forms a basis of W and last two entries of the first row of My, are zero.
Let ©Q,(2,m)(A) be the collection of such matrices corresponding to each point of
Q(2,m). Therefore, there is a choice of matrices in G, (A), such that we may

write
(7) G2,m(A) = Qa(2am)(A) HA(2>m)

Also, the Schubert code C,(2,m) is the image of the restriction of the evaluation
map defined in equation (4) to the set Q,(2,m)(A). Thus, we may assume a
codeword ¢ = ¢; € C(2,m) can be written as a vector (cs|ca) where cg is the
evaluation of f on £,(2,m)(A) and c4 is the evaluation of f on A(2,m). But the

evaluation of f on Q,(2,m)A is a codeword in C,(2,m).
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Finally, let ¢ = m — 2 and C**(2,m) be the corresponding affine Grassmann
code. We have the following embedding

MQ,m—Q — GZ,m(A)a M (M‘IQ)

where I is the identity matrix of size 2. We may use this embedding to identify

My, m—2 as a subset of Gy ,,,(A). Moreover, equation (7) may be written as
®) Gam(A) = Qa(2,m)(A&) [[Mam-2.

Furthermore, for any codeword ¢ = ¢y € C(2,m), the evaluation of f on 24(2,m)(A)
corresponds to a codeword in C,(2,m) and the evaluation of f on My ,,_o corre-
sponds to a codeword in C*4(2,m). In particular, every codeword cg of the Grass-

mann code C(2,m) can be written uniquely as

(9) cg = (Cs|CA) .

where cg is a codeword in the Schubert code C(2,m) and ¢4 is a codeword in the
affine Grassmann code C(2,m). This gives a projection of the Grassmann code

C(2,m) onto the affine Grassmann code C(2,m). and the map is linear as well as

m
2

and (3)). This means, for every c4 € C4(2,m), there exist codewords cg € C(2,m)
and cg € Cy(2,m) such that cg = (cg|ca). This is the key idea of this article. In

injective. On the other hand, both codes are of dimension ( ) ( see equations (1)

the next lemma, we use equation (9) to get a skew symmetric matrix corresponding

to every codeword of C4(2,m).

Lemma 2.2. For every codeword cy € CA(27m) there exist a unique skew sym-

metric matriz F of size m such that
(10) wt(ca) = wt(F|C(2,m)) — wt(F|Cy(2,m)),

where wt(F|C(2,m)) and wt(F|Cy(2,m)) denotes the weight of the codewords in
C(2,m) and Cy(2,m), associated to the restriction of F to the Grassmannian G

and the Schubert divisor Q4 (2, m) respectively.

Proof. The proof of this lemma is trivial but this lemma is the heart of the article.
As we discussed, for a given codeword c4 € C*(2,m), there exist cg € C(2,m) and
cs € Cy(2,m) such that cg = (cg|ca). The codeword cg is unique. Consequently,
wt(cq) = wt(eg) — wt(cg). Let F be the skew-symmetric matrix corresponding to
the codeword ¢ and hence wt(cg) = wt(F|C(2,m)). In (9) we have seen that the
codeword cg is the restriction of the form F to the Schubert variety (2, m). This
completes the proof. [
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If the skew-symmetric matrix F is associated to a codeword c4 € C4(2,m), we
may write F as

A B
(1) F:<_BT D>,

where A and D are skew-symmetric matrices of size m — 2 and 2 respectively and
B is an (m — 2) X 2 matrix.

Definition 2.3. Let ¢y € C’A(Z,m) be a codeword and F be the corresponding
skew-symmetric matrix in the form written as in equation (11). The matrix F is

called the standard block form corresponding to the codeword c4.

For a skew-symmetric matrix F', we know that the evaluation of F' at some point
W € G, is given by xFyT, where x and y is a basis of W. From equations
(8) and (9), it is clear that if F is a skew-symmetric matrix corresponding to a
codeword ¢4 € C4(2,m) then

(12) cA = (xFyT)

where x, y € F" runs over vectors of Fy* such that the last two columns of x, y
forms the 2 x 2 identity matrix. For the rest of the article, if F is a skew-symmetric
matrix in the standard block form as in equation (11), then the corresponding
codeword of affine Grassmann code is given by equation (12). Therefore, if we write
xFyT, the evaluation of F as a codeword in C*(2,m) we always mean x and y are
vectors in " such that x = (z1,...,2m—2,1,0) and y = (y1,...,¥m—2,0,1). Also,
if F is a skew-symmetric matrix in the standard block form, we fix the following

notation
r(A|B) = rank((A|B)).

Since each skew symmetric matrix corresponds to a codeword in the Grassmann
code C(2,m) as well as in the affine Grassmann code C*(2,m), therefore, if F
is a skew-symmetric matrix we use the notations cg(F) and c4(F) to denote the
corresponding codeword in the Grassmann code and in the affine Grassmann code

respectively.

3. WEIGHT SPECTRUM OF AFFINE GRASSMANN CODE C*4(2,m)

In the last section, we saw how we can get a skew-symmetric matrix to each
codeword of C4(2,m) written in some standard block form. In this part of the
article, we will see that the weight of a codeword can be given in terms of the rank
r(A) where A is the upper (m — 2) x (m — 2) block of the standard block form.
We use the rank of these block matrices to give a formula for the weight spectrum
of this code. But first, recall that the weight spectrum of an [n, k], linear code

C' is a sequence (Ao, ..., A,) of positive integers where A; denotes the number of
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codewords in C' of weight 7. The weight enumerator polynomial of a code is defined
and denoted by

Weo(X) = Xn: A; XE
1=0

In the next table, the weight enumerator polynomial of the affine Grassmann code
CA(2,m) for some small values of m and ¢ are listed. We used SAGEMATH to

compute it.

3.1. Weight Enumerator Polynomial of Some affine Grassmann codes
Codes.

weight enumerator
X164 16X10 4 30X8 +16X6 41
X644 112X40 4 798X32 + 112X%4 + 1
X256 1 560X 160 4 7168 X136 4 17310X 128 + 7168 X120 4 560X + 1

2X81 4324 X°7 4+ 240X5* + 162X48 + 1

2X 729 4+ 4212X°13 4 52728 X486 1 2106X 432 + 1

3X256 4+ 2304X 196 4+ 1020X 192 + 768X 180 4 1
3X409 4 48384 X 3136 1 984060X 3072 + 16128 X 2880 4 1
4X625 4 10000X°% + 3120X5% 4 2500X480 4+ 1
4X15625 1 310000 12625 + 9378120 12590 4 77500.X 12000 4 1

s}

G| w|w| oo

G| |o s oo k|3

ot

After finding the formula for the weight spectrum of C(2,m) we will compare
some of the values given in this table. We would like to get some canonical form
corresponding to each standard block form and to do so we recall the following well

known result from [10] on the classification of skew-symmetric matrices.

Proposition 3.1. Let A be a skew-symmetric matriz of size m and r(A) = 2ra.

Then there exists a nonsingular matrix C such that

0 I, O
CACT=| -1,, 0 ©
0 0 0

where CACT s an m x m matriz in the block from and the matrices in the first
or second row have ra rows, the matrices in the third row have m — 2ra rows.
Likewise, the matrices in the first or second column have ra columns, the matrices
in the third column have m —2ra columns. The matriz L., is the ra X ra identity

matriz.

Let F a skew symmetric matrix written in the standard block form as in (11) and
ce(F) and c4(F) be the corresponding codewords in the Grassmann code C'(2,m)
and the affine Grassmann code C(2,m). We know that the weight of the cg(F)
depends on the rank of F. Therefore, we would like to understand the weight of
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c4(F) in terms of the rank of matrices F, A and B. To do so we would first give

another standard form corresponding to a skew-symmetric matrix F'.
Lemma 3.2. Let F be a skew-symmetric block form of size m given by

A B
F =

where A and D are skew-symmetric matrices of size m — 2 and 2 respectively and

B is an m — 2 x 2 matriz. Then there exists a nonsingular matriz Cy, such that

o0 I, 0 0
-, 0 0 O

(13) CnFCE = A
0 o o f

-0 -0 —fT D

where Cyy ACE is an m x m block matriz such that the matrices in first or second
row have ra Tows, the matrices in the third row have m — 2ra — 2 rows and the
matrices in the fourth row have 2 rows. Likewise, the matrices in the first or
second column have ra columns, the matrices in the third column have m —2rp —2
columns and the matrices in the fourth column have 2 columns. The matriz L., is
the ra X ra identity matriz. The matrices O are zero matrices of the appropriate

size. The matriz f is a generic matriz of the corresponding dimensions.

Proof. The proof of this lemma is easy. Using Proposition 3.1 we get a nonsingular
matrix C of size m — 2 such that CACT has the following block form

o I, O
CACT=| -1, 0 o0
0 0 0

The matrix CACT has the required form for the upper m — 2 x m — 2 principal
minor of the matrix in equation (13) of the lemma. Define a new matrix Py, =
CcC o
( 0 I ) where I is the 2 x 2 identity matrix. Then Py, is a nonsingular matrix
2
of size m and we have

T T
P FPT — C o0 r C 0 _ CAC* CB
0 I 0 I -BCT D

and we may rewrite CB such that

o I, o0 d
CACT CB\ | -I, O 0 e
-BCT D | 0 0 0o f
—dT —eT —f7 D
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Define Qm to be the following nonsingular matrix

I, O 0 0

Qu — o I, 0 0
" 0 0 I,39, O
—eT —dT 0 12

If we take Cpy = QmPm, then the matrix CmFC£ has the required form as in
equation (13). O

For any f € FA(2,m), let ¢; € C*(2,m) denote the corresponding codeword.
Recall that X is the 2 X m matrix of indeterminates X;; and Xy; ;; is the minor
of X corresponding to the columns i and j. Also, if F is a skew-symmetric matrix
of size m, then f = X FXy” € FA(2,m) is the function such that ca(F) = ¢y,
where X1 = (X11,..., X1m—2,1,0) and Xo = (Xo1,..., X2/n—2,0,1). In the next
lemma we give a canonical function f € F(2,m) corresponding to each codeword
ca € C4(2,m) such that wt(cy) = wt(ca). More precisely,

Lemma 3.3. For every codeword ca € CA(2,m) there exist some f € F4(2,m)
such that wt(ca) = wt(cy) and

f= ZX{i,r+i} + Z Jii Xyigy + ¢

i=1 i,j>2r
where 0 < r < mT—z 18 an integer and c is a constant.

Proof. Let F be the standard block form corresponding to the codeword c4. Let
Cm be the nonsingular matrix such that C,, FCI takes the form as in equation
(13). Let f = X;FX,” € FA(2,m) be the function corresponding to the skew-
symmetric matrix Cp,, FCT . Clearly, f is in the required form with 2r = r(A) and
the weight of these two codewords c4 and cy are same.

O

The benefit of Lemma 3.3 is that corresponding to every codeword c4 € C4(2,m)
we can get a function f € F4(2,m) that can be written as the sum of 7 disjoint

2 X 2 minors, many disjoint 1 x 1 minors and a constant.

Lemma 3.4. Let0 < 2r < m—2 be an even number. There are (¢*"—1)(¢*"—q* 1)

0o I
vector pairs X,y € IE%T such that x < I o ) yT#£0
—ir

Proof. The proof is a simple consequence of equation (5) in Theorem 2.1. |

Lemma 3.5. Let f = > Xy;,4iy € FA(2,m) and ¢y € CA(2,m) be the corre-
i=1

sponding codeword. Then wt(cy) = (¢*" — 1)(¢%" — ¢*—1)g?m—2-27)
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Proof. Note that wt(cy) is the number of 2 x m matrices with rows x, y € F;* such
that the last two entries of x and y gives the identity matrix and xFyT # 0 where

0o I
F = .
-I, O
Now the result follows from the above lemma. O

Next, we determine the weight of a codeword ¢, € C4(2,m) that is the evaluation
of a function g € F(2,m) which is the sum of some disjoint 2 x 2 minors and 1 x 1

minors.

Lemma 3.6. Let f = > Xy, iy € FA2,m) and h=3 h1;X1; + hjXo; be
i=1 j>2r
a nonzero function. Then f + h € FA(2,m) and wt(cpip) = ¢?™~ 27 (qg - 1).

Proof. Note that h is a nonzero linear map ]]?3(’”‘2‘2” — F,. Therefore it assumes

each value exactly (12(’”_2_2’”)_1 times. Also, any M € My ,,,_o can be written as
(M1|Mz2) such that My is a 2 X 2r matrix, My is a 2 X m — 2 — 2r matrix and f +
h(M) = f(Mj) + h(Mz). Therefore f+ h(M) # 0 iff f(M;) # —h(Mz). For each
M; there are exactly ¢>("~22")=1(¢—1) matrices Mg such that f(M;) # —h(Mz),
or in other words f + h(M) # 0. But there are ¢*" matrices M;. Therefore, we
get ¢>Mm=2)~1(g — 1) matrices M € My,,,_» such that f + h(M) # 0. Hence
wheppn =MD g - 1).

O

Lemma 3.7. Let f = > Xy, 14y € FA(2,m) and X # 0 be an element of F,.
i=1
Then Wt(Cf+)\) = q2(m_2_27') (q4T _ q47'—1 + q27"—1).

Proof. First, we shall prove that the evaluation of f assumes each nonzero value for
exactly (¢°" —1)¢* ! many pairs x, y € F2". Let ¢ € F, be non zero and F be the
skew-symmetric matrix associated to f. Then the evaluation of f on M € My ;2

F_ 0o I
-I, 0

with x and y are rows of M. For any nonzero x € Fg’", the partial evaluation x
2r—1

is given by xFyT # 0 where

is a nonzero linear map xF : ]Fgr — F,. Clearly, for any such x, there are ¢
y € F2" such that xFyT = c.

Now, the number of pairs x, y € IFZ"”z such that the evaluation of f+ A onto ma-
trices M having rows x, y is zero, can be given by (¢*" — 1)q27'_1q2(m_2"_2). Conse-
quently, the weight of the codeword ¢ y is given by ¢2(m=2) —(¢?" —1)g?"~1g2(m=2r=2)
which is the desired number.

O
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This is a good time to determine the weight distribution of the affine Grass-
mann code C4(2,m). To do so, recall that corresponding to every codeword

ca € C4(2,m) we can get a skew-symmetric form F, where

A B
F =

and the codeword ¢4 is given by equation (12). In the next theorem, we determine
the weight of a given codeword ¢4 € C4(2,m) depending on the rank of the matrices
A, (A|B) and D.

Theorem 3.8. Let ca € CA(2,m) be a codeword and F written as above, be the
skew-symmetric matriz in the block form corresponding to this codeword. We have
the following.
(a) If r(A) = r((AB)) = r(F), then wt(ca) = (¢°"4 —1)(q — 1)g*"27ra) 71,
(b) If r(A) =r((A|B)) and r(F) =r(A) + 2, then

Wt(CA) — (q2rA+1 _ qQTA + 1)q2(M—2—7’A)—1.
(¢) If r(A) # r((A|B)) then wt(ca) = ¢*™ 27 (g — 1)
Proof. By Lemma 3.3 we know that, corresponding to the codeword cy we can

associate a codeword ¢y € C(2,m) such that wt(ca) = wt(cs) and the skew-
symmetric matrix corresponding to cy is given by

o0 I, 0 ©
C FCT _ -1, O 0 0
meTm 0 0 0o f
-0 -0 —fT D

(a) In this case, we must have f = 0 and D = 0. Therefore the corresponding
function ¢ in this case look like f = 7ZA: Xiratiy € FA(2,m). The result
now follows by Lemma 3.5. =

(b) In this case, we must have f = 0 and D # 0. Since D is a nonzero skew-

0

symmetric matrix, it must be given by D = < 5

3 ) where A # 0. The

TA

corresponding function f, is given by f = > Xy 014 + N2 € FA(2,m).
i=1

The result now follows by Lemma 3.7.

(¢) Finally, in this case, we get £ # 0. After applying the rows and the columns
operations that affects only the last two block rows and columns of the
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matrix Cp, FCT we can get another skew-symmetric matrix

0 I, 0 O

I, 0 0 0

0 0 0 f

-0 -0 —fT o
such that the corresponding codeword ¢, has the same weight as the code-
word cy and hence the same Weight as the codeword c4. In this case the
function g € FA(2,m)is g = Z Xiipa+iy t 2 h1j X1 ;+ha;Xo ;. Now

j>2ra
the weight of ¢, can be glven by Lemma 3.6. This completes the proof of

the theorem.

O

The following corollary says that the weight of every codeword in C4(2,m) is
divisible by some power of q.

Corollary 3.9. Let cq € C4(2,m) be a codeword.
(a) If m is even, then ¢™ 3| wt(ca).
(b) If m is odd, then ¢™ 2| wt(ca).

Proof. Note that the wt(cy) is either (¢*" —1)(g—1)g>™ =21 or (¢*"+! — ¢*" +
1)g?(m=2-1)=1 or ¢2(m=2)=1(4 — 1) for some even number 0 < 2r < m — 2. In either

case, the weight of ¢4 is divisible by ¢2("—2-7)~1

and the power is minimal when r
is maximal. Now if m is even then 2r = m — 2 gives the minimal power and if m
is odd then 2r = m — 3 gives the minimal power.

O

Remark 3.10. For every even number 0 < 2r < m—2, there are codewords of weights
(q2r _ 1)((] _ 1)q2(m—2—r)—17 (q2r+l _ q2r + 1)q2(m—2—7‘)—1 or q2(m—2)—1(q _ 1). It is
not hard to construct a codeword of these weights. All we have to do is to choose a
skew-symmetric matrix A of size m—2 and rank 2. Now choose any m—2x2 matrix
B such that the columns of B are contained in the column space of A. Choose

any skew symmetric matrix D of size 2. Then the codeword ca(F) € C4(2,m)

A B
F =

has weight either (¢>" — 1)(q — 1)¢?™=27")=1 or (¢*"*+1 — ¢?" + 1)¢g>(™=2-7)~1 de-

pending on whether D is the zero or a non zero matrix. On the other hand if we

associated with the form

choose B such that the columns of B are not in the column space of A, then for
any choice of D, the codeword associated to the form F has weight ¢?(m~2~1(g—1)

A B
F =

where
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Finally, we are ready to give the weight spectrum of the affine Grassmann code
CA(2,m). Recall that, for any non-negative, even integer 2rr < m, N (m, 2r) denotes
the number of skew-symmetric matrices of size m and rank 2r, where

2r—1 )
II (@™ =1)
N(m,2r) = qT(T*l)—rZ_:l0 .

[T (¢ — 1)

=0

For the next theorem, we fix 0 < 2r < m — 2.

Theorem 3.11. There are A; codewords in C(2,m) of weight i, where for every
0<2r<m-—2,

(a) A; = N(m —2,2r)q* when i = (¢°" — 1)(q — 1)g*>(m—2-7)-1

(b) A; = N(m —2,2r)¢*" (¢ — 1) when i = (¢*" 1 — ¢*" + 1)g?m—2-7)-1,

(c) Ai= 3 N(m—22r)q(¢?"? —¢) when i = @27 (g - 1).
0<2r<m-—2
(d) A; =0 in all other cases.

Proof. Every codeword cy4 € C’A(2, m) correspond to a skew-symmetric matrix F,

A B
F= .

The weight of the codeword depends on the matrices A, B and D. We have seen

where

that if r(A) = r(A|B), i.e., the columns of B is contained in the column space of
A then the weight of the corresponding codeword is (¢*" — 1)(g — 1)g?(m—2-")-1
or (¢> 1 —¢?" + 1)q2(m_2_r)_1 depending on whether D is zero or nonzero. In all
other cases i.e. when r(A) # r(A|B), the weight of the corresponding codeword is
g2(m=2)-1 (¢—1). Therefore, to complete the proof we need only to count how many
matrices F satisfy these conditions. The weight of the codeword cy4 is (¢?"*! —
¢®" 4 1)g?"m=2=7)=1 iff the standard representation block form of corresponding
skew symmetric matrix F has D = 0 and 2r = r(A) = r(A|B). The number of
choices for A, in this case, is N(m — 2,2r) and for every such choice of A, we have
exactly ¢*" choices of B satisfying r(A) = 7(A|B) as r(A) = 2r. Therefore there are
N(m—2,2r)¢*" many codewords in C*4(2,m) of weight (¢>" —1)(g—1)g?(m—2-7)-1,
However, the weight of the codeword cy is (¢*" ! — ¢?" + 1)¢?™=2=")~1 if and
only if the standard representation of the corresponding skew symmetric matrix F
satisfies D # 0 and 2r = r(A) = r(A|B). Since D is a nonzero skew-symmetric
matrix of size 2, there are exacly (¢ — 1) choices of D. Hence we get N(m —
2,2r)¢*" (¢ — 1) codewords in C(2,m) of weight (¢*"*! — ¢%" + 1)g?(m—2-")-1,
Finally, the weight of a codeword is ¢?(™~2)~=1(q — 1) iff 7(A|B) # r(A). In
this case, for every 0 < 2r < m — 2 we get N(m — 2,2r) choices of A. For any
such choice of a skew-symmetric matrix A of rank 2r and size m — 2, there are
exactly (¢2(™=2) — ¢*") choices of B satisfying 7(A|B) # r(A) and ¢ choices of D.
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Therefore, we get >, N(m—2,2r)q(¢*™2 —¢*") many codewords of weight
0<2r<m—2

¢?(m=2=1(g —1). This completes the proof of the theorem.
O

Remark 3.12. A formula for the weight spectrum of the affine Grassmann code

C4(2,m) has been given. Now we show that the sum of all values of A; given in
m(m—1)

Theorem 3.11 for different values of r is ¢— 2~ = |C*}(2,m)| which is expected.

First, assume that m is even and m = 2k + 2 for some k& € N Then by equation
(3). we got [04(2,m)] = ¢ 242

values of r are 0,1,...,k. Therefore, If we add all values of A; given in all three

. Also, in this case, m — 2 = 2k and possible

cases of Theorem 3.11, we get

k k k

> N2k, 2r)g" + > N(2k,2r)¢* (¢ — 1) + > N(2k, 2r)q(q* — ¢*)
r=0 r=0 r=0

= N(2k,0)¢** + N(2k,2)¢** 1 ... + N(2k, 2k)g**+?
= (N(2k,0) + N(2k,2) + ...+ N(2k, 2k)) ¢***1,

where N(2k,2r) denotes the number of skew-symmetric matrix of size 2k of rank
2r. Since any skew-symmetric matrix of size 2k can have rank any even number
between 0 and 2k, therefore the sum of the numbers in the bracket is the number

of skew-symmetric matrices of size 2k. Consequently, we get

k k
N(2k,2r)¢" + > N(2k,2r)¢" (¢ — 1) + > N(2k,2r)q(q" — ¢')
r=0 r=0 r=0
B(2k—1) gakot1

M=

=q
_ @ty
and this is the number of codewords in C4(2,m).

Computation of the case when m is odd is quite similar. For example, if m is
odd, we may assume m = 2k + 3 fr some k € N. In this case m — 2 = 2k + 1 and
all possible values of r in this case are also 0,2, ...,2k. Rest of the computation is

exactly same as in the previous case, where m is even.

In the next example we compute the weight enumerator polynomial of C(2,m)

for some small values of m over any field and compare it with the Table 3.1

Example 3.13. We compute the weight spectrum of the affine Grassmann code
CA(2,m) when m = 4,5 In both these cases we have only two possibilities of 2r
namely, 2r = 0, 2.

If m = 4, then using Theorem 3.11 we find there are 1 codeword of weight 0,
(¢ — 1) codewords of weight ¢*, (¢ — 1)¢* codewords of weight (¢> — 1)(¢ — 1)g,
(g—1)g*(g—1) codewords of weight (¢® — ¢*+1)q and q(¢* — 1)codewords of weight
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¢*(q — 1). The weight enumerator polynomial of this code is given by
Weagay(X) = qlg" = 1)XT @D 4 (g — 1)2¢ X901 4
(g — 1)Xq4 +(q— 1)q4Xq(q2*1)(qfl)_

It is easy to see this polynomial matches with the weight enumerator polynomials
given in Table 3.1.

Similarly, in the case when m = 5, we get 1 codeword of weight 0, (¢ — 1)
codewords of weight ¢% (¢* — 1)¢* codewords of weight (¢ — 1)(q — 1)¢3, (¢® —
1)g*(qg — 1) codewords of weight (¢® — ¢® + 1)¢® and q(¢% — 1) + (¢> — 1)q(¢® — ¢*)
codewords of weight ¢°(q — 1). In this case the weight enumerator polynomial of
the code C4(2,5) is given by

Weags(X) = (g(¢® = 1) + > (@ = D)(@* = )X £ 14 (- )X
+¢*(¢® — 1) (g — D)X @~ 4 (g3 —1)g* X (@ ~Da-1),
One may compare this too with the weight enumerator polynomial given in Table
3.1.
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