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Abstract We propose a new partial decoding algorithm for h-interleaved one-point
Hermitian codes that can decode—under certain assumptions—an error of relative
weight up to 1 − (k+gn )

h
h+1 , where k is the dimension, n the length, and g the genus

of the code. Simulation results for various parameters indicate that the new decoder
achieves this maximal decoding radius with high probability. The algorithm is based
on a recent generalization of Rosenkilde’s improved power decoder to interleaved Reed–
Solomon codes, does not require an expensive root-finding step, and improves upon
the previous best decoding radius by Kampf at all rates. In the special case h = 1, we
obtain an adaption of the improved power decoding algorithm to one-point Hermitian
codes, which for all simulated parameters achieves a similar observed failure probability
as the Guruswami–Sudan decoder above the latter’s guaranteed decoding radius.

Keywords Interleaved One-Point Hermitian Codes · Power Decoding · Collaborative
Decoding · 94B35 · 14G50

1 Introduction

One-point Hermitian (1-H) codes are algebraic geometry codes that can be decoded
beyond half the minimum Goppa distance. Most of their decoders are conceptually
similar to their Reed–Solomon (RS) code analogs, such as the Guruswami–Sudan (GS)
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algorithm [1] and power decoding (PD) [2–4]. For both RS and 1-H codes, PD is only
able to correct as many errors as the Sudan algorithm, which is a special case of the
GS algorithm. Recently [5], PD for RS codes was improved to correct as many errors as
the GS algorithm.

An h-interleaved 1-H code is a direct sum of h many 1-H codes. By assuming that errors
occur at the same positions in the constituent codewords (burst errors), it is possible to
decode far beyond half the minimum distance [6], which is inspired by decoding methods
for interleaved RS codes [2, 7]. In the RS case, there have been many improvements on
the decoding radius in the last two decades [2, 7–12], which have not all been adapted
to 1-H codes. The currently best-known decoding radius for interleaved RS codes is
achieved by both the interpolation-based technique in [8, 10] and the method based on
improved PD in [12], where the latter has a smaller complexity since it does not rely on
an expensive root-finding step.

In this paper, we adapt the decoder in [12], which is based on improved PD, to h-
interleaved 1-H codes using the description of PD for 1-H as in [4]. Similar to the RS
case, we derive a larger system of non-linear key equations (cf. Section 3) and reduce
the decoding problem to a linear problem whose solution—under certain assumptions—
agrees with the solution of the system of key equations (cf. Section 4).

Using a linear-algebraic argument, we derive an upper bound on the maximum number
of errors which can yield a unique solution of the linear problem (cf. Section 5). This
decoding radius improves upon the previous best, [6], at all rates. In Section 6, we
present simulation results for various code and decoder parameters which indicate that
the new algorithm achieves the maximal decoding radius with high probability. The
complexity of solving the linear problem is shown to be sub-quadratic in the code
length in Section 7. Finally, we compare the decoding radii of RS, interleaved RS and
interleaved 1-H codes for the same overall field size and length in Section 8.

In the special case h = 1, we obtain an 1-H analogue of the improved PD for RS
codes [5]. This improves the decoding radius of the 1-H PD decoder of [4] at a similar
cost, sub-quadratic in the code length, and similar to the best known cost of the 1-H
GS algorithm [4]. Simulation results suggest that the decoder has a similar failure
probability as the GS algorithm for the same parameters when the decoding radius is
beyond the guaranteed radius of the GS algorithm (cf. Section 6).

The decoder is described for codes of full length n = q3; the approach works for any
n < q3, but to obtain the good complexities, certain restrictions to how the evaluation
points are chosen should be kept. For notational convenience, we restrict ourselves to
homogeneous interleaved 1-H codes, i.e., where the constituent codes have the same
rate. The generalization to inhomogeneous codes is straightforward.

The results of this article were partly presented at the International Workshop on
Coding and Cryptography, Saint-Petersburg, Russia, 2017, where we only considered
the case h = 1 [13]. While writing this extension, we discovered some slightly improved
key equations, which are presented here. In the previous paper we sought Λs where
Λ is a usual notion of error-locator; now we instead define and seek Λs, which is an
“error-locator of multiplicity s”.
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2 Preliminaries

Let q be a prime power. We follow the notation of [4]. The Hermitian curve H/Fq2
is the smooth projective plane curve defined by the affine equation Y q + Y = Xq+1.
The curve H(Fq2) has genus g = 1

2q(q − 1) and q3 + 1 many Fq2 -rational points
P = {P1, . . . , Pq3 , P∞}, where P∞ denotes the point at infinity. We define R :=
∪mH≥0L(mHP∞) = Fq2 [X,Y ]/(Y q + Y −Xq+1), which has an Fq2 -basis of the form
{XiY j : 0 ≤ i, 0 ≤ j < q}. The order function degH : R→ Z≥0∪{−∞}, f 7→ −vP∞(f)
is defined by the valuation vP∞ at P∞. As a result, we have degH(X

iY j) = iq+j(q+1).
We will think often operate with elements of R as bivariate polynomials in X and Y ,
represented as Fq2 -linear combinations of the aforementioned basis. In this paper, when
we say “degree” of an element in R, we mean its degH. A non-zero element of R is
called monic if its monomial of largest degH has coefficient 1.

Let n = q3 and mH ∈ N with 2(g − 1) < mH < n. The one-point Hermitian code of
length n and parameter mH over Fq2 is defined by

CH(n,mH) = {(f(P1), . . . , f(Pn)) : f ∈ L(mHP∞)} .

The dimension of CH is given by k = mH − g + 1 and the minimum distance d is
lower-bounded by the designed minimum distance d∗ := n−mH.

The (homogeneous) h-interleaved one-point Hermitian code of length n and parameter
mH over Fq2 is the direct sum of h one-point Hermitian codes CH(n,mH), i.e.,

CH(n,mH;h) =


c1...
ch

 ∈ Fh×nq2 : ci ∈ CH(n,mH)

 .

As a metric for errors, we consider burst errors: If r = c+ e ∈ Fh×nq2 is received for a
codeword c ∈ CH(n,mH;h), then the error positions E ⊆ {1, . . . , n} are given by the
non-zero columns of e, i.e.,

E :=
⋃h
j=1

{
i : ej,i 6= 0

}
.

For a vector i = [i1, . . . , im] ∈ Zh≥0, we define its size as |i| :=
∑
µ iµ. We denote by �

the product partial order on Zh≥0, i.e. i � j if iµ ≤ jµ for all µ. The number of vectors
∈Zm≥0 of size |i| = µ is given by (h+µ−1

µ ). We use the following relations, which follow
from properties of the binomial coefficient.

Lemma 1 Let m, t ∈ Z>0. Then,∑t
µ=0 (

m+µ−1
µ ) = (m+t

m ), and
∑t−1
µ=0 µ(

m+µ−1
µ ) = t(m+t−1

m+1 ).

Note that the Lemma 1 means e.g.∑
i∈Zh≥0

,|i|<t

|i| = t(h+t−1
h+1 ) .

We also introduce the following notational short-hands:
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Definition 1 For a ∈ Rh, and i, j ∈ Zh≥0, we define

ai :=
∏h
µ=1 a

iµ
µ , (ji) :=

∏m
µ=1 (

jµ
iµ
).

By extending the binomial theorem to this notation, we obtain the following lemma.

Lemma 2 Let a, b ∈ Rh, and j ∈ Zm≥0. Then,

(a+ b)j =
∑

i�j (
j
i)a

ibj−i.

For computational complexities, we use the soft-O notation O∼, which omits log factors.

3 System of Key Equations

In this section, we derive the system of key equations that we need for decoding, using
the same trick as [12] for interleaved Reed–Solomon codes. We use the description of
power decoding for one-point Hermitian codes as in [4]. Suppose that the received word
is r = c+ e ∈ Fh×nq2 , consisting of an error e with corresponding (burst) error positions
E and a codeword c ∈ CH(n,mH;h), which is obtained from the message polynomials
f = [f1, . . . , fh] ∈ L(mP∞)h.

In the following sections we show how to retrieve the message polynomials f from the
received word r if the number of errors |E| does not exceed a certain decoding radius,
which depends on the parameters of the decoding algorithm. Similar to [4], we define
the following polynomials.

Definition 2 Let s ∈ N. The error locator polynomial Λs of multiplicity s is the
element in L

(
−
∑
i∈E sPi +∞P∞

)
of minimal degree that is monic.

Theorem 1 The error locator polynomial of multiplicity s is unique and has degree

s|E| ≤ degH Λs ≤ s|E|+ g.

Proof: The proof is similar to [4, Lemma 23]. Uniqueness is clear since if there were
two such polynomials, their difference would also be in L

(
−
∑
i∈E sPi +∞P∞

)
, but

of smaller degH. Being in L
(
−
∑
i∈E sPi +∞P∞

)
specifies s|E| homogeneous linear

equations in the coefficients of Λs, since for any i ∈ E , we can expand Λs into a power
series

∑
j≥s γi,jφ

j
i for a local parameter φi of Pi (e.g., take φi = X−αi if Pi = (αi, βi)).

By requiring degH Λs ≤ s|E|+ g, we have more variables than equations, so there is a
non-zero Λs of the sought form with degree at most s|E|+ g. The lower bound works
exactly as in [4, Lemma 23].

Lemma 3 For each i = 1, . . . , h, there is a polynomial Ri ∈ R with degH(Ri) <
n+ 2g that satisfies R(Pj) = ri,j for all Pj ∈ P∗. Each Ri can be computed in O∼(n)
operations over Fq2 .
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Proof: Apply [4, Lemma 6] to each row of the received word.

In the following, let R = [R1, . . . , Rh] ∈ Rh be as in Lemma 3 and G ∈ R be defined as

G =
∏
α∈Fq2

(X − α) = Xq2 −X.

Lemma 4 For each i ∈ Z≥0 with |i| ≤ s, there is a unique Ωs,i ∈ R of degree
degHΩs,i ≤ degH Λs + |i|(2g − 1) such that

Λs(f −R)i = G|i|Ωs,i.

Proof: Consider vPj (Λs(f −R)i) for j = 1, . . . , n: if j ∈ E then vPj (Λs(f −R)i) =

vPj (Λs) ≥ s ≥ |i|. If j /∈ E then vPj (Λs(f −R)i) ≥ vPj ((f −R)i) ≥ |i|. We conclude

Λs(f −R)i ∈ L
(
− |i|

n∑
j=1

Pj +∞P∞
)
.

Since the divisor in that L-space is exactly div(G|i|) +∞P∞, then Λs(f −R)i must
be divisible by G|i| (see e.g., [4, Lemma 3]) with quotient in R. The degree is given by
taking degH on both sides and using degH(Ri) < n+ 2g − 1.

The following theorem states the system of key equations that we will use for decoding in
the next sections. Note that the formulation is similar to its interleaved Reed–Solomon
analog [12], with the difference that all involved polynomials are elements of the ring R.

Theorem 2 (System of Key Equations) Let `, s ∈ Z>0 be such that s ≤ ` and Λs,
f , R, G, and Ωs,i as above. Then, for all j ∈ Zh≥0 of size 1 ≤ |j| ≤ `, we have

Λsf
j =

∑
i�j

Ωs,i

[(
j

i

)
Rj−iG|i|

]
, 1 ≤ |j| < s (1)

Λsf
j ≡

∑
i�j
|i|<s

Ωs,i

[(
j

i

)
Rj−iG|i|

]
mod Gs, s ≤ |j| ≤ `, (2)

as congruences over R.

Proof: Using Lemma 2, we obtain

Λsf
j = Λs (R+ (f −R))j =

∑
i�j (

j
i)Λs (f −R)iRj−i. (3)

In all summands with |i| < s, we can rewrite, using Lemma 4,

Λs (f −R)i = G|i|Ωs,i. (4)

If |i| ≥ s, we can write i = i′ + i′′, for some i′, i′′ ∈ Z≥0 with |i′| = s, and

Λs (f −R)i = Λs(f −R)i
′
(f −R)i

′′
= GsΩs,i′(f −R)i

′′
,

so all those terms are divisible by Gs. For |j| < s, all summands of (3) have |i| ≤ |j| < s

and are of the form (4). We therefore obtain (1). For |j| ≥ s, all summands of (3) with
|i| ≥ s are divisible by Gs, so we get (2).
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4 Solving the System of Key Equations

The key equations in Theorem 2 are non-linear relations between the unknown polynomi-
als Λs, f , and Ω. We therefore relax them into—at the first glance much weaker—linear
problem and hope that their solutions agree. The resulting problem is a heavy generali-
sation of multi-sequence linear shift register synthesis [14, 15], which is very related to
simultaneous Hermite Padé approximations [16].

Problem 1 Consider a code C = CH(n,mH;h) and a decoding instance with received
word r = c+ e ∈ Fh×nq2 , where c ∈ C is unknown and is obtained from the unknown

message polynomials f ∈ L(mP∞)h. Let R and G be as in Section 3. Given positive
integers s ≤ `, let

Ai,j = (ji)R
j−iG|i| ∈ R

for all i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}. Find
λi, ψj ∈ R for i ∈ I and j ∈ J with monic λ0, such that

ψj =
∑
i∈I

λiAi,j j ∈ J and |j| < s, (5)

ψj ≡
∑
i∈I

λiAi,j mod Gs j ∈ J and |j| ≥ s, (6)

degH λ0 ≥ degH λi − |i|(2g − 1) i ∈ I, (7)

degH λ0 ≥ degH ψj − |j|mH j ∈ J . (8)

Definition 3 Consider an instance of Problem 1. We say that a solution (λi)i∈I , (ψj)j∈J ,
has degree τ ∈ Z≥0 if degH λ0 = τ . Furthermore, we call a solution minimal if its
degree is minimal among all solutions.

Problem 1 is connected to the key equations through the following statement.

Theorem 3 Consider an instance of Problem 1. Then,

λi = Λi := Ωs,i, i ∈ I,

ψj = Ψj := Λsf
j , j ∈ J ,

is a solution to the problem of degree τ = degH Λs, where s · |E| ≤ τ ≤ s · |E|+ g.

Proof: Note Ωs,0 = Λs. The equalities and congruences are now clear from the key
equations. As for the degree restrictions, we have

degH Λi ≤ degH Λ0 + |i|(2g − 1),

degH Ψj = degH(Λs) + degH(f
j) ≤ degH Λ0 + |j|mH,

which proves the claim.
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Remark 1 Most received words will satisfy degHRi = n+2g−1 for all i = 1, . . . , h. In
such a case, the solution of Problem 1 given in Theorem 3 fulfills all degree restrictions
of the problem with equality. These relative upper bounds on the degrees of λi and ψj

are therefore the minimal choice among all such bounds for which Theorem 3 holds.

Theorem 3 motivates a decoding strategy, which is outlined in Algorithm 1: To every
codeword c′ ∈ CH(n,mH;h) corresponds a solution to Problem 1 whose degree is
roughly s · |E ′|, where |E ′| is the number of errors (i.e., non-zero columns) of r − c′.
Among those solutions, we want to find the one of smallest degree, i.e., the one for
the closest codeword. There will also be other solutions to Problem 1, which do not
correspond to codewords, but the idea is that in most cases, and when the number of
errors is not too large, the minimal solution will correspond to the closest codeword.

Algorithm 1: Improved Power Decoder for h-Interleaved 1-Point Hermitian Codes

Input: Received word r ∈ Fh×nqm and positive integers s ≤ `
Output: f ∈ L(mHP∞)h such that ci = [fi(P1), . . . , fi(Pn)] for all i = 1, . . . , h is

the codeword with a corresponding minimal degH Λs; or “decoding failure”.
1 Compute R and G as in Section 3
2 Ai,j ← (ji)R

j−iG|i| for all i � j
3 λi, ψj ← Minimal solution to Problem 1 with input s, `, Ai,j , and G
4 if λ0 divides all ψui over R for i = 1, . . . , h, where ui is the ith unit vector then
5 f ← [ψu1/λ0, . . . , ψuh/λ0]
6 E ← Error set corresponding to ei = ri − [fi(α1), . . . , fi(αn)] for i = 1, . . . , h
7 if λ0 ∈ L

(
−
∑
i∈E sPi +∞P∞

)
and s · |E| ≤ degH λ0 ≤ s(|E|+ g) then

8 return f

9 return “decoding failure”

In the cases for which this does not happen, the decoder will fail; we will return to this
in Section 5. If the algorithm finds a solution that corresponds to a codeword, then we
have λ0 = Λs and ψui = Λsfi for i = 1, . . . , h, where ui = [0, . . . , 1, . . . , 0] is the ith

unit vector. Hence, we obtain the ith message polynomial fi by division of ψui by λ0.

Note that Algorithm 1 does not exactly promise to find the closest codeword: it finds
the codewords whose corresponding Λs has minimal degH. When the number of errors
is very small, we will often or always have degH Λs < s|E| + g; but in this case all
other codewords are much farther away from r. On the other hand, when the number
of errors is large, most error vectors will satisfy degH Λs = s|E|+ g. In both these cases
Algorithm 1 will find the closest codewords. It seems reasonable to expect, however,
that there exist some rare received words for which a farther codeword will have an
associated Λs of lower degH than the closest codeword.

We will see in Section 7 that we can find a minimal solution of Problem 1 efficiently.
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5 Decoding Radius and Failure Behavior

In this section, we derive an upper bound on the maximal degree of the error locator
polynomial Λs for which there can be a unique minimal solution of Problem 1. Since the
degree of Λs is related to the number of errors, this implies an estimate of the maximal
decoding radius of our decoder. We also briefly discuss in which cases the decoder fails
below this bound.

Lemma 5 Let τ, `, s ∈ N such that s ≤ ` and τ + `mH < sn. All polynomials λi, ψj ∈
R for i ∈ I and j ∈ J that fulfill (5), (6), and the absolute degree restrictions

degH λi − |i|(2g − 1) ≤ τ, (9)

degH ψj − |j|mH ≤ τ, (10)

can be computed by a homogeneous linear system of equations over Fq2 with at least

δ(τ) = (τ + 1)(h+`h )− n
[
h(h+s−1

h+1 ) + s(h+`h )− s(h+s−1
h )

]
+mHh(

h+`
h+1)− g(

h+`
h )

more variables than equations, whenever δ(τ) ≥ 0. If τ ≥ 2g − 1, there are received
words for which the difference is exactly δ(τ).

Proof: We have degHAi,j ≤ (n+ 2g − 1)|j| − (2g − 1)|i|, so we get

degH

(∑
i∈I

λiAi,j

)
≤ τ + |j|(n+ 2g − 1) ∀ j ∈ J .

Thus, for most j the polynomial ψj has lower degree than the terms in
∑

i∈I λiAi,j in
the case |j| < s and less than the degree of the modulus Gs in the other case. Consider
functions inR over the basis {XiY j} over Fq2 . Since the Fq2 -coefficients of

∑
i∈I λiAi,j

and (
∑

i∈I λiAi,j mod Gs) are known linear combinations of the unknown coefficients
of the λi, the restrictions of the lemma on the degrees of ψj ∈ R can be described by
an Fq2 homogeneous linear system of equations that specify that the top coefficients of
ψj be zero (τ + |j|mH + 1 and higher).

For non-negative integers a and b, there are between b−a−g and b−a many monomials
xiyj ∈ R with j < q of degree at least a and less than b. The lower bound is due to the
Riemann–Roch theorem and the upper bound follows from the injectivity of degH on
the set of monomials.

Due to the degrees of the involved polynomials, the number of Fq2 -linear restrictions
for each |j| < s becomes

Nj = (τ + |j|(n+ 2g − 1))− (τ + |j|mH) = |j|(n+ 2g − 1−mH).

For |j| ≥ s, the analysis is a bit more involved: Since G is a polynomial only in X with
degX(Gs) = sq2, the congruence modulo Gs reduces the X-degree of all monomials
below sq2, i.e., the polynomial (

∑
i∈I λiAi,j mod Gs) can be written as(∑

i∈I
λiAi,j mod Gs

)
=

q−1∑
j=0

sq2−1∑
i=0

aijX
iY j ,
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where aij ∈ Fq2 are linear expressions of the coefficients of the λi. By the degree
restriction of ψj , we must have that the coefficients aij with degH(X

iY j) > τ + |j|mH

are zero. Thus, we get at most

Nj =

q−1∑
j=0

sq2

− |{(i, j) : qi+ (q + 1)j ≤ τ + |j|mH}|︸ ︷︷ ︸
= τ+|j|mH−g+1

= sn− τ − |j|mH + g − 1

linear equations. Note that the condition τ + `mH < sn guarantees that there is no
monomial XiY j of degH(X

iY j) > τ + |j|mH with degX ≥ sq2. In total, and using
Lemma 1 repeatedly:

NE =
∑
j∈J

Nj =
∑

1≤|j|<s

|j|(n+ 2g − 1−mH) +
∑

s≤|j|≤`

(
sn− τ − |j|mH + g − 1

)
= (n+ 2g − 1)h(h+s−1

h+1 ) + (sn− τ − 1 + g)
(
(h+`h )− (h+s−1

h )
)
−mHh(

h+`
h+1).

The number of variables, i.e., the number of Fq2 -coefficients of the λi is at least

NV =
(∑

i∈I
(τ + |i|(2g − 1) + 1− g)

)
= (τ + 1− g)(h+s−1

h ) + (2g − 1)h(h+s−1
h+1 ).

The claim follows by subtracting NV −NE.

In the case τ ≥ 2g − 1, all Weierstraß gaps are below the degree bounds of the λi and
ψj . Hence, the number of variables and equations is equal to the derived NE and NV,

respectively, as long as the maximal possible degree of degH
(∑

i∈I λiAi,j

)
, i.e., for

some choice of the λi, is equal to τ + |j|(n+2g−1). There are received words for which

degHRi = n+ 2g − 1 for all i. In these cases, we can have degH

(∑
i∈I λiAi,j

)
=

τ + |j|(n+ 2g − 1) for some values of λi, so (if τ ≥ 2g − 1), the number of variables
minus the number of equations is exactly δ(τ).

Lemma 6 If Problem 1 has a solution of degree τ , it has at least (q2)δ(τ)−1 many
such solutions.

Proof: Solutions of degree τ of Problem 1 are exactly the solutions of the homogeneous
linear system in Lemma 5 with degH λ0 = τ and monic λ0. Thus, we set the τ th

coefficient of λ0 to 1 and obtain an inhomogeneous linear system of equations with at
least δ(τ)− 1 more variables than equations. If Problem 1 has a solution of degree τ ,
then this system has at least (q2)ker(A) solutions, where A is the system’s matrix. The
claim follows by dim(ker(A)) ≥ δ(τ)− 1.

Lemma 6 implies the following statement.

Theorem 4 Let τ = degH Λs and s, ` ∈ N such that s ≤ ` and τ + `mH < sn and

τ > τmax := sn

(
1− s(h+s−1

h )−h(h+s−1
h+1 )

s(h+`
h )

)
− h
h+1 `mH +

(
1

(h+`
h )
− 1

)
+ g. (11)

Then, Problem 1 has at least two solutions of degree τ .
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Proof: Condition (11) is fulfilled if and only if δ(τ) > 1. Due to τ = degH Λs, Problem 1
has a solution of degree τ and the claim follows by Lemma 6.

Theorem 4 can be interpreted as follows: If degH Λs > τmax, then either Λs does not
correspond to a minimal solution of Problem 1, or it is a minimal solution but there
are many other minimal solutions as well. There is no reason to think that our solver
for Problem 1 will find Λs among all those solutions, so decoding will likely fail.

Since we have |E| ≤ degH Λs ≤ s|E|+ g, and often degH Λs = s|E|+ g, we usually have
no unique solution whenever s|E|+ g > τmax, i.e.,

|E| > τmax−g
s

and for sure if |E| > τmax
s . We therefore call

tnew = τmax−g
s = n

(
1− s(h+s−1

h )−h(h+s−1
h+1 )

s(h+`
h )

)
− h
h+1

`
smH + 1

s

(
1

(h+`
h )
− 1

)
(12)

the decoding radius of Algorithm 1.

Remark 2 For τ ≥ 2g− 1, by Lemma 5, there are received words (in fact most of them)
such that the difference of numbers of variables and equations of the inhomogeneous
system for computing all degree-τ solutions of Problem 1 is exactly δ(τ)− 1. Thus, if
there are sufficiently many linearly independent equations1, there is no other solution
of the problem, besides the error locator, of degree τ whenever δ(τ) < 0.

For τ < 2g−1, the degree bounds of λ0 and ψ0 are smaller than 2g−1, but those of all
other λi and ψj are bigger (note that mH ≥ 2g − 1). Thus, there can be up to g fewer
equations and up to g more variables than predicted by δ(τ) for any received word. The
value of τmax as in Theorem 4 can in this case therefore be smaller by a value up to

τ ′max = τmax − 2g 1

(h+`
h )

,

which reduces the decoding radius by at most 2g/[s(h+`h )].

In the case τ + `mH ≥ sn, the number of equations is also smaller than predicted by
τmax. However, we will see in Section 5.1 that the best choice of s for a given ` yields
τ + `mH < sn for τ ≤ τmax.

Since we cannot guarantee that the linear equations of the system in Lemma 5 are
linearly independent for τ ≤ degH Λs, Algorithm 1 can fail to return the sent codeword
c for some errors of weight less than the maximal decoding radius. In these cases, we
have one of the following.

– There is a solution of Problem 1 of degree < degH Λs.

– There is more than one solution of Problem 1 of degree = degH Λs and the decoder
picks the wrong one.

1 This linear-algebraic condition resembles, but seems weaker than, the “(non-linear) algebraic
independence assumption” in [10] for decoding interleaved RS codes.
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However, the simulation results for various code and decoder parameters, presented
in the following section, indicate that the new decoder is able to decode most error
patterns up to the derived decoding radius tnew. Sometimes, decoding succeeds even
beyond tnew. In these cases, we usually have degH(Λs) < s|E|+ g.

In all previous power decoding algorithms for Reed–Solomon [2,5], one-point Hermitian
[4, 6], and interleaved Reed–Solomon codes [12], simulation results indicate that the
failure probability for a number of errors below the maximal decoding radius is small
and decreases exponentially in the difference of maximal decoding radius and number
of errors.

As for these other variants, except for a few parameters of theirs (e.g., ` ≤ 3 and s ≤ 2
for a single Reed–Solomon code in [5]), it remains an open problem to prove an analytic
upper bound on the failure probability of Algorithm 1.

5.1 Asymptotic Analysis and Parameter Choice

We study the asymptotic behavior of the decoding radius τmax and give explicit param-
eters to achieve the given limit. The analysis is based on the following lemma.

Lemma 7 ([12, Lemma 14]) Let γ ∈ (0, 1) and h ∈ N be fixed. Then, we have

(h+bγic
h )

(h+i
h )

= γh +O(1i ) for (i→∞).

Theorem 5 Let (`i, si) = (i, bγic+ 1) for i ∈ N, where γ = h+1
√

mH
n . Then,

tnew(`i, si) = n
(
1−

(
mH
n

) h
h+1 −O(1i )

)
for (i→∞).

Proof: We have

tnew
n = 1−

[
1 +

(
1− 1

si

)︸ ︷︷ ︸
=1−O( 1

i )

h
h+1

]
(h+bγic

h )
(h+i
h )︸ ︷︷ ︸

= γh+O( 1
i )

− h
h+1

`i
si︸︷︷︸

= γ−1

+O( 1
i )

mH
n + 1

si︸︷︷︸
=O

(
1
i

)
[

1

(h+`i
h )
− 1

]
︸ ︷︷ ︸
=−1+O( 1

i )

= 1 + m
m+1

(
γh − γ−1mH

n

)
︸ ︷︷ ︸

=0

− γh −O
(
1
i

)
= 1−

(
mH
n

) h
h+1 −O

(
1
i

)
,

which proves the claim.

Note that the choice of `i and si in Theorem 5 ensures that τ + `imH < sin for all
τ ≤ s · tnew(`i, si).
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6 Numerical Results

In this section, we present simulation results. We have conducted Monte-Carlo simula-
tions for estimating the failure probability of the new decoding algorithm in a channel
that randomly adds t = |E| errors, using N ∈ {103, 104} samples. The decoder was
implemented in SageMath v7.5 [17], based on the power decoder implementation of [4].

All simulated examples fulfill degH Λs ≥ st ≥ 2g − 1. If this condition is not fulfilled,
the simulation results might differ from the expected decoding radius, cf. Remark 2.

6.1 Case h = 1

We first compare the new improved power (P̂fail,IPD) with the Guruswami–Sudan
(P̂fail,GS) decoder. The used implementation of the Guruswami–Sudan decoder is the
publicly available one from [4]. Table 1 presents the simulation results for various code
(q,m, n, k, d∗), decoder (`, s), and channel (t) parameters.

Table 1 Observed failure rate of the improved power (P̂fail,IPD) and Guruswami–Sudan
(P̂fail,GS) decoder for h = 1. Code parameters q,m, n, k, d∗. Decoder parameters `, s. Number
of errors t (+t = tnew decoding radius as in (12)). Number of experiments N .

q m n k d∗ ` s t P̂fail,IPD P̂fail,GS N

4 15 64 10 49 4 2 28 0 0 104

29+ 0 3.30 · 10−3 104

30 9.93 · 10−1 9.39 · 10−1 104

5 55 125 46 70 3 2 35 0 0 104

36+ 0 4.00 · 10−4 104

37 9.57 · 10−1 9.60 · 10−1 104

5 20 125 11 105 5 2 67 0 0 103

68+ 0 7.00 · 10−3 103

69 9.91 · 10−1 9.60 · 10−1 103

7 70 343 50 273 3 2 160 0 0 103

161+ 0 0 103

162 9.78 · 10−1 9.86 · 10−1 103

7 70 343 50 273 4 2 168 0 0 103

169+ 0 0 103

170 9.79 · 10−1 2.2 · 10−2 103

7 55 343 35 288 4 2 183 0 0 103

184+ 0 0 103

185 9.82 · 10−1 1.9 · 10−2 103

It can be observed that both algorithms can almost always correct tnew many errors,
improving upon classical power decoding. Also, neither of the two algorithms is generally
superior in terms of failure probability.

When comparing the two algorithms, one has to keep in mind that the GS algorithm is
guaranteed to work only up to n[1− s+1

2(`+1) ]−
`
2smH − g

s = tnew − g
s +

`
s(`+1) errors.
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6.2 General Case

We now turn to the general case of h > 1, where the previous best relative decoding
radius is tK = h

h+1 (n−mH) [6]. The simulations results for various code and decoder
parameters are given in Table 2.

Table 2 Observed failure rate of Algorithm 1 (P̂fail,IPD) for h > 1. Code parameters
q,mH, n, k, d

∗, h. Decoder parameters `, s. Number of errors t (+t = tnew decoding radius
as in (12)). Number of experiments N . Previous best decoding radius tK [6].

q mH n k d∗ h ` s t P̂fail,IPD N tK

4 15 64 10 49 2 3 2 35+ 0 105 32

36 9.18 · 10−1 103 32

4 15 64 10 49 2 5 3 36+ 0 103 32

37 9.31 · 10−1 103 32

4 15 64 10 49 3 3 2 38+ 0 105 36

39 9.42 · 10−1 103 36

4 15 64 10 49 3 4 3 39+ 0 102 36

40 1 102 36

4 22 64 17 42 2 4 3 29+ 0 103 28

30 9.44 · 10−1 103 28

5 20 125 11 105 2 3 2 79+ 0 105 70

80 9.37 · 10−1 103 70

5 20 125 11 105 2 4 2 81+ 0 103 70

82 9.93 · 10−1 103 70

5 20 125 11 105 3 3 2 86+ 0 103 78

87 9.94 · 10−1 103 78

5 55 125 46 70 2 4 3 48+ 0 103 46

49 9.86 · 10−1 103 46

7 90 343 70 253 2 3 2 183+ 0 103 168

184 9.72 · 10−1 103 168

8 128 512 101 384 2 3 2 281+ 0 102 256

282 1 102 256

In all tested cases, Algorithm 1 corrected all decoding trials up to tnew many errors and
failed with large observed probability one error beyond this radius.

7 Efficiently Finding a Minimal Solution of Problem 1

We use the Fq2 [X]-vector representation of an element of R (cf. [4]) to reformulate
Problem 1 over Fq2 [X]. Recall that for a ∈ R, we can write a =

∑q−1
i=0 aiY

i ∈ R
with unique ai ∈ Fq2 [X]. Then, the vector representation [4] of a is defined by ν(a) =
(a0, . . . , aq−1) ∈ Fq2 [X]q. Note that q deg(ai) + i(q + 1) ≤ degH(a). For a, b ∈ R it
can be shown that

ν(a+ b) = ν(a) + ν(b), ν(ab) = ν(a)µ(b)Ξ,
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where µ(b) ∈ Fq2 [X]q×(2q−1) and Ξ ∈ Fq2 [X](2q−1)×q are defined by

µ(b) :=


b0 b1 b2 . . . bq−1

b0 b1 . . . bq−2 bq−1

. . .
. . . . . .

. . .
. . .

b0 b1 . . . bq−2 bq−1

 , Ξ :=



1
1

. . .
1

Xq+1 −1
Xq+1 −1
. . .

. . .
Xq+1 −1


.

Note further that for c ∈ Fq2 [X] we have simply µ(ac) = µ(a)c. Using the notation
above, we can reformulate Problem 1 into the following problem over Fq2 [X]. In the
following, let [q) denote {0, . . . , q − 1}.

Problem 2 Given positive integers s ≤ `, R and G as in Section 3, and

A(i,j) := µ(Ai,j)Ξ = µ
(
(ji)R

j−iG|i|
)
Ξ ∈ Fq2 [X]q×q

for all i ∈ I := {i ∈ Nh0 : 0 ≤ |i| < s} and j ∈ J := {j ∈ Nh0 : 1 ≤ |j| ≤ `}. Find
λi,ι, ψj,κ ∈ Fq2 [X] for i ∈ I, j ∈ J , ι, κ ∈ [q), not all zero, such that

ψj,κ =
∑
i∈I

q−1∑
ι=0

λi,ιA
(i,j)
ι,κ 1 ≤ |j| < s,

ψj,κ ≡
∑
i∈I

q−1∑
ι=0

λi,ιA
(i,j)
ι,κ mod Gs 1 ≤ |j| < s,

max
ι∈[q)

{
q deg λ0,ι + ι(q + 1)

}
≤ q deg λi,ι + ι(q + 1)− |i|(2g − 1) 0 ≤ |i| < s, ι ∈ [q)

max
ι∈[q)

{
q deg λ0,ι + ι(q + 1)

}
≤ q degψj,κ + κ(q + 1)− |j|mH 1 ≤ |j| ≤ `, κ ∈ [q)

Similar to its R-equivalent, we define the degree of a solution of the above problem to be
maxι∈[q)

{
q deg λ0,ι + ι(q + 1)

}
and call the solution monic if the leading coefficient of

the λ0,ι that maximizes maxι∈[q)
{
q deg λ0,ι + ι(q + 1)

}
is 1. The following statement

establishes the connection between Problem 1 and Problem 2.

Theorem 6 Let τ ∈ Z≥0. Then, λi, ψj ∈ R for i ∈ I and j ∈ J is a solution of
degree τ of Problem 1 if and only if

[λi,0, . . . , λi,q−1] := ν(λi)

[ψj,0, . . . , ψj,q−1] := ν(ψj)

is monic solution of degree τ of Problem 2.
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Proof: If λi and ψj forms a solution to Problem 1 this means for |j| ≥ s that there is
some uj ∈ R such that:

ψj =
∑
i�j
|i|<s

λiAi,j + ujG
s ⇐⇒

ν(ψj) =
∑
i�j
|i|<s

ν(λi)µ(Ai,j)Ξ + µ(uj)G
s .

since Gs ∈ Fq2 [X]. This implies element-wise the congruence of Problem 2. The opposite
direction is analogous, as is the case |j| < s. The degree restrictions follow immediately
from degH(a) = maxι∈[q){q deg aι+ι(q+1)} for any a ∈ R and ν(a) = (a1, . . . , aq−1).

Problem 2 is of the same instance as the problem discussed in [4, Section V.B],2 which
can be solved by transforming an Fq2 [X]-module basis that depends on the entries of
A(i,j) and the relative degree bounds in Problem 2, into a reduced polynomial matrix
form (weak Popov form). Using this approach, finding a minimal solution of Problem 1
can be implemented in

O∼
(
(h+`h )

ω
sn

ω+2
3

)
⊆ O∼

(
`hωsn

ω+2
3

)
operations over Fq2 , where 2 ≤ ω ≤ 3 is the matrix multiplication exponent. In [5],
a similar kind of problem was reduced to finding solution bases of so-called Padé
approximation problems. In this way, the complexity can be slightly reduced to

O∼
(
(h+s−1

h )(h+`h )
ω−1

sn
ω+2
3

)
⊆ O∼

(
`h(ω−1)sh+1n

ω+2
3

)
operations over Fq2 . In order to achieve the asymptotic decoding radius, the code
parameters must be chosen as in Section 5.1. In this case, the two asymptotic complexity
statements above coincide and we get the following result.

Theorem 7 For a fixed code of rate R = k
n and any constant ε > 0, we can choose

s, ` ∈ O(1/ε) such that tnew ≥ n(1 − (R + g−1
n )

h
h+1 − ε). In this case, Algorithm 1

costs O∼((1/ε)hω+1n
ω+2
3 ).

Proof: The first statement directly follows from Theorem 5. The pre- and post-computations
in Algorithm 1 are negligible compared to Line 3 by similar arguments as in [4]. The
complexity thus follows by the arguments above.

2 Using this approach, it is necessary to reformulate the equations for 1 ≤ |j| < s into
congruences modulo xξ, where ξ is greater than the largest possible degree of the λi,ιA

(i,j)
ι,κ for

the maximal number of errors that we expect to corrected.
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8 Comparison to Interleaved Reed–Solomon Codes

An h-interleaved code over some field FQ over the burst error channel can equivalently
be considered as a code over FQh considered over the Qh-ary channel. This allows
comparing the decoding capability of interleaved 1-H codes with other constructions
of short codes over large fields, most notably RS codes and interleaved RS codes, see
Figure 1 for the case Qh = q6.

More precisely, for any h ∈ Z>0, we have several ways of obtaining [n, k] codes over
Fq6h for n = q3 and some dimension k < n. We will compare the following relative
decoding radii:

tRS: an RS code over Fq6h decoding up to the Johnson radius using one of [1, 5, 18].3

tIRS : 2h-interleaved RS code over Fq3 using one of [10,12].

t1H : 3h-interleaved 1-H code over Fq2 using the proposed algorithm.

Interleaved 1-H CodesInterleaved RS CodesRS Codes

q6

n = q3

1−R
1
2

(q3)2

n = q3

1−R
2
3

(q2)3

n = q3

1− (R+ g
n
)
3
4

Fig. 1 Example: Comparison of interleaved Reed–Solomon and one-point Hermitian codes of
length n = q3 over an overall field size of q6.

These values are as follows:

tRS = 1− (k−1
n )

1
2 tIRS = 1− (k−1

n )
2h

2h+1 , tIH = 1− (k−1
n − g

n )
3h

3h+1 ,

The asymptotics are already clear: since g
n → 0 for n → ∞, we can asymptotically

achieve larger decoding radii with interleaved 1-H codes than with interleaved RS codes,
when considering comparable overall field size. Below follows some concrete parameter
examples.

q = 13 is the smallest prime power for which tIH > tIRS for rate 1/2, i.e. both interleaved
codes can be considered as [2197, 1098] codes over F136 , and the decoding radii are
tRS = 644, tIRS = 814 and tIH = 823. A list of decoding radii of rate 1/2 codes with
even q is given in Table 3.

9 Conclusion

We have presented a new decoding algorithm for h-interleaved one-point Hermitian codes
based on the improved power decoder for Reed–Solomon codes in [5], its generalization

3 As pointed out in [19], an RS code over Fq6h whose evaluation points all lie in Fq3 are
equivalent to a 2h-interleaved RS codes over Fq3 , i.e. can be decoded up to tIRS. In our
comparison here we therefore consider RS codes with arbitrary evaluation points for which this
equivalence doesn’t hold.



Improved Power Decoding of Interleaved One-Point Hermitian Codes 17

Table 3 Examples for tIH and tIRS for rate 1/2 codes of several lengths for hRS = 2 and
hH = 3.

q n = q3 k = n
2

tRS tIRS tIH tIH/tRS ≈ tIH/tIRS ≈
23 512 256 150 190 183 1.22 0.96

24 4096 2048 1200 1516 1555 1.30 1.03

25 32768 16384 9598 12126 12844 1.34 1.06

26 262144 131072 76780 97004 104478 1.36 1.08

27 2097152 1048576 614242 776029 842936 1.37 1.09

to h-interleaved Reed–Solomon codes in [12], and the power decoder for one-point
Hermitian codes in [4, 6].

The maximal decoding radius of the new algorithm is n(1 − (R + g−1
n )

h
h+1 − ε) at

a cost of O∼((1/ε)hω+1n
ω+2
3 ) operations over Fq2 , where 2 ≤ ω ≤ 3 is the matrix

multiplication exponent, and improves upon previous best decoding radii at all rates.
Experimental results indicate that the algorithm achieves this maximal decoding radius
with large probability.

For large n, interleaved one-point Hermitian codes achieve larger maximal decoding
radii than interleaved Reed–Solomon codes when compared for the same length and
overall field size.

In the case h = 1, we obtain a one-point Hermitian codes equivalent of the improved
power decoder for Reed–Solomon codes in [5], which achieves a similar decoding radius
as the Guruswami–Sudan list decoder. Simulation results indicate that the new decoder
has a similar failure probability for numbers of errors beyond the latter’s guaranteed
decoding radius.

As for any other power decoding algorithm, both for Reed–Solomon and one-point
Hermitian codes, deriving analytic bounds on the failure probability remains an open
problem. So far, the only parameters for which such an expression is known are h = 1,
` ≤ 3, and s ≤ 2, cf. [2, 5].
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