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Gaps between prime numbers and tensor rank of

multiplication in finite fields

Hugues Randriam∗

Abstract

We present effective upper bounds on the symmetric bilinear com-

plexity of multiplication in extensions of a base finite field F
p2 of prime

square order, obtained by combining estimates on gaps between prime

numbers together with an optimal construction of auxiliary divisors for

multiplication algorithms by evaluation-interpolation on curves. Most of

this material dates back to a 2011 unpublished work of the author, but it

still provides the best results on this topic at the present time.

Then a few updates are given in order to take recent developments into

account, including comparison with a similar work of Ballet and Zykin,

generalization to classical bilinear complexity over Fp, and to short multi-

plication of polynomials, as well as a discussion of open questions on gaps

between prime numbers or more generally values of certain arithmetic

functions.
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1 Introduction

Let F be a field and A a finite dimensional commutative F -algebra. Denote by
mA : A×A −→ A the multiplication map in A, seen as a symmetric F -bilinear
map, and by TA ∈ Sym2(A∨) ⊗F A the associated tensor, where A∨ is the
dual space of A over F and Sym2(A∨) ⊂ A∨ ⊗F A∨ stands for the subspace of
symmetric tensors.

By a symmetric bilinear multiplication algorithm for A, of length n, we mean
one of the following equivalent data (see e.g. [21] or [22, §5.1–5.3]):

• linear maps α : A −→ Fn and ω : Fn −→ A such that the following
diagram commutes

A×A mA−−−−→ A

(α,α)

y
xω

Fn × Fn
∗−−−−→ Fn

(1)
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where ∗ denotes componentwise multiplication in Fn

• linear forms α1, . . . , αn : A −→ F and elements w1, . . . , wn ∈ A such that
the product in A of any two x, y ∈ A can be computed as

xy =
∑

1≤i≤n

αi(x)αi(y)wi (2)

• a decomposition
TA =

∑

1≤i≤n

α⊗2
i ⊗ wi (3)

of TA as a sum of n elementary symmetric tensors in Sym2(A∨)⊗A.

We define the symmetric bilinear complexity of A over F

µsym
F (A) (4)

as the smallest length n for which such a symmetric bilinear multiplication
algorithm exists. Equivalently, µsym

F (A) is the symmetric tensor rank of TA.
Most of our interest will be when F = Fq is a finite field and A = Fqk is its

(unique) degree k field extension. We then set

µsym
q (k) = µsym

Fq
(Fqk). (5)

We will focus on upper bounds for this quantity or, which is essentially the
same, on the construction of symmetric bilinear multiplication algorithms for
Fqk over Fq, especially when k is large. For this, a powerful method was intro-
duced by Chudnovsky and Chudnovsky in 1987 with [10][11], using evaluation-
interpolation on algebraic curves.

When looking at the literature, the reader should be wary that these authors,
and those who followed them, actually expressed their results in terms of the
classical (possibly asymmetric) bilinear complexity µq(k), not in terms of the
symmetric bilinear complexity µsym

q (k). Indeed, this last notion was first intro-
duced in this context only in 2012 with [21]. However, the original construction
of [10][11] naturally produces symmetric algorithms. This allows us, in what
follows, to restate the bounds derived by this method in terms of µsym

q (k), even
if the original statements were in terms of µq(k).

The first and probably the most spectacular achievement of this method is
the proof that this quantity asymptotically grows linearly with k. Indeed, when
recast in terms of symmetric complexity, the main result of [10][11] reads as:

lim sup
k→∞

1

k
µsym
q (k) ≤ 2

(
1 +

1√
q − 3

)
for q ≥ 25 a square. (6)

Actually, parts of the proof given for this result were somehow sketchy, but all
the missing details were later provided by Shparlinski, Tsfasman, and Vladut in
1991 with [25].
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At the same time they provided these missing details, these same authors
also proposed the following improved bound:

lim sup
k→∞

1

k
µsym
q (k) ≤ 2

(
1 +

1√
q − 2

)
for q ≥ 9 a square. (7)

Unfortunately, a fatal flaw was later found in their proof, as first observed in
[7]. This error concerns the solution of what some authors now call “Riemann-
Roch systems of equations” [8], a key ingredient in the Chudnovsky-Chudnovsky
method, and it totally invalidates the proof given for (7).

Fortunately, an alternative method that allows to solve such Riemann-Roch
systems was then discovered by the author around end of 2010, and published in
2013 with [19]. It readily allows to repair the proof of (7), with only one small
downfall: the method only applies to sligthly larger q than originally needed.

It thus became desirable to try to fine tune the method of [19] in order to
make it work for q as small as possible. This was the main goal of [20], and it
allowed to repair the Shparlinski-Tsfasman-Vladut bound (7) as follows.

For any prime power q, define the dense Ihara constant [20, p. 23] as the
smallest real number A′(q) such that there exists a sequence of curves Xj over
Fq, of genus gj → ∞, with

• |Xj(Fq)|
gj

→ A′(q)

• gj+1

gj
→ 1

as j → ∞. Then [20, Cor. 18] we have

lim sup
k→∞

1

k
µsym
q (k) ≤ 2

(
1 +

1

A′(q)− 1

)
as soon as A′(q) ≥ 5− 14q2−4

q4+2q2−1 ,

(8)
and in particular we have

lim sup
k→∞

1

k
µsym
q (k) ≤ 2

(
1 +

1√
q − 2

)
for q ≥ 49 a square. (9)

Actually, (9) does not requires the full strength of [20]. It can readily be derived
from the original, simpler results of [19]. Thus, while [20] remained unpublished,
(9) can be found in published form, with full proof, in [21, Th. 6.4]. Observe
that it entirely repairs (7), but for q ≥ 49 instead of q ≥ 9, leaving only the
cases q = 9, 16, 25 uncovered.

This far we discussed only works on asymptotic upper bounds. Parallel to
these, some authors considered effective upper bounds on µsym

q (k), that should
apply to any (finite, explicit) value of k. This topic was treated by Ballet first
in [2] and [3], and then improved in [4]. However it turned out this last work
contained several errors, the most important of which being that it reproduced
the flawed proof from [25] and based all its results on it.
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Thus, in [20], while repairing the Shparlinski-Tsfasman-Vladut bound, the
author also explained how his method could repair Ballet’s results likewise. Ac-
tually, not only these results could be repaired, but they could also be improved.
Indeed, part of Ballet’s argument was based on Bertrand’s postulate, proved by
Chebyshev, that asserts that for any real x > 1, there is a prime between x
and 2x. It was clear that improved bounds on the bilinear complexity could be
derived from finer estimates on the gaps between prime numbers (such as [1]).

This was presented in section 5 of [20], somehow as a digression (it is also
discussed in [21], especially Rem. 5.3, 5.5, 5.8, but with a slightly different
approach). Unfortunately, the fact that [20] remained unpublished, in French,
and the fact that this section 5 followed long and technical developments in a
quite unrelated direction, did not help disseminate the ideas introduced there.

Ultimately, this method, which combines

(a) the author’s optimal solution of Riemann-Roch systems for the Chudnovsky-
Chudnovsky method

(b) fine estimates on the gaps between prime numbers,

and which still provides the best effective upper bounds on µsym
q (k) when q =

p2 is a prime square, seemed to have been forgotten by the experts. As an
illustration, very recently Ballet and Zykin [6] partially rediscovered this method
(ingredient (b) only, not (a)), but a preliminary version of their work did not
even mention [20] — fortunately this is corrected in the final version.

Thus, almost seven years after it was first written, the author would like
to take this opportunity to finally publish these results in the peer-reviewed
literature. Hopefully this will provide a proper reference for future researchers.
Accordingly, the next section is a translation into English of section 5 of [20],
with essentially no significant change. Then in the last section we present some
updates in order to take recent developments into account, and in particular
we explain the links with [6]. We also discuss a few questions presented in [20].
This includes compatibilty with generalizations of the Chudnovsky-Chudnovsky
method [21], leading to new effective and asymptotic bounds on the classical
bilinear complexity µq(k) when q = p is prime, and to similar results for short
multiplication of polynomials; as well as open questions on gaps between prime
numbers or more generally gaps in the set of values of certain arithmetic func-
tions.

2 Main results as of 2011

As explained in the introduction, our aim here is to fix the proof of the main
result claimed by Ballet in [4], and then to improve on it. This statement con-
cerns effective upper bounds on µsym

p2 (k), the symmetric bilinear multiplication
complexity in extensions of a base field Fp2 of prime square order.

We first recall an instance of the basic construction of Chudnovsky and
Chudnovsky [10][11]:
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Proposition 1. Let X be a curve of genus g over the finite field Fq, equipped
with a closed point Q of degree k, and with n points P1, . . . , Pn of degree 1.
Suppose that X also admits a Fq-rational divisor D (w.l.o.g. of support disjoint
from Q and the Pi) such that

• D −Q is nonspecial
(so the evaluation map L(D) −→ Fq(Q) = Fqk is surjective)

• 2D − (P1 + · · ·+ Pn) has no section
(so the evaluation map L(2D) −→⊕n

i=1 Fq(Pi) = Fnq is injective).

Then there is a symmetric bilinear multiplication algorithm of length n for Fqk
over Fq, i.e.

µsym
q (k) ≤ n. (10)

Observe that D−Q nonspecial implies deg(D)− k ≥ g− 1, and 2D− (P1 +
· · · + Pn) without section implies 2 deg(D) − n ≤ g − 1. So combining both,
we see a necessary condition for the existence of such D, Q, and Pi is that X
admits at least

|X(Fq)| ≥ n ≥ 2k + g − 1 (11)

points of degree 1.
We say a method for finding such data on X is optimal if it can work with

equality attained in (11).
In the course of the proof of their main result in [10][11], Chudnovsky and

Chudnovsky constructed such D, Q, and Pi, but only under the suboptimal
condition

|X(Fq)| ≥ 2k + 2g − 1. (12)

This was also stated more explicitely by Ballet as [2, Lemma 2.2]. Roughly
speaking, the construction proceeds by first fixing Q and D, and then finding
the Pi.

By contrast, in order to reach optimality, it is more natural to first fix Q
and G = P1 + · · ·+Pn, and then only look for D such that D−Q is nonspecial
and 2D−G has no section. Seen this way, the problem essentially reduces to a
“Riemann-Roch system of equations” in the sense of [8].

In [25, pp. 161–162] a solution to this Riemann-Roch system is proposed
under the optimal condition (11). Unfortunately, an error in the proof was
detected by Cascudo in [7], which invalidates the argument. It turns out the
very same result was later stated also by Ballet as [4, Prop. 2.1], with the same
proof and the error it contains reproduced as well. Let us briefly explain this
error: assuming n = 2k + g − 1, the core of the argument is to show that the
number of divisor classes [D] such that 2D − G has sections is not more than
the number of effective divisors of degree g − 1; for this, to each such class, one
assigns an effective divisor E ∼ 2D−G, and one concludes with the claim that
this map [D] 7→ E is injective; unfortunately this last claim is false in general:
indeed, if the class group has some 2-torsion, it could happen that two divisors
D and D′ are not linearly equivalent, but 2D − G and 2D′ − G are, and give
the same E.
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Fortunately, in [19] the author introduced a new construction that provides
an optimal solution to certain Riemann-Roch systems. In [20] it was applied to
the system associated with the Chudnovsky-Chudnovsky method, which allows
to substitute Ballet’s erroneous [4, Prop. 2.1] with the following [20, Cor. 20]:

Proposition 2. Let X be a curve of genus g over a finite field Fq, equipped with
two Fq-rational divisors Q and G. Set k = degQ and n = degG, and assume

|X(Fq)| > 5g (13)

and
n ≥ 2k + g − 1. (14)

Then there exists a Fq-rational divisor D on X, with support in X(Fq), such
that D −Q is nonspecial of degree g − 1, and 2D −G has no section.

In particular, if n = 2k+ g− 1, then both D−Q and 2D−G are nonspecial
of degree g − 1.

The only downfall is the new condition (13), but this does not cause any
trouble unless q is very small. In particular it does not hinder optimality, so it
will be sufficient for us in order to fix Ballet’s result. Actually, this condition
(13) could be slightly relaxed, using the machinery introduced in sections 1–2 of
[20] precisely for this. But stated this way, Proposition 2 is a simplified version
that does not use the full strength of [20], and could be derived directly from
the original results of [19].

Then, Ballet’s [4, Th. 2.1(1)] is replaced with the following [20, Lemma 21]:

Lemma 3. Let X be a curve of genus g over a finite field Fq with

|X(Fq)| > 5g. (15)

Then for all integers k in the interval
⌈
2 logq

2g + 1√
q − 1

⌉
< k ≤ |X(Fq)|+ 1− g

2
(16)

we have
µsym
q (k) ≤ 2k + g − 1. (17)

Proof. Following [20], this is a direct consequence of Proposition 1, together
with [26, Cor. V.2.10.c] and Proposition 2 above.

Alternatively, in order to refer to a published source, we observe it is also a
special case of [21, Th. 5.2(c)] applied with m = k, l = 1, n1,1 = 2k+ g− 1, and
nd,u = 0 for other values of d, u.

For instance, taking X = P1, we find:

µsym
q (k) ≤ 2k − 1 for k ≤ q

2
+ 1, (18)

an inequality that is in fact easily seen to be an equality [28].
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Likewise, choosing for X a suitable elliptic curve, yields the following bound
from [24]:

µsym
q (k) ≤ 2k for k <

q + e(q) + 1

2
(19)

with e(q) . 2
√
q, and in particular e(q) = 2

√
q if q is a square.

One could continue in the same way with curves of genus 2, 3, etc.
Another equivalent point of view is the following. For any integer k, let

Xq,k be the set of curves (up to isomorphism) X over Fq, of genus g = g(X),
satisfying:

(a) g ≤ 1
2 (q

(k−1)/2(q1/2 − 1)− 1)

(b) |X(Fq)| > 5g

(c) |X(Fq)| ≥ 2k + g − 1.

Then:

Lemma 4. For any finite field Fq, and for any integer k such that Xq,k is
nonempty, we have

1

k
µsym
q (k) ≤ 2 +

minX∈Xq,k
g(X)− 1

k
. (20)

Proof. It is a reformulation of the previous lemma.

Compared to similar results in the literature, our equivalent Lemma 3 and
Lemma 4 impose less restriction between k, g, and the number of points on the
curve. For instance, [2, Th. 1.1 and Cor. 2.1] reach the same conclusion, but only
for k ≤ |X(Fq)|+1−2g

2 instead of the second inequality in (16), or equivalently,
under the stronger condition |X(Fq)| ≥ 2k+2g−1 instead of (c) in the definition
of Xq,k. However, our method requires curves with “sufficiently many” points,
as expressed by condition (b).

Now we can go on with the same arguments as in [4], and then improve on
the result that is stated there.

Consider the Dedekind psi function, defined for any integer N by

ψ(N) = N
∏

l|N
l prime

(
1 +

1

l

)
. (21)

Lemma 5. Let p be a prime number, and N an integer prime to p. Then the
modular curve X0(N) is smooth over Fp, of genus

g0(N) ≤ ψ(N)

12
, (22)

and it admits

|X0(N)(Fp2)| ≥ (p− 1)
ψ(N)

12
(23)

points over Fp2 .
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Proof. See [27], § 4.1.

Remark 6. Actually we can be slightly more precise in this lemma. Hurwitz’s
formula gives an exact expression

g0(N) =
ψ(N)

12
+ 1− ν∞(N)

2
− ν3(N)

3
− ν2(N)

4
(24)

where

• ν∞(N) =
∑
d|N φ(gcd(d,

N
d )) =

∏

lν ||N

{
2l

ν−1

2 if ν odd

(l + 1)l
ν
2
−1 if ν even

• ν3(N) =

{∏
l|N

(
1 +

(
−3
l

))
if 9 ∤ N

0 if 9 |N

• ν2(N) =

{∏
l|N

(
1 +

(
−1
l

))
if 4 ∤ N

0 if 4 |N

while the Eichler-Shimura relation gives

|X0(N)(Fp2 )| = p2 + 1 + pg0(N)− trTp2 (25)

where the Hecke operator Tp2 acts on the space of cusp forms S2(Γ0(N)), and
its trace can be computed explicitly, e.g. by the formula given in [17], Th. 6.8.4
and Rem. 6.8.1, pp. 263–264:

trTp2 =
ψ(N)

12
+ δ(N, p2)−

∑

t

a(t)
∑

f

b(t, f)c(t, f) (26)

where δ(N, p2) = p2 + p + 1 if N > 1. The terms a(t)
∑

f b(t, f)c(t, f) are
nonnegative, and their contribution to the sum has a simple expression for
certain special values of t:

• 1
2 p ν∞(N) for t = ±2p

• 1
3

(
p+ 1−

(
−3
p

))
ν3(N) for t = ±p (if 3 ∤ N)

• 1
4

(
p+ 1−

(
−1
p

))
ν2(N) for t = 0 (if 2 ∤ N)

so that for N > 1 prime to 6p:

|X0(N)(Fp2)| ≥ (p− 1)
ψ(N)

12
+

1−
(
−3
p

)

3
ν3(N) +

1−
(
−1
p

)

4
ν2(N) (27)

Similar formulas can be derived for 2|N or 3|N .
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For any infinite subset A of N and for any real x > 0, let

⌈x⌉A = min A∩ [x,+∞[ (28)

be the smallest element of A larger than or equal to x. Also set

ǫA(x) = sup
y≥x

⌈y⌉A − y

y
, (29)

so the function ǫA is monotonously non-increasing, and for any x > 0, the
interval [x, (1 + ǫA(x))x] contains an element of A.

For instance, if p is a prime number, then ⌈x⌉ψ(N\pN) is the smallest integer
n ≥ x that can be written as n = ψ(N) for an integer N prime to p, and:

Lemma 7. With these notations, for p 6= 2 we have

⌈x⌉ψ(N\pN) ≤ 2x for all x ≥ 3

2
, (30)

or said otherwise:
ǫψ(N\pN)(3/2) ≤ 1. (31)

Proof. Indeed, for j = ⌊ log 2x/3
log 2 ⌋, we have x < 3 · 2j = ψ(2j+1) ≤ 2x.

Proposition 8. Let p ≥ 7 be a prime number. Then for all k > p2+p+1
2 we

have

1

k
µsym
p2 (k) ≤ 2 +

1
12

⌈
24k−12
p−2

⌉
ψ(N\pN)

− 1

k
. (32)

Proof. Choose N prime to p such that ψ(N) =
⌈
24k−12
p−2

⌉
ψ(N\pN)

and set X =

X0(N). Then, by (22) and (23) we have |X(Fp2)|−g ≥ (p−2)ψ(N)
12 , so condition

(c) before Lemma 4 is satisfied.
Likewise we have |X(Fp2)| − 5g ≥ (p− 6)ψ(N)

12 , so for p ≥ 7 condition (b) is
satisfied too.

Last, by Lemma 7 we have ψ(N) =
⌈
24k−12
p−2

⌉
ψ(N\pN)

≤ 48k−24
p−2 so

g ≤ ψ(N)

12
≤ 4k − 2

p− 2
, (33)

and for p ≥ 7 and k > p2+p+1
2 , this last quantity is easily shown to be less

than 1
2 (p

k−1(p− 1)− 1). Thus condition (a) is satisfied, and we conclude with
Lemma 4.
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Remark 9. Thanks to this proposition, any (effective) upper bound on the
function ⌈.⌉ψ(N\pN), or on ǫψ(N\pN), translates into an (effective) upper bound
on the µsym

p2 (k). Our task is then, for any given real x > 0, to find an integer N
prime to p such that ψ(N) is larger than or equal to x but as small as possible.
A quick analysis suggests two natural approaches to this problem.

First, one can look for N among integers having only small prime factors.
Indeed, let B = {l1, . . . , lB} be a set of prime numbers, p 6∈ B. Set NB =

∏B
i=1 li

and assume ψ(NB) =
∏B
i=1(li+1) < x. Then if N = N ′NB where N ′ has all its

prime factors in B, we have ψ(N) = N ′ψ(NB). Thus, if we can find an integer
N ′ ≥ x

ψ(NB) as small as possible with all its prime factors in B, we deduce an
upper bound on ⌈x⌉ψ(N\pN). For B = {2} this is precisely Lemma 7. It would
be interesting to optimize the choice B (possibly depending on x) in order to
get better estimates.

At the opposite, one can choose N among integers having only large prime
factors. Indeed, if N has no prime factor smaller than N1/u, then ψ(N) ≤
N
(
1 + 1

N1/u

)u
, and if we can produce such an N ≥ x as small as possible, then,

for a convenient choice of u, one could hope to get a bound close enough to
⌈x⌉ψ(N\pN). The extreme case is u = 1, which means we look only at N prime.
We then get the upper bound

⌈x⌉ψ(N\pN) ≤ ⌈x− 1⌉P + 1 for x > p+ 1 (34)

where P is the set of prime numbers (indeed, N = ⌈x− 1⌉P is a prime number
larger than p, and ψ(N) = N + 1 ≥ x). This allows to use all known results
on the function ǫP ; for instance, Bertrand’s postulate, proved by Chebyshev,
gives ǫP(1) = 1, and combined with (34), it provides essentially the same bound
as in Lemma 7. Several sharper bounds on ǫP are known, and we list their
consequences in the corollary below. However, here again, it would still be
interesting to study whether a convenient choice of u > 2 (possibly depending
on x), would give significantly better.

Corollary 10. Let p ≥ 7 be a prime number. Then

(i) for all k > p2+p+1
2 ,

1

k
µsym
p2 (k) ≤ 2


1 +

1 + ǫP

(
24k
p−2

)

p− 2


 (35)

(ii) for all k ≥ 1,
1

k
µsym
p2 (k) ≤ 2

(
1 +

2

p− 2

)
(36)

(iii) for all k ≥ 1,

1

k
µsym
p2 (k) ≤ 2

(
1 +

1 + 10
139

p− 2

)
(37)
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(iv) for all k ≥ e50p,

1

k
µsym
p2 (k) ≤ 2

(
1 +

1.000 000 005

p− 2

)
(38)

(v) for all k ≥ 16 531 (p− 2),

1

k
µsym
p2 (k) ≤ 2


1 +

1 + 1
25 log2 24k

p−2

p− 2


 (39)

(vi) for all k large enough,

1

k
µsym
p2 (k) ≤ 2


1 +

1 + 1

( 24k
p−2 )

0.475

p− 2


 . (40)

Proof. Item (i) follows from Proposition 8, from (34), and the obvious inequality⌈
24k−12
p−2 − 1

⌉
P
≤
⌈

24k
p−2

⌉
P

.

Item (ii) follows from (64), Proposition 8, and Lemma 7.

Noting that for p ≥ 7 and k > p2+p+1
2 we have 24k

p−2 > 139, item (iii) follows
from (64), from (i), and from ǫP(139) = 10/139. To justify this last equality,
observe that if p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, . . . is the sequence of
prime numbers, then for all n ≤ n′ we have

ǫP(pn) = max

(
ǫP(pn′), max

n≤j<n′

pj+1 − pj
pj

)
. (41)

Set pn = 139, estimate ǫP(pn′) for pn′ = 2 010 881 using [23] (or for pn′ = 396 833
using [14]) and conclude by explicitly computing the (finitely many) remaining
terms for n ≤ j < n′.

Likewise, items (iv), (v) and (vi) follow from (i) and the estimates on ǫP that
are given in [18], [14] (preprint version only, beware that the published verion
is different), and [1], respectively.

3 More recent developments, and questions that

remain open

3.1. New estimates on gaps between primes. Corollary 10(i) allows to
systematically translate any estimate on gaps between primes into a bound on
µsym
p2 (k). In Corollary 10(iii)-(vi) we listed such bounds, based on the state of

the literature in 2011, i.e. at the time when [20] was written.
Certainly many new results of this type have been published since then, and

will be published in the future. One such result is Dudek’s [13], that has been
used by Ballet and Zykin [6] (see §3.5 below), and which asserts that for any
real x > ee

33.3

there is a prime between x and x+ 3x2/3, or with our notations,
ǫP(x) ≤ 3x−1/3. Combined with Corollary 10(i), this gives at once:

11



Corollary 10 — continued. (vii) For p ≥ 7 and k ≥ p−2
24 e

e33.3 ,

1

k
µsym
p2 (k) ≤ 2


1 +

1 + 3

( 24k
p−2 )

1/3

p− 2


 . (42)

Actually, this Corollary 10(vii) is weaker than Corollary 10(vi) because the
exponent 1/3 is not as good as the exponent 0.475. But it is fully effective, in
the sense that the range of k for which it holds is given explicitely from Dudek’s
work [13], while in [1] only the existence is proved (although the authors observe
it could be made explicit with enough work).

How far could we hope to go with this method? It is known that, under
the Riemann hypothesis, we should have ǫP(x) = Õ(x−1/2). Combined with
Corollary 10(i), this gives:

1

k
µsym
p2 (k) ≤ 2

(
1 +

1 + Õ(k−1/2)

p− 2

)
. (43)

Ultimately, it is conjectured ǫP(x) = O(log2(x)/x) [12], which would give like-
wise:

1

k
µsym
p2 (k) ≤ 2

(
1 +

1 +O(log2(k)/k)

p− 2

)
. (44)

3.2. Gaps between prime numbers in a given residue class. (This is a
translation of the paragraph at the bottom of [20, p. 31], and is also discussed
in [21, Rem. 5.5].)

Our main results concerned a base field Fq where q = p2 is a prime square,
and used evaluation-interpolation on (classical) modular curves.

Using more general Shimura curves, as those from [25], one could get similar
results for q = p2m with arbitrary m. This case is also mentionned in [4,
Th. 3.1], however, we point out another error in the proof given there: in the
second half of this proof, Ballet applies Bertrand’s postulate to the primes that
correspond to the levels of these Shimura curves; but he forgets that, from the
very construction of [25], which he recalls in his [4, Prop. 3.1(2)], he has to deal
not with the set of all prime numbers, but only with those that split completely
in a certain abelian extension L of Q. This splitting condition translates into a
certain congruence condition. Thus, Bertrand’s postulate does not apply there.
Still, in principle this strategy of proof could work, but for this, instead of
Bertrand’s postulate, one should substitute an estimate, such as the one from
[16], on the gaps between primes that live in some given residue class.

However, still other families of curves could be used, for instance Drinfeld
modular curves. At this stage it is not clear which approach will produce the
best effective bounds.

3.3. Gaps in the set of values of the Dedekind psi function. In Remark 9
we outlined two strategies that could lead to estimates on ǫψ(N\pN), that is, on

12



gaps in the set of values of the Dedekind psi function (at integers prime to p).
However, quickly we restricted to values of ψ at prime numbers, so we only had
to consider the more studied function ǫP .

Obviously, considering all values of ψ instead of only its values at primes,
can only lead to smaller gaps, hence to better bounds on the complexity of
multiplication. The question is: how much better can we get?

Initially, the author hoped to get significantly stronger bounds in this way,
and this hope was one of the reasons for delaying the publication of this work (see
also [21, Rem. 5.8]). A motivation for this was Corollary 10(ii), obtained very
easily by considering the values of ψ at powers of 2: by comparison, it could also
have been derived using values at prime numbers, but this requires Bertrand’s
postulate, whose proof, given by Chebyshev, is certainly not so trivial.

Unfortunately, the author is now much more pessimistic, for the following
reason.

Very likely, a method that bounds gaps in the set of values of ψ, should
apply to a larger class of arithmetic functions. To any map

a : P −→ Z (45)

that takes only finitely many different values, associate an arithmetic function
fa by the formula

fa(N) = N
∏

l|N
l prime

(
1 +

a(l)

l

)
(46)

and let
Sa = fa(N>0) (47)

be the set of values of fa. For instance:

• if a(l) = 1 for all l, then
Sa = ψ(N>0) (48)

is the set of all values of the Dedekind psi function

• if a(p) = −p and a(l) = 1 for all l 6= p, then

Sa = {0} ∪ ψ(N \ pN) (49)

is precisely the set appearing in our application to bilinear complexity

• if a(l) = −1 for all l, then

Sa = φ(N>0) (50)

is the set of all values of the Euler totient function φ.

So we’re interested in estimates on the gaps between elements of such a set Sa,
and more precisely, on upper bounds on the associated function ǫSa . Specializing
to values of fa at primes readily gives

ǫSa(x) ≤ ǫP(x) +O(1/x) (51)

13



but our hope would be to get a bound significantly sharper.
Now several authors already studied the distribution of the values of φ, and

in particular, in [15, p. 70] it is asked: “Can it be shown, for example, that for
x sufficiently large, there is a totient between x and x+ x1/2?”

That means that the inequality ǫφ(N>0)(x) ≤ x−1/2 is still an open question.
Or said otherwise, one does not know significantly better estimates on the gaps
in the set of all values of φ, than what one could derive from its values at primes
(compare: ǫP(x) ≤ x−0.475 by [1], and ǫP(x) = O(x−1/2 log2 x) under RH).

Thus, contrary to the author’s initial expectations, this now leaves very little
hope for the similar question for ψ.

3.4. Generalizations of the basic Chudnovsky-Chudnovsky method.

At the very end of [20, section 5], it is discussed how our optimal solution to
Riemann-Roch systems could be combined with extensions of the Chudnovsky-
Chudnovsky method such as [9], that use evaluation at points of higher degree
and with multiplicities. This discussion was not reproduced here, because these
results are now superseded by [21, Th. 5.2(c)], which uses an even finer notion
of generalized evaluation. Namely, the bounds from [21] involve the quantities

µsym
q (d, u) = µsym

Fq
(Fqd [t]/(t

u)) (52)

which allow to take into account both higher degree d and multiplicity u at the
same time and in the most accurate way.

Still there is a difficulty. Very often, generalized evaluation, and more pre-
cisely evaluation at points of higher degree, is used when dealing with curves
that do not have that many points of degree 1. Thus, it becomes useful, for
instance, if one works over a field Fp of prime order. However, our method, in
Proposition 2 as well as in [21, Th. 5.2(c)], still requires curves with sufficiently
many points of degree 1, as asked by condition (13). In practice, this makes our
construction unsuitable for these specific applications, and instead, one has to
revert to suboptimal methods. A possible solution would be to adapt Proposi-
tion 2 and try to make this optimal construction work, say, with curves having
sufficiently many points of degree 2 (instead of degree 1); but this is still an
open question.

However, there are two alternative directions where optimality can be reached.
3.4.1. Classical bilinear complexity. A first direction is if one is inter-

ested in the classical bilinear complexity µq(k), instead of the symmetric bilinear
complexity µsym

q (k). Note that the classical works [10][11] and [25] all dealt only
with µq(k), as did also [4] and [20]. Indeed, the symmetric complexity µsym

q (k)
was first introduced in this context only in [21], together with the importance
of the distinction between these two notions. In particular it is observed there
that classical bilinear complexity allows asymmetric evaluation-interpolation al-
gorithms, whose associated Riemann-Roch systems are easier to solve optimally.
In this setting, instead of [21, Th. 5.2(c)], we can use [21, Th. 5.2(a)], which
does not require a condition like (13) on the number of points of degree 1.

For instance, it specializes to the following:
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Lemma 11. Let X be a curve of genus g over a finite field Fq. Suppose q ≥ 7
and X admits

• a closed point Q of degree k

• n1 closed points of degree 1

• n2 closed points of degree 2

with
n1 + 2n2 ≥ 2k + g − 1. (53)

Then we have
µq(k) ≤ n1 + 3n2. (54)

Proof. Special case of [21, Th. 5.2(a)] applied with m = k, l = 1, n1,1 = n1,
n2,1 = n2, and nd,u = 0 for other values of d, u.

This Lemma 11 repairs Ballet’s [4, Th. 2.1(2)], in the same way Lemma 3
repaired Ballet’s [4, Th. 2.1(1)].

We can then continue exactly as in Section 2, with the same modular curves
X0(N), which we can now consider over the prime field Fp. Lemma 5 gives

g0(N) ≤ ψ(N)
12 and 2n2 ≥ (p− 1)ψ(N)

12 , and with the very same computations we
conclude:

Proposition 12. Let p ≥ 7 be a prime number. Then for all k > p+1
2 , we have

1

k
µp(k) ≤ 3


1 +

1 + ǫP

(
24k
p−2

)

p− 2


 . (55)

Again this can be combined with any known upper bound on ǫP . For in-
stance, from [13] we deduce

1

k
µp(k) ≤ 3


1 +

1 + 3

( 24k
p−2)

1/3

p− 2


 (56)

for k ≥ p−2
24 e

e33.3 , and from [1] we deduce

1

k
µp(k) ≤ 3


1 +

1 + 1

( 24k
p−2 )

0.475

p− 2


 (57)

for k large enough. Observe also the following asymptotic consequence:

Corollary 13. For p ≥ 7 we have

lim sup
k→∞

1

k
µp(k) ≤ 3

(
1 +

1

p− 2

)
. (58)
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3.4.2. Short multiplication of polynomials. In a second direction,
we observe that the obstruction discussed at the beginning of §3.4 applies to
evaluation at points of higher degree, but not to evaluation with multiplicities
(at points of degree 1). Moreover, a new feature introduced in [21] is that it
does not only gives a bound in terms of the µsym

q (d, u), it also gives a bound on
them. In particular, set

M̂ sym
q (l) = µsym

q (1, l) = µsym
Fq

(Fq[t]/(t
l)). (59)

Multiplication in the quotient algebra Fq[t]/(t
l) is sometimes called short mul-

tiplication of polynomials. Then:

Lemma 14. Let X be a curve of genus g over a finite field Fq with

|X(Fq)| > 5g. (60)

Then for all integers

l ≤ |X(Fq)|+ 1− g

2
(61)

we have
M̂ sym
q (l) ≤ 2l + g − 1. (62)

Proof. Special case of [21, Th. 5.2(c)] applied with m = 1, l = l, n1,1 = 2l+g−1,
and nd,u = 0 for other values of d, u.

Lemma 14 is the exact analogue of Lemma 3 for M̂ sym
q (l) instead of µsym

q (k).
Mutatis mutandis, we deduce

M̂ sym
q (l) ≤ 2l − 1 for l ≤ q

2
+ 1, (63)

M̂ sym
q (l) ≤ 2l for l <

q + e(q) + 1

2
(64)

and M̂ sym
p2 (l) satisfy the same upper bounds as µsym

p2 (k) in Proposition 8 and
Corollary 10(i)-(vii). In particular:

Proposition 15. Let p ≥ 7 be prime. Then for all l we have

1

l
M̂ sym
p2 (l) ≤ 2 +

1
12

⌈
24l−12
p−2

⌉
ψ(N\pN)

− 1

l

≤ 2


1 +

1 + ǫP

(
24l
p−2

)

p− 2


 .

(65)

Again this can be combined with all existing and future bounds on ǫP ,
leading for instance to

1

l
M̂ sym
p2 (l) ≤ 2


1 +

1 + 3

( 24l
p−2 )

1/3

p− 2


 (66)
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for l ≥ p−2
24 e

e33.3 , or to

1

l
M̂ sym
p2 (l) ≤ 2


1 +

1 + 1

( 24l
p−2 )

0.475

p− 2


 (67)

for l large enough.
Asymptotically we also deduce the following, which was already observed

(at least implicitely) in [21, Rem. 6.7]:

Corollary 16. For p ≥ 7 prime, we have

lim sup
l→∞

1

l
M̂ sym
p2 (l) ≤ 2

(
1 +

1

p− 2

)
. (68)

Moreover, as in §3.4.1, we can also get results over the prime field Fp, pro-
vided we’re interested in classical bilinear complexity instead of symmetric bi-
linear complexity. Setting M̂q(l) = µq(1, l), the very same approach gives:

Proposition 17. Let p ≥ 7 be prime. Then for all l we have

1

l
M̂p(l) ≤ 3


1 +

1 + ǫP

(
24l
p−2

)

p− 2


 . (69)

We leave it to the reader to derive as before the combination with any bound
of his choice on ǫP .

Corollary 18. For p ≥ 7 prime, we have

lim sup
l→∞

1

l
M̂p(l) ≤ 3

(
1 +

1

p− 2

)
. (70)

3.5. Recent work of Ballet and Zykin. Very recently Ballet and Zykin
published the work [6]. Although the initial version of their paper did not make
reference to [20] (the final version of [6] now repairs this omission) the core of
their proof is precisely the very same argument that was first introduced there,
using estimates on gaps between primes such as the one of Baker-Harman-Pintz
[1].

Actually, there are two parts in [6]. The first part, [6, Prop. 7], concerns a
base field Fp2 of prime square order, so it can be compared directly with our
results. Some differences are quite inessential:

• We first consider modular curves of arbitrary level N , and then specialize
to N prime. On the other hand, Ballet and Zykin follow [25] and consider
only level 11N (or 23N). The curves produced in this way thus form a
slightly less dense family.
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• In passing from Proposition 8 to Corollary 10(i), we kept only the term
proportional to k and we discarded the constant term. This gives a simpler
expression, although slightly less precise. On the other hand, Ballet and
Zykin kept track of this constant term.

• The strongest bounds in [20, Cor. 28] and in [6, Prop. 7] both are based on
the estimate of Baker-Harman-Pintz [1]. Weaker but more explicit bounds
are also proposed using alternative estimates. In particular Ballet and
Zykin refer to Dudek’s estimate [13], which did not exist at the time when
[20] was written, but is now included for completeness as Corollary 10(vii),
in §3.1 above. As explained there, any further progress on gaps between
primes automatically translates into a bound on multiplication complexity.

All the details are essentially negligible. However there is another, much more
important difference:

• Beside gaps between primes, a second ingredient in our work is our optimal
solution to Riemann-Roch systems. Thanks to this, our uniform bounds
match the best asymptotic bound (9). On the other hand, Ballet and
Zykin use a suboptimal construction, which allow them only to match the
weaker asymptotic bound (6), as they explicitly state in [6, Prop. 7(3)].

Because of this, essentially all results in the first part of [6] are already included
in our stronger Corollary 10. More precisely, only one very specific case of [6,
Prop. 7] is not covered, namely the case q = 25.

On the other hand, the second part of [6] considers a base field of prime
order. As discussed at the beginning of §3.4, our optimal method for solving
Riemann-Roch systems does not work well for symmetric algorithms over prime
fields. Instead, to prove [6, Prop. 10] Ballet and Zykin use a suboptimal method
from [5], directly adapted from the original method of [10][11]. This is probably
the best that could be done with the current state of knowledge, and [6, Prop. 10]
is not covered by the present work.

Now it is interesting to compare the asymptotic bound they get this way for
symmetric complexity [6, Prop. 10(3)]

lim sup
k→∞

1

k
µsym
p (k) ≤ 3

(
1 +

4/3

p− 3

)
(71)

with our Corollary 13 that holds for classical bilinear complexity. This suggests
that, if one could solve the problem alluded to at the beginning of §3.4, this
would lead to uniform bounds on the symmetric complexity matching the much
better, but still conjectural, asymptotic bound

lim sup
k→∞

1

k
µsym
p (k) ≤ 3

(
1 +

1

p− 2

)
. (72)

18



References

[1] R. C. Baker, G. Harman & J. Pintz, The difference between consecutive
primes, II, Proc. London Math. Soc. 83 (2001) 532–562.

[2] S. Ballet, Curves with many points and multiplication complexity in any
extension of Fq, Finite Fields Appl. 5 (1999) 364–377.

[3] S. Ballet, Low increasing tower of algebraic function fields and bilinear com-
plexity of multiplication in any extension of Fq, Finite Fields Appl. 9 (2003)
472–478.

[4] S. Ballet, On the tensor rank of the multiplication in the finite fields, J.
Number Theory 128 (2008) 1795–1806.

[5] S. Ballet & R. Rolland, Multiplication algorithm in a finite field and tensor
rank of the multiplication, J. Algebra 272 (2004) 173–185.

[6] S. Ballet & A. Zykin, Dense families of modular curves, prime numbers
and uniform symmetric tensor rank of multiplication in certain finite fields,
preprint, June 2017 — arxiv.org/abs/1706.09139

[7] I. Cascudo, On asymptotically good strongly multiplicative linear secret shar-
ing, Ph.D. dissertation, University of Oviedo, 2010.

[8] I. Cascudo, R. Cramer & C. Xing, Torsion limits and Riemann-Roch systems
for function fields and applications, IEEE Trans. Inform. Theory 60 (2014)
3871–3888.

[9] M. Cenk & F.Özbudak, On multiplication in finite fields, J. Complexity 26

(2010) 172–186.

[10] D. V. & G. V. Chudnovsky, Algebraic complexities and algebraic curves
over finite fields, Proc. Nat. Acad. Sci. USA 84 (1987) 1739–1743.

[11] D.V. & G.V. Chudnovsky, Algebraic complexities and algebraic curves over
finite fields, J. Complexity 4 (1988) 285–316.

[12] H. Cramer, On the order of magnitude of the difference between consecutive
prime numbers, Acta Arith. 2 (1936) 23–46.

[13] A. Dudek, An explicit result for primes between cubes, Funct. Approx. Com-
ment. Math. 55 (2016) 177–197.

[14] P. Dusart, Estimates of some functions over primes without R.H., preprint,
February 2010 — arxiv.org/abs/1002.0442

[15] K. Ford, The Distribution of totients, The Ramanujan J. 2 (1998) 67–151.

[16] H. Kadiri, Short effective intervals containing primes in arithmetic progres-
sions and the seven cubes problem, Math. Comp. 77 (2008) 1733–1748.

19

arxiv.org/abs/1706.09139
arxiv.org/abs/1002.0442


[17] T. Miyake, Modular forms, Springer-Verlag, 1989.

[18] O. Ramaré & Y. Saouter, Short effective intervals containing primes, J.
Number Theory 98 (2003) 10–33.

[19] H. Randriambololona, (2, 1)-separating systems beyond the probabilistic
bound, Israel J. Math. 195 (2013) 171–186.

[20] H. Randriambololona, Diviseurs de la forme 2D − G sans sections et
rang de la multiplication dans les corps finis, preprint, March 2011 —
arxiv.org/abs/1103.4335

[21] H. Randriambololona, Bilinear complexity of algebras and the Chudnovsky-
Chudnovsky interpolation method, J. Complexity 28 (2012) 489–517.

[22] H. Randriambololona, “On products and powers of linear codes under com-
ponentwise multiplication”, in: Algorithmic arithmetic, geometry, and coding
theory, Contemp. Math. 637, Amer. Math. Soc., 2015, pp. 3–78.

[23] L. Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x),
II, Math. Comp. 30 (1976), 337–360.

[24] M. A. Shokrollahi, Optimal algorithms for multiplication in certain finite
fields using elliptic curves, SIAM J. Comput. 21 (1992) 1193–1198.

[25] I. Shparlinski, M. Tsfasman & S. Vladut, “Curves with many points and
multiplication in finite fields”, in: H. Stichtenoth & M. A. Tsfasman (eds.),
Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in
Math. 1518, Springer-Verlag, 1992, pp. 145–169.

[26] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-
Verlag, 1993.

[27] M. A. Tsfasman & S. G. Vladut, Algebraic-geometric codes, Kluwer Aca-
demic Publishers, 1991.

[28] S. Winograd, Some bilinear forms whose multiplicative complexity depends
on the field of constants, Math. Systems Theory 10 (1977) 169–180.

20

arxiv.org/abs/1103.4335

	1 Introduction
	2 Main results as of 2011
	3 More recent developments, and questions that remain open

