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Abstract The Doob graph D(m, n) is the Cartesian product of m > 0 copies
of the Shrikhande graph and n copies of the complete graph of order 4. Nat-
urally, D(m,n) can be represented as a Cayley graph on the additive group

(Z2
4)

m × (Z2
2)

n′

× Zn′′

4 , where n′ + n′′ = n. A set of vertices of D(m, n) is called
an additive code if it forms a subgroup of this group. We construct a 3-parameter
class of additive perfect codes in Doob graphs and show that the known necessary
conditions of the existence of additive 1-perfect codes in D(m,n′ + n′′) are suf-
ficient. Additionally, two quasi-cyclic additive 1-perfect codes are constructed in
D(155,0 + 31) and D(2667,0 + 127).

Keywords Distance regular graphs · Additive perfect codes · Doob graphs ·
Quasi-cyclic codes · Tight 2-designs
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1. Introduction

Perfect codes are a fascinating structure in coding theory, which attracts atten-
tion again and again. The existence of perfect codes has been studied for vari-

This research is supported by National Natural Science Foundation of China (61672036), Tech-
nology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China
(05015133), Excellent Youth Foundation of Natural Science Foundation of Anhui Province
(No.1808085J20), and the Program of fundamental scientific researches of the Siberian Branch
of the Russian Academy of Sciences No.I.1.1. (No.0314-2016-0016).

M. Shi
School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China
E-mail: smjwcl.good@163.com

D. Huang
School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, China
E-mail: dthuang666@163.com

D. S. Krotov
Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk 630090, Russia
E-mail: krotov@math.nsc.ru

http://arxiv.org/abs/1806.04834v2
https://orcid.org/0000-0002-8516-755X


2 M. Shi, D. Huang, D. Krotov

ous metrics, in particular, for the Hamming metric [7], [9]. Generally we consider
a distance-regular graph G(V,E) due to the important role of perfect codes in
distance-regular graphs. A 1-perfect code in a graph G(V,E) is a subset C of V ,
which is an independent set such that every vertex in V \C is adjacent to exactly
one vertex in C.

The Doob graphD(m,n) is the Cartesian product ofm copies of the Shrikhande
graph and n copies of the complete graph of order 4, where the Shrikhande graph
is a strongly regular graph with 16 vertices and 48 edges with each vertex hav-
ing degree 6. All D(m,n) with the same value 2m + n have the same parame-
ters as distance-regular graphs; the partial case m = 0 corresponds to the 4-ary
Hamming graph. In [6], the author completely solved the problem of existence
of linear 1-perfect codes in Doob graphs (a linear code in Doob graph forms a
module over the Galois ring GR(42)) and proposed an open problem about the
additive 1-perfect codes (an additive code forms a module over Z4). In the cur-
rent paper, we are aimed at showing that for arbitrary odd ∆ ≥ 3, even Γ and
n′′ ∈ {4, 7, 10, . . . , 2∆−1}, there exists an additive 1-perfect code in D(m,n′+n′′),

where m = 22∆+Γ
−2∆+Γ

−2n′′

6 , n′ = 2Γ+∆
−1−n′′

3 . In particular, we construct 2 codes
that are both 1-perfect and quasi-cyclic in D(m, 0 + n′′). Together with the re-
sults in [6] for even ∆, our construction solves the problem of existence of additive
1-perfect codes in Doob graphs for all feasible parameters.

The material is arranged as follows. The next section compiles the background
necessary to the forthcoming sections. Section 3 contains the main result of this
paper. Three quasi-cyclic additive 1-perfect codes are listed in Section 4 (one of
them was known before). Section 5 concludes the article, and points out some open
problems.

2. Preliminaries

2.1. Galois rings

Let Z denote the ring of integers, and let Zp = Z/pZ denote the factor-ring of
residue classes of Z modulo p. If M is a ring or a module over a ring, then M

+

denotes the additive group of M. If h(x) is a basic irreducible polynomial of de-
gree m over Z4 and ς is a root h(x), then any element in the residue class ring
Z4[x]/(h(x)) can be written as h0 + h1ς + . . . + hm−1ς

m−1, which could also be
viewed as the vector (h0, h1, . . . , hm−1) over Z4, where h0, h1, . . . , hm−1 run
through Z4 independently. In fact, the map defined by

φ : Z4[x]/(h(x))→ Z
m
4 ,

h0 + h1ς + . . .+ hm−1ς
m−1 7→ (h0, h1, . . . , hm−1)

is a Z4-module isomorphism from Z4[x]/(h(x)) to Z
m
4 . As usual, denote by Galois

ring GR(4m) the residue ring Z4[x]/(h(x)), and we denote by GR(4m)∗ the set
of units of GR(4m). The Teichmuller set T = {x ∈ GR(4m)|x2m

= x} is a set of
representatives of the residue field F2m ≃ GR(4m)/(2). It is known that GR(4m) =
T ⊕2T (2-adic decomposition of GR(4m)), and that the group of units of the Galois
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ring is GR(4m)∗ = T ∗ ⊕ 2T , with T ∗ = T \ {0}. The generalized Frobenius map
of GR(4m) defined by

f : GR(4m) → GR(4m), c = a+ 2b 7→ cf = a2 + 2b2

is a ring automorphism of GR(4m), where a, b ∈ T . Moreover, if σ is a ring
automorphism of GR(4m), then σ = f i for some i, 0 ≤ i ≤ m−1. See more details
in [8, Chapter 6].

2.2. Representation of the Doob graph

Denote by D(m,n) the Cartesian product Shm×Kn of m copies of the Shrikhande
graph and n copies of the complete 4-vertex graph. If m > 0, then D(m,n) is called
a Doob graph. The Shrikhande graph Sh is the Cayley graph of the additive group
Z
2+
4 of Z2

4 with the generating set S = {01, 30, 33, 03, 10, 11}. That is, the vertex
set is the set of elements of Z2

4, two elements being adjacent if and only if their
difference is in S. Next we will use two different representations of the complete
4-vertex graph K = K4 as a Cayley graph. The first representation of K is the
Cayley graph on Z

2+
2 with the generating set {01, 10, 11}. At second, K will be

considered as the Cayley graph of Z+
4 with the generating set {1, 2, 3}.

Take the set of (2m + 2n′ + n′′)-tuples (x1, . . ., x2m, y1, . . ., y2n′ , z1, . . ., zn′′)

from Z
2m
4 × Z

2n′

2 × Z
n′′

4 , n′ + n′′ = n, as the vertex set of D(m,n). If a code

C ⊂ Z
2m
4 ×Z

2n′

2 ×Z
n′′

4 is closed with respect to addition, then we say it is additive.
An additive code is necessarily closed with respect to multiplication by an element
of Z4. So, it is in fact a submodule of the module Z

2m
4 × Z

2n′

2 × Z
n′′

4 over Z4.
The natural graph distance in D(m,n) provides a metric on Z

2m
4 × Z

2n′

2 × Z
n′′

4 ,
which will be called the D(m,n)-metric (if m > 0, a Doob metric). The weight
of a vertex x of D(m,n) is the distance from x to 0 (here and in what follows,
0 denotes the zero element of the module, i.e., the all-zero tuple, whose length is
clear from the context).

If we study 1-perfect codes, the vertices of weight 1 are of special interest.
Recall that in the case of Z

2m
4 × Z

2n′

2 × Z
n′′

4 with D(m,n′ + n′′)-metric, every
vertex of weight 1 has one of the forms (0. . .0xy0. . .0|0|0), (0|0. . .0vw0. . .0|0),
(0|0|0. . .0z0. . .0), where x and v are in odd positions, xy ∈ {01,11, 10, 03, 33, 30},
vw ∈ {01, 11, 10}, z ∈ {1, 2, 3}, and the vertical lines separate the three parts of
the tuple of length 2m, 2n′, and n′′, respectively.

2.3. Additive 1-perfect codes in Doob graphs

A 1-perfect code in a Doob graph D(m,n) is a subset C of Z2m
4 ×Z

2n′

2 ×Z
n′′

4 which

is an independent set such that every vertex in Z
2m
4 × Z

2n′

2 × Z
n′′

4 \C is adjacent
to exactly one vertex in C.

Remark 1 In general, the concept of perfect codes is related with the following
bound, known as the sphere-packing bound. If the distance between any two dif-
ferent elements of a code in a discrete metric space is more than 2e, then the
cardinality of the code does not exceed the cardinality of the space divided by
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the cardinality of a ball of radius e. The codes attending this bound are called
perfect, or e-perfect. As was noted in [5], nontrivial e-perfect codes in the Doob
graphs do not exist for e ≥ 2 (the arguments are based on the known proof of
the nonexistence of such codes in the 4-ary Hamming graphs [7], [9] and on the
algebraic connections between the Doob and Hamming graphs).

Define (A | A′ | A′′) as a check matrix of a 1-perfect code C in D(m,n′ + n′′),

that is to say, C = {c ∈ Z
2m
4 × Z

2n′

2 × Z
n′′

4 | (A | A′ | A′′)cT = 0
T
}, with the

multiplication (A | A′ | A′′)(z1 | z2 | z3)
T for z = (z1 | z2 | z3) ∈ Z

2m
4 ×Z

2n′

2 ×Z
n′′

4

as AzT1 + 2 · A′zT2 + A′′zT3 (here, 2· can be formally understood as the group
homomorphism 0 → 0, 1 → 2 from Z2 to Z4, acting coordinatewise on the column
vector).

For a tuple z ∈ Z
2m
4 × Z

2n′

2 × Z
n′′

4 , the value (A | A′ | A′′)zT is called the
syndrome of z. We will say that s is covered by the coordinate i with 2(m+n′)+1 ≤
i ≤ 2(m+ n′) + n′′ or by the pair of coordinates 2i − 1, 2i with 1 ≤ i ≤ m + n′,
if it is the syndrome of some e of weight 1 with the only non-zero value in the
position i or the only non-zero values in the positions 2i − 1, 2i, respectively.
We also make an agreement that by a pair of coordinates (or of columns of a
check matrix) we will always mean a pair of coordinates of form 2i− 1, 2i, where
1 ≤ i ≤ m + n′, i.e., a pair that corresponds to the same Sh or K component of
D(m,n′ + n′′) = Shm ×Kn′

×Kn′′

.
The following lemma is a straightforward reformulation of the definition of

1-perfect codes in terms of check matrices.

Lemma 1 An additive code in D(m,n′+n′′) with a check matrix (A | A′ | A′′) is
1-perfect if and only if the matrix does not have all-zero columns and every nonzero
syndrome from {(A | A′ | A′′)z | z ∈ Z

2m
4 ×Z

2n′

2 ×Z
n′′

4 } is uniquely covered by some
of the first m+ n′ pairs of coordinates or some of the last n′′ coordinates.

This fact is a variant of a general principle [3] of recognizing additive 1-perfect
codes in abelian groups with different metrics. If the number of nonzero syndromes
equals the number of weight-1 words, then it is sufficient to check that every
nonzero syndrome is covered at least once.

Let us recall some important results on the additive 1-perfect codes in Doob
graphs.

Lemma 2 ([6]) Assume that there exists an additive 1-perfect code in Z
2m
4 ×

Z
2n′

2 × Z
n′′

4 with the Doob D(m,n′ + n′′)-metric. Then for some even Γ ≥ 0 and
integer ∆ ≥ 2,

2m+ n′ + n′′ = (2Γ+2∆ − 1)/3, (1)

3n′ + n′′ = 2Γ+∆ − 1, (2)

n′′ ≤ 2∆ − 1, n′′ 6= 1. (3)

Lemma 3 ([6]) For every m, n′ and n′′ satisfying the statement of Lemma 2 with

even ∆, there is an additive 1-perfect code in Z
2m
4 ×Z

2n′

2 ×Z
n′′

4 with D(m,n′+n′′)-
metric.

The main result of this paper is the positive solution of the following problem
[6]: for every value (m,n′, n′′) satisfying (1–3) with odd ∆ (except the case (7,0,7),
considered in [6, Sect. 6]), does there exist an additive 1-perfect code in Z

2m
4 ×

Z
2n′

2 × Z
n′′

4 with the D(m,n′ + n′′)-metric?
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3. Main construction

In this section, to determine the existence of additive 1-perfect codes in D(m,n′+
n′′), we firstly list the specific check matrix of a 1-perfect code in D(8, 1 + 4)
corresponding to the case of Γ = 0 and ∆ = 3. Secondly, we set about constructing

1-perfect codes with any odd ∆, Γ = 0 and n′′ = 4 in D( 2
2∆

−2∆
−8

6 , 2∆
−5
3 + 4)

based on the case of Γ = 0 and∆ = 3. Next, for any odd∆ and Γ = 0 we construct
1-perfect codes in D(m,n′ + n′′) with m, n′ and n′′ satisfying conditions (1–3)
in Lemma 2. Finally, infinite 1-perfect codes are constructed with any odd ∆ and
even Γ based on the case of ∆ odd and Γ = 0.

3.1. n′′ = 4, Γ = 0 and ∆ = 3

For the case Γ = 0 and ∆ = 3, there are two values of (m,n′, n′′) satisfying
conditions (1–3) in Lemma 2. One is (7, 0, 7), the other is (8, 1, 4). Noting that
a 1-perfect code in D(7, 0 + 7) has been constructed in [6], we then construct a
1-perfect code in D(8, 1 + 4).

We list an example of a 1-perfect code in D(8, 1 + 4) as follows. The check
matrix, denoted by (A1 | A2 | A3), is




1 0 2 2 0 1 1 2 2 1 2 3 1 1 1 0 1 0 1 0 0 1
0 1 1 0 2 2 2 3 1 2 2 1 2 1 3 1 1 1 0 1 0 1
2 2 0 1 1 0 2 1 2 3 1 2 1 2 0 3 0 1 0 0 1 1


 .

It can be easily checked that every nonzero syndrome is covered. Indeed, all nonzero
syndromes are: (1, 0, 0)T, (1, 0, 2)T, (1, 2, 0)T, (1, 2, 2)T, (1, 3, 0)T, (1, 2, 3)T, (1, 1, 0)T,
(1, 1, 2)T, (1, 1, 3)T, (1, 1, 1)T, (2, 0, 0)T, (2, 2, 0)T, (2, 2, 2)T, and their negatives
and cyclic shifts. The syndromes (2, 2, 2)T, (0, 0, 2)T, (1, 1, 1)T, (0, 0, 1)T (and their
negatives) are covered by the last four coordinates. The syndrome (0, 2, 2)T and its
cyclic shifts are covered by the pair of Z2 coordinates. The syndromes (1, 0, 2)T,
(0, 1, 2)T, (1, 1, 0)T (and their negatives) are covered by the 1st pair of coordinates;
the syndromes (1, 2, 2)T, (2, 3, 1)T, (3, 1, 3)T, by 4th pair; the syndrome (1, 1, 2)T

and its cyclic shifts, by 7th; the syndrome (0, 1, 3)T and its cyclic shifts, by 8th.
From the matrix, it is easy to see that if some syndrome (a, b, c)T is covered, then
the cyclic shifts (c, a, b)T and (b, c, a)T are covered too.

3.2. n′′ = 4, Γ = 0 and ∆ odd

In this subsection, we recursively construct additive 1-perfect codes in D(m,n′ +

n′′) for any odd ∆ ≥ 3, Γ = 0, m = 22∆
−2∆

−8
6 , n′ = 2∆

−5
3 , n′′ = 4. To illustrate

the approach, we separately consider the case ∆ = 5.

3.2.1. The first recursive step

Firstly, we start with the case ∆ = 5, Γ = 0, and we ensure there exists an
additive 1-perfect code in D(164,9 + 4). To prove the claim, we have to find a
check matrix which covers all nonzero syndromes. Note that the elements of order
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2 of height 2 over Z4 are exactly (2, 0)T, (0, 2)T, (2, 2)T and the elements of order
4 of height 2 over Z4 are exactly (0, 1)T, (0, 3)T, (1, 0)T, (1, 1)T, (1, 2)T, (1, 3)T,
(2, 1)T, (2, 3)T, (3, 0)T, (3, 1)T, (3, 2)T, (3, 3)T. Note that 164 pairs exactly cover
164×6 = 8×6+3×56+12×64 = 8×6+3×|GR(43)∗|+12×|GR(43)| syndromes.
To make our construction, we choose any two elements µ, ν in GR(43)∗ such that
µ+ ν is a unit again, then take a1, a2, . . . , a56 ∈ GR(43)∗ with ai + a57−i = 0 and
{a1, a2, . . . , a64} = GR(43). Then add the matrices




a1µ a1ν . . a28µ a28ν a1µ a1ν . . a64µ a64ν a1µ a1ν . . a64µ a64ν
2 0 . . 2 0 1 0 . . 1 0 1 1 . . 1 1
0 2 . . 0 2 0 1 . . 0 1 2 3 . . 2 3


 ,

1

2




a57µ a57ν . . a64µ a64ν
2 0 . . 2 0
0 2 . . 0 2




to the left (Z2
4-part) and the middle (Z2

2-part) parts of the matrix




A1 A2 A3

0 0 0
0 0 0


 ,

respectively, where (A1 | A2 | A3) is the check matrix of a 1-perfect code in
D(8, 1+4) constructed in Section 3.1. Then it is easy to check that all coordinates
of the new check matrix, which could be seen as the combination of Z2

4-part, Z
2
2-

part and Z4-part, cover all nonzero syndromes. In fact, for any distinct i, j =
1, 2, . . . , 64, we have aiµ 6= ajµ, aiν 6= ajν and ai(µ+ ν) 6= aj(µ+ ν). The number
of syndromes of order 2 is 25 − 1 = 31 while the Z

2
2-part covers 3 × (8 + 1) = 27

syndromes and the Z4-part covers 4 syndromes of order 2. And the number of
syndromes of order 4 is (25 − 1)25 = 210 − 25 = 992, while the corresponding
coordinates of the Z2

4-part and the Z4-part cover 164×6+4×2 = 992 syndromes.

3.2.2. The general case

For the case Γ = 0, (∆ − 2) odd, let (H | H′ | H′′) be a check matrix of a

1-perfect code in D(m̃, ñ′ + 4), where m̃ = 22(∆−2)
−2∆−2

−8
6 and ñ′ = 2∆−2

−5
3 .

For the case Γ = 0 and ∆ odd, to obtain a 1-perfect code in D(m,n′ + n′′) we

construct the check matrix as follows by noting that 3(n′ − ñ′) = 3 × 2∆−2 and
6m− 6m̃ = 15× 4∆−2 − 3× 2∆−2 = 12× 4∆−2 + 3(4∆−2 − 2∆−2).

We identify the elements of GR(4∆−2) with the corresponding vectors of length
∆ − 2 over Z4, as described in Section 2. Choose any two distinct elements α, β
in GR(4∆−2)∗ such that α + β is a unit again. Denote by c1, c2, . . . , ct the units
of GR(4∆−2). And denote by c1, c2, . . . , cs the all elements of GR(4∆−2), where
t = (2∆−2 − 1)2∆−2, ci + ct+1−i = 0 for all i = 1, . . . , t and s = 4∆−2. Define the
matrices B, W , V , D′, E, E′, E′′ as follows:

B =




c1α c1β c2α c2β · · · c t

2
α c t

2
β

2 0 2 0 · · · 2 0
0 2 0 2 · · · 0 2


 ;

W =




c1α c1β c2α c2β · · · csα csβ
0 1 0 1 · · · 0 1
1 0 1 0 · · · 1 0


 , V =




c1α c1β c2α c2β · · · csα csβ
1 1 1 1 · · · 1 1
2 3 2 3 · · · 2 3


 ;
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D′ =
1

2




ct+1α ct+1β ct+2α ct+2β · · · csα csβ
2 0 2 0 · · · 2 0
0 2 0 2 · · · 0 2


 ;

E =




H
0
0


 , E′ =




H′

0
0


 , E′′ =




H′′

0
0


 .

Denote by M the matrix (BWV E | E′D′ | E′′). Keeping the notations above, we
have the following proposition.

Proposition 1 Let the code C be defined by the check matrix M , constructed
as above. Then C is a 1-perfect code in the Doob graph D(m,n′ + n′′), where

m = 22∆
−2∆

−8
6 , n′ = 2∆

−5
3 , n′′ = 4 and ∆ is odd.

Proof Note that there are at most 16∆ different syndromes. Let us consider an
arbitrary z ∈ Z

2m
4 × Z

2n′

2 × Z
n′′

4 and its syndrome s = MzT. If s is the all-zero
column, then z ∈ C. Let us show that if s is non-zero, then there is a unique
codeword c = z − e adjacent to z. For the existence, it is sufficient to find a
weight-1 tuple e with syndrome s. Let us consider two cases.

(i) If the order of s is 2, then it is covered by the Z2
2-part and the Z4-part. Indeed,

there are 2∆ elements of order 2 in GR(4∆), while 3ñ′ = 2∆−2−5 distinct syn-
dromes with the last two rows (0, 0)T are covered by corresponding coordinates

of E′ and 3(ñ′ − ñ′′) = 3 × 2∆−2 distinct syndromes with the last two rows
(2, 0)T, (0, 2)T, (2, 2)T are covered by corresponding coordinates of D′. Except
that, E′′ covers 4 distinct syndromes with the last two rows (0, 0)T. Totally,
M covers 2∆−2 − 5 + 3 × 2∆−2 + 4 = 2∆ − 1 distinct elements in Z

∆
4 . That

is to say, all syndromes of order 2 are covered by corresponding coordinates of
M .

(ii) If the order of s is 4, then it is covered by corresponding coordinates of the
first part and corresponding coordinates of the third part. Indeed, there are
22∆−2∆ elements of order 4 in GR(4∆), while 6m̃ = 22(∆−2)−2∆−2−8 distinct
syndromes with the last two rows (0, 0)T are covered by E, 6× t

2 = 3(2∆−2 −

1)2∆−2 distinct syndromes with the last two rows (2, 0)T, (0, 2)T, (2, 2)T are
covered by B, and 6× s× 2 = 12× 4∆−2 distinct syndromes with the last two
rows (0, 1)T, (0, 3)T, (1, 0)T, (1, 1)T, (1, 2)T, (1, 3)T, (2, 1)T, (2, 3)T, (3, 0)T,
(3, 1)T, (3, 2)T, (3, 3)T are covered by corresponding coordinates of W and V .
Except that, 2 × 4 = 8 distinct syndromes with the last two rows (0, 0)T are
covered by corresponding coordinates of E′′. Totally, corresponding coordinates
of M covers 22(∆−2)−2∆−2−8+3(2∆−2−1)2∆−2+12×4∆−2+8 = 22∆−2∆

distinct elements of order 4 in Z
∆
4 . That is to say, all syndromes of order 4 are

covered by corresponding coordinates of M .

It is easy to see that the choice of e is unique. ⊓⊔

3.3. Increasing n′′ when Γ = 0 and ∆ odd

To construct more 1-perfect codes we want to increase n′′ based on the above
check matrix. We start with a simple case and end up with a generalized case in
this subsection.
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3.3.1. The special case (7, 0 + 7)

An additive 1-perfect code has already been found in [6]; we recall its description
in Section 4.1. However, to illustrate the technique of increasing n′′, we construct
another code. In Section 4.4, we prove that this code is not equivalent to that of
[6].

We begin with the 1-perfect code in D(8, 1 + 4), see Subsection 3.1. Note that
the part over Z2 covers three syndromes (2, 2, 0)T, (0, 2, 2)T, (2, 0, 2)T, which can
be written as 2(3,1, 0)T, 2(3 + 1, 1 + 2, 0 + 1)T, 2(1, 2, 1)T. At the same time, the
last two columns of the first part over Z4 cover six syndromes (3, 1, 0)T, (1, 2, 1)T,
3(3, 1, 0)T = (1, 3, 0)T, 3(1,2, 1)T = (3, 2, 3)T, (3+1,1+2,0+1)T = (0, 3, 1)T, 3(3+
1, 1+2, 0+1)T = (0, 1, 3)T. Note that these nine syndromes are exactly k(3, 1, 0)T,
k(1, 2, 1)T, k(0, 3, 1)T for k = 1, 2, 3. That means it is feasible to increase n′′

by adding three columns (3, 1, 0)T, (1, 2, 1)T, (0, 3, 1)T and deleting the last two
columns of the first part and the two columns of the second part over Z2.

3.3.2. The general case

Based on the codes constructed in Subsection 3.2.2, we start from the check matrix
M .

Generally, the corresponding coordinates of every pair of columns B1 and B2

over Z4 from the first part of the matrix cover six syndromes B1, B2, B1 + B2,
3B1, 3B2, 3(B1 +B2).

IfD1,D2 is a pair of columns inD′, then (2D1, 2D2) is of the form




2ciα 2ciβ
0 2
2 0




for some i ∈ {1, 2, . . . , s} (the choice of i is not unique in general). By the def-

inition of W , it contains the pair of columns (B1, B2) =




ciα ciβ
0 1
1 0


. This pair

covers the syndromes B1, B2, B1+B2, 3B1, 3B2, 3B1+3B2, while the syndromes
2B1, 2B2, 2B1 + 2B2, are covered by (D1, D2). That implies we can construct an
additive 1-perfect code in D(m− 1, (n′ − 1) + (4 + 3)) by deleting these two pairs

but adding the three columns (B1, B2, B1 + B2) =




ciα ciβ ci(α+ β)
1 0 1
0 1 1


 to the

third part of the matrix.

Remembering that the matrix (E | E′ | E′′) was obtained at the previous
recursive step or corresponds to the case (8, 1+4) we can apply the same strategy
as above or Subsection 3.3.1. So, for every pair of columns D1, D2 in D′ or E′,
we can find a pair B1, B2 in W or E such that 2B1 = 2D1 and 2B2 = 2D2. Then
we can replace these 4 columns by the new columns B1, B2, B1 +B2 in the third
part of the matrix. Using that algorithm, we can increase n′′ up to 2∆ − 1 and
decrease n′ down to 0. Let M be the new matrix constructed as above.

So, once we have a 1-perfect code in D(m,n′ + 4) constructed as in Subsec-
tion 3.2.2, we also have additive 1-perfect codes in D(m − 1, (n′ − 1) + (4 + 3)),
D(m− 2, (n′ − 2) + (4 + 6)), . . ., D(m− n′, 0 + (2∆ − 1)). Keeping the notations
above, We obtain the following statement.
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Proposition 2 Let the code C be defined by the check matrix M , constructed as
above. Then C is a 1-perfect code in Doob graphs D(m,n′ + n′′), where m, n′, n′′

satisfy conditions (1–3) in Lemma 2 with Γ = 0 and ∆ odd.

3.4. Arbitrary even Γ and odd ∆

In this subsection, we are aimed at constructing a check matrix of a 1-perfect
code in D(m∗, n′∗ + n′′), from a check matrix (I|I′|I′′) of a 1-perfect code in
D(m,n′ + n′′) without rows of order 2, where 6m∗ − 6m = (2Γ − 1)(22∆ − 2∆)
and 3n′∗ − 3n′ = (2Γ − 1)2∆.

The idea is the same as when we increased ∆ in Section 3.2, but instead of
acting recursively, we increase the number of order-2 rows from 0 to Γ is one step
(the reason is that Z

∆
4 × (2Z2)

Γ−2 cannot be represented as a Galois ring for
Γ > 2).

Let the triples {ai,bi, ci}, i = 1, . . . , 2Γ
−1
3 , such that aT

i ,b
T
i , c

T
i ∈ 2ZΓ

2 \ {0}

and aT
i + bT

i + cTi = 0 form a partition of 2ZΓ
2 \ {0}, i.e.,

(2Γ
−1)/3⋃

i=1

{aT
i ,b

T
i , c

T
i } = 2ZΓ

2 \ {0}

(such partition can be easily constructed from the multiplicative cosets of the
subfield GF(4) in the field GF(2Γ )). Let u1, u2, . . . , ul be the units of GR(4∆)
and ul+1, . . . , uk the non-units in GR(4∆), where uj+ul+1−j = 0 for j = 1, 2, . . . , l
and l = (2∆ − 1)2∆, k = 4∆. Choose any two elements γ, δ in GR(4∆)∗ such that
γ+δ is also a unit. Define the matrices F = (F1, . . . , F 2Γ −1

3

),G′ = (G′

1, . . . , G
′

2Γ −1
3

),

E, E′, E′′:

Fi =

(
u1γ u1δ u2γ u2δ · · · u l

2
γ u l

2
δ

ai bi ai bi · · · ai bi

)
, i = 1, . . . ,

2Γ − 1

3
;

G′

i =
1

2

(
ul+1γ ul+1δ ul+2γ ul+2δ · · · ukγ ukδ
ai bi ai bi · · · ai bi

)
, i = 1, . . . ,

2Γ − 1

3
;

J =

(
I
0

)
, J ′ =

(
I′

0

)
, J ′′ =

(
I′′

0

)
.

Then, we denote by M̂ the matrix (FJ | J ′G′ | J ′′).

Theorem 1 Let Γ be even and ∆ be odd, and let the matrix M̂ be constructed as

above. The set C = {c ∈ Z
2m∗

4 ×Z
2n′∗

2 ×Z
n′′

4 | M̂cT = 0
T
} is an additive 1-perfect

code in the Doob graph D(m,n′ + n′′).

Proof Similarly to the proof of Proposition 1, we assume that the syndrome has

the form of

(
ǫ
ε

)
with ǫT ∈ Z

∆
4 and εT ∈ 2ZΓ

2 .

Since (I|I′|I′′) is a check matrix of a 1-perfect code, the case ε = 0
T
is covered

by the columns of J , J ′, J ′′.
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If ε is nonzero, then it is uniquely represented as ai, bi, or ci for some i from

1 to 2Γ
−1
3 . Depending on ε = ai, ε = bi, or ε = ci, we divide ǫ by γ, δ, or γ + δ,

and obtain uj for some j from 1 to 4∆. So, the syndrome has the form

(
ujγ

ai

)
,

(
ujδ

bi

)
, or

(
ujγ + ujδ

ai + bi

)
. If j ≤ l

2 , then the syndrome is covered by the pair of

columns

(
ujγ ujδ
ai bi

)
of Fi. If

l
2 < j ≤ l, then the syndrome is covered by the pair

of columns

(
ul+1−jγ ul+1−jδ

ai bi

)
of Fi. If j > l, then the syndrome is covered by

the pair of columns

(
1
2ujγ

1
2ujδ

1
2ai

1
2bi

)
of G′

i. By numerical reasons, every syndrome

is covered exactly once. Thus, the proof is completed. ⊓⊔

Corollary 1 For every m, n′ and n′′ satisfying the statement of Lemma 2 with
odd ∆, there is a 1-perfect code in Z

2m
4 × Z

2n′

2 × Z
n′′

4 with D(m,n′ + n′′)-metric.

Combining with Lemmas 2 and 3, we get necessary and sufficient conditions
of the existence of additive 1-perfect codes in D(m,n′ + n′′).

Theorem 2 Additive 1-perfect codes in Z
2m
4 × Z

2n′

2 × Z
n′′

4 with D(m,n′ + n′′)-
metric exist if and only if m, n′ and n′′ satisfy (1–3) for some nonnegative integer
Γ and ∆.

In addition, we note that (1–3) imply Γ is even and ∆ 6= 1. Moreover, ∆ = 0
implies that m = n′′ = 0; in this case D(m,n′ + n′′) is a Hamming graph, not a
Doob graph.

4. Quasi-cyclic 1-perfect codes

Two codes C1 and C2 in a graph are equivalent if there is an automorphism of the
graph that sends C1 to C2.

In this section, we list three quasi-cyclic 1-perfect codes. For each of these codes,
we describe a check matrix whose columns are defined in terms of a primitive root
ξ ∈ (GR)(4∆) of an irreducible polynomial of order ∆, (∆ = 3, 5, 7) over Z4.
In each case, multiplication of the columns by ξ is equivalent to a coordinate
permutation consisting of (2m + n′′)/(2∆ − 1) cycles of order 2∆ − 1. It follows
that such permutation stabilizes the code, and the code is quasi-cyclic. In the end
of this section, we prove that each of these three codes is not equivalent to any of
the codes constructed in Section 3.

4.1. The 1-perfect code in D(7, 0 + 7) (the case Γ = 0, ∆ = 3)

Let ξ ∈ GR(43) be a primitive root of the basic irreducible polynomial x3 +2x2 +
x + 3 over Z4. The check matrix of the quasi-cyclic 1-perfect code in D(7, 0 + 7)
constructed in [6] consists of the pairs of columns ξi + 2ξi+2, ξi+1 + 2ξi+5 in the
left part and the columns ξi in the right part, i = 0, 1, 2, 3, 4, 5, 6.
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4.2. A 1-perfect code in D(155, 0+ 31) (the case Γ = 0, ∆ = 5)

Proposition 3 Let ξ be a primitive root of the basic irreducible polynomial x5 +
3x2+2x+3 over Z4. Let H be the 5×341 matrix over Z4 consisting of 155 = 31 ·5

pairs of columns ξ2
l(i+1) + 2ξ2

l(i+2), ξ2
l(i+2) + 2ξ2

l(i+5) with l = 1, 2, 3, 4, 5, i =
0, 1, 2, . . . , 30 in the left part and 31 columns ξi, i = 0, 1, 2, . . . , 30, in the right part.
The code C defined by the check matrix H is a 1-perfect code in D(155,0 + 31).

Proof To check whether C is a 1-perfect code in D(155,0 + 31), we need to verify
that all syndromes in Z

5
4 are covered by coordinates of H. Identify the elements

of Z5
4 with the elements in GR(45). Since ξ is a primitive root of the polynomial

x5 + 3x2 + 2x+ 3, we have GR(45) = T ⊕ 2T with T = {0, 1, ξ, ξ2, . . . , ξ2
5
−2}. It

is sufficient to show that ξi, 2ξi, ξi +2ξj with i, j ∈ {0, 1, 2, . . . , 30} are covered by
coordinates of H.

Firstly, put c = ξi+1 + 2ξi+2 and c′ = ξi+2 + 2ξi+5. By calculating, we get

−c = ξi+1 + 2ξi+19, −c′ = ξi+2 + 2ξi+31,

c+ c′ = ξi+19 + 2ξi+30, −(c+ c′) = ξi+19 + 2ξi+38.

Then, we list cyclotomic cosets 2x modulo 31 with x = 1, 2, . . . , 30 as follows:

S1 = {1, 2, 3, 8, 16}, S2 = {3, 6, 12, 24, 17}, S3 = {5, 10, 20, 9, 18},
S4 = {7, 14, 28, 25, 19}, S5 = {11, 22, 13, 26, 21}, S6 = {15,30, 29, 27, 23}.

Note that the difference b−a of power of two terms (ξa and 2ξb) of the 6 elements
±c, ±c′, ±(c+ c′) are exactly 1 ∈ S1, 3 ∈ S2, 18 ∈ S3, 19 ∈ S4, 11 ∈ S5, 29 ∈ S6.

Let f be the automorphism of GR(45) defined in Subsection 2.1, then f l is also

automorphism. Let f l(c) = ξ2
l(i+1)+2ξ2

l(i+2) and f l(c′) = ξ2
l(i+2)+2ξ2

l(i+5) be
pairs of H over Z4, where l = 0, 1, 2, 3, 4. Since f l is a homomorphism, we have

f l(c) + f l(c′) = f l(c+ c′) = ξ2
l(i+19) + 2ξ2

l(i+30),

−f l(c) = f l(−c) = ξ2
l(i+1) + 2ξ2

l(i+19),

−f l(c′) = f l(−c′) = ξ2
l(i+2) + 2ξ2

l(i+31),

−(f l(c) + f l(c′)) = f l(−c) + f l(−c′) = f l(−(c+ c′)) = ξ2
l(i+19) + 2ξ2

l(i+38).

It is easy to see that 2l ·1 ∈ S1, 2
l ·3 ∈ S2, 2

l ·18 ∈ S3, 2
l ·19 ∈ S4, 2

l ·11 ∈ S5,
2l · 29 ∈ S6. More precisely, S1 = {2l · 1}, S2 = {2l · 3}, S3 = {2l · 5}, S4 = {2l · 7},
S5 = {2l ·11}, S6 = {2l·15} with l = 1, 2, 3, 4, 5. It could be found that f l(c), f l(c′),
−f l(c), −f l(c′), f l(c) + f l(c′), −(f l(c) + f l(c′)) are distinct when l run through
1, 2, 3, 4, 5 and i run through 0, 1, 2, . . . , 30. It is not difficult to find that ξi + 2ξj

are covered by coordinates of the first part of H, where i 6= j. The syndromes ξi,
2ξi, ξi + 2ξi are covered by coordinates of the second part of H. ⊓⊔

Remark 2 Note that 155 = 31 × 5 × 1. And the size of every nonzero cyclotomic
coset is 5 since 5 is a prime. On the other hand, 30 = 5× 6× 1. That means once
we find a pair in the form of ξu1 + 2ξu2 , ξu3 + 2ξu4 and the sum of the pair is
ξu5 + 2ξu6 , and the opposites of the pair are respectively ξu7 + 2ξu8 , ξu9 + 2ξu10 ,
and the opposite of the sum of the pair is ξu11 +2ξu12 such that u2s − u2s−1 with
s = 1, 2, · · · , 6 exactly belong to six different cyclotomic cosets, respectively, then
the check matrix is clear by the automorphism of GR(45).
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4.3. A 1-perfect code in D(2667, 0 + 127) (the case
Γ = 0,∆ = 7)

Proposition 4 Let ξ be a primitive root of the basic irreducible polynomial x7 +
2x4 + x + 3 over Z4. Let H be a matrix which consists of 2667 = 127 × 21

pairs of columns (ξ2
li + 2ξ2

l(i+2), ξ2
l(i+2) + 2ξ2

l(i+7)), (ξ2
li + 2ξ2

l(i+4), ξ2
l(i+2) +

2ξ2
l(i+17)), and (ξ2

li + 2ξ2
l(i+10), ξ2

l(i+2) + 2ξ2
l(i+57)) with i = 0, 1, 2, . . . , 126

and l = 0, 1, 2, 3, 4, 5, 6 in the left part and 127 columns ξi, i = 0, 1, 2, . . . , 126, in
the right part. The code C defined by the check matrix H is a 1-perfect code in
D(2667,0 + 127).

Proof The approach is the same as in the previous subsection. We outline the
expression as follows. Since ξ is a primitive root of the basic irreducible poly-
nomial x7 + 2x4 + x + 3 over Z4, we obtain that GR(47) = T ⊕ 2T with T =

{0, 1, ξ, ξ2, . . . , ξ2
7
−2}. Note that the size of every nonzero cyclotomic coset is 7

since 7 is a prime and 2667 = 127× 21 = 127× 7× 3, 27 − 2 = 7× 18 = 7× 6× 3.
It is sufficient to find coordinates of three pairs covering ξv2i−1 + 2ξv2i with
i = 1, 2, · · · , 18 such that v2i − v2i−1 exactly belong to 18 distinct cyclotomic
coset.

In detail, we choose some c and c′, as in the table below.

c c′ −c −c′ c+ c′ −(c+ c′)

ξi+1 + 2ξi+2 ξi+2 + 2ξi+7 ξi+1 + 2ξi+8 ξi+2 + 2ξi+56 ξi+8 + 2ξi+19 ξi+8 + 2ξi+95

ξi+1 + 2ξi+4 ξi+2 + 2ξi+17 ξi+1 + 2ξi+64 ξi+2 + 2ξi+33 ξi+8 + 2ξi+58 ξi+8 + 2ξi+91

ξi+1 + 2ξi+10 ξi+2 + 2ξi+57 ξi+1 + 2ξi+91 ξi+2 + 2ξi+15 ξi+8 + 2ξi+109 ξi+8 + 2ξi+92

Note that 1, 5, 7, 54, 11, 87, 3, 15, 63, 31, 50, 83, 9, 55, 90, 13, 101, 84 exactly
belong to 18 distinct cyclotomic cosets. Then by the automorphism of GR(47) we
naturally prove the statement. ⊓⊔

4.4. Nonequivalence

Proposition 5 Each of the three quasi-cyclic codes in D(7, 0+7), D(155,0+31),
D(2667,0+127) is not equivalent to the codes constructed in Section 3.3, with the
corresponding parameters.

Proof Let us consider a quasi-cyclic code C in (m, 0 + n′′), one of the three codes
considered above, and a code C ′ with the same parameters constructed in Sub-
section 3.3.1 or Subsection 3.3.2. We first show that C has only n′′(n′′ − 1)/6
codewords of weight 3 that have zeros in the first m coordinates, while C ′ has
more than n′′(n′′ − 1)/6. Both codes have n′′(n′′ − 1)/6 order-2 codewords of
weight 3 with 0s in the first part of coordinates (indeed, since the syndromes of
order 2 are covered by the last part of coordinates, the columns in the last part
multiplied by 2 are the all n′′ columns of order 2; there are exactly n′′(n′′ − 1)/6
triples of linearly dependent columns of order 2). The quasi-cyclic code C have no
codewords of weight 3 by [[8], Proposition 9.8] (this is also straightforward from
the code distance of the “Preparata” codes constructed in [2]), while C ′, by con-
struction, has columns a, b, a+ b in the last part of the check matrix, which were
added as in Section 3.3.
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Next, we consider an automorphism φ of the Doob graph D(m,n′′) that sends
C to C ′. Without loss of generality, we can assume that φ(0) = 0 (otherwise,
we consider the automorphism φ′(·) = φ(·) − φ(0), which also sends C to C ′ =
C ′ − φ(0)). It is easy to understand that any automorphism φ such that φ(0) = 0
stabilizes the subgraph isomorphic to D(0, n′′) spanned by the last n′′ coordinates
(in particular, this subgraph contains all cliques of size 4 containing 0). This means
that the number of weight-3 codewords in this subgraph is invariant for equivalent
codes. Hence, C and C ′ are not equivalent. ⊓⊔

5. Conclusion and open problems

In this paper, we prove that the condition on the existence of additive perfect
codes in Doob graphs given in [6] is necessary and sufficient by constructing the
check matrix of 1-perfect code in D(m,n′ + n′′), where m, n′, n′′ satisfy the
conditions (1–3) in Lemma 2 with Γ even and ∆ odd and basing on some known
results in [6]. Meanwhile, we construct three quasi-cyclic additive 1-perfect codes

in D((2∆−1) 2
∆
−2
6 , 0+(2∆−1)) in the case of Γ = 0 and ∆ = 3, 5, 7, respectively.

Constructing such class of 1-perfect codes replies on a large number of calculations
with increasing Γ and ∆. If some generalized approach could be proposed, it will
be more meaningful.

1. A natural question is: does there exist a 1-perfect quasi-cyclic code of index

2∆ − 1 in D((2∆ − 1) 2
∆
−2
6 , 0 + (2∆ − 1)) for all odd prime ∆, even for all odd

∆? A similar question was considered in [1] for Z2Z4-cyclic 1-perfect codes,
which are also additive codes over the mixed Z2Z4 alphabet, but with the Lee
metric.

2. In Section 4.4, we established that there are at least two nonequivalent additive
1-perfect codes for each of the parameters (7, 0+7), (155,0+31), (2667,0+127).
It is expected that there are much more equivalence classes for these and other
admissible parameters. In particular, we were able to find another additive 1-
perfect code in D(7, 0+7), different from the codes described in Sections 3.3.1
and 4.1: 


1 0 2 2 0 1 1 1 3 2 1 2 1 1 1 0 0 3 0 1 1
0 1 1 0 2 2 1 2 1 1 3 2 1 0 0 1 0 1 3 2 1
2 2 0 1 1 0 3 2 1 2 1 1 2 3 0 0 1 0 1 1 1


 .

A natural question is: how many nonequivalent additive 1-perfect codes are
there inD(m,n′+n′′) for any admissiblem, n′, n′′, in particular, inD(7, 0+7)?
Note that even in the case of D(0, 0 + n), i.e., in the quaternary Hamming
graph, the question is not easy: the existence on non-equivalent additive codes
is connected with the existence on non-equivalent partitions of the additive
group Z

2n+
2 into subgroups isomorphic to Z

2+
2 [4].

Remark 3 In our final remark, we briefly consider the codes dual to the additive
1-perfect codes. In the case of the Hamming graphs H(n, q) (including D(0, n) =
H(n, 4)), such codes, known as simplex codes, have the cardinality n(q − 1) + 1
and the distance (n(q − 1) + 1)/q between any two different codewords. In an
alternative notion, such objects are also known as tight 2-designs. As described
in [5], the codes dual to the additive 1-perfect codes in D(m,n) are also tight
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2-designs in the graph D∗ dual to D(m,n). This graph is built on the same group
and has the same distance-regular parameters as D(m,n). So, D∗ is isomorphic
to D(M,N) for some M and N such that 2M +N = 2m+ n. It is expected that
(M,N) = (m,n); however, establishing the isomorphism needs some technique
and goes beyond the scope of the current research. So, our results imply (assuming
(M,N) = (m,n) is true) the existence of the additive tight 2-designs in D(m,n)
for the same n and m for which additive 1-perfect codes are constructed, but the
check matrix of an additive 1-perfect code is not in general a generator matrix of
a tight 2-design in the same graph.

Acknowledgements The authors thank Tatsuro Ito, Jack Koolen, and Patrick Solé for the
consulting concerning the last remark and the anonymous referees for useful comments.
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