New Lower Bounds for Permutation Arrays Using Contraction

Sergey Bereg * Zevi Miller ${ }^{\dagger}$ Luis Gerardo Mojica * Linda Morales * I.H. Sudborough*

August 28, 2018

Abstract

A permutation array A is a set of permutations on a finite set Ω, say of size n. Given distinct permutations $\pi, \sigma \in \Omega$, we let $h d(\pi, \sigma)=|\{x \in \Omega: \pi(x) \neq \sigma(x)\}|$, called the Hamming distance between π and σ. Now let $h d(A)=\min \{h d(\pi, \sigma): \pi, \sigma \in A\}$. For positive integers n and d with $d \leq n$, we let $M(n, d)$ be the maximum number of permutations in any array A satisfying $h d(A) \geq d$. There is an extensive literature on the function $M(n, d)$, motivated in part by suggested applications to error correcting codes for message transmission over power lines.

A basic fact is that if a permutation group G is sharply k-transitive on a set of size $n \geq k$, then $M(n, n-k+1)=|G|$. Motivated by this we consider the permutation groups $A G L(1, q)$ and $P G L(2, q)$ acting sharply 2-transitively on $G F(q)$ and sharply 3-transitively on $G F(q) \cup\{\infty\}$ respectively. Applying a contraction operation to these groups, we obtain the following new lower bounds for prime powers q satisfying $q \equiv 1(\bmod 3)$.

1. $M(q-1, q-3) \geq\left(q^{2}-1\right) / 2$ for q odd, $q \geq 7$,
2. $M(q-1, q-3) \geq(q-1)(q+2) / 3$ for q even, $q \geq 8$,
3. $M(q, q-3) \geq K q^{2} \log q$ for some constant K if q is odd, $q \geq 13$.

These results resolve a case left open in a previous paper [2], where it was shown that $M(q-1, q-3) \geq q^{2}-q$ and $M(q, q-3) \geq q^{3}-q$ for all prime powers q such that $q \not \equiv 1(\bmod$ $3)$. We also obtain lower bounds for $M(n, d)$ for a finite number of exceptional pairs n, d, by applying this contraction operation to the sharply 4 and 5 -transitive Mathieu groups.

1 Introduction

1.1 Notation and General Background

We consider permutations on a set Ω of size n. Given two such permutations π and σ, we let $h d(\pi, \sigma)=|\{x \in \Omega: \pi(x) \neq \sigma(x)\}|$, so $h d(\pi, \sigma)$ is the number of elements of Ω at which π and σ disagree. When $h d(\pi, \sigma)=d$, we say that π and σ and are at Hamming distance d, or that the Hamming distance between π and σ is d. A permutation array A is a set of permutations on Ω. We say that $h d(A)=d$ if $d=\min \{h d(\pi, \sigma): \pi, \sigma \in A\}$. For positive integers n and d

[^0]with $d \leq n$ we let $M(n, d)$ be the maximum number of permutations in any permutation array A satisfying $h d(A) \geq d$.

Consider a fixed ordering $x_{1}, x_{2}, \cdots, x_{n}$ of the elements of Ω. The image string of the permutation $\sigma \in A$ is the string $\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \cdots \sigma\left(x_{n}\right)$. Thus the permutation array A can also be regarded as an $|A| \times n$ matrix whose rows are the image strings of the permutations in A. When $h d(A)=d$, any two rows of A disagree in at least d positions and some pair of rows disagree in exactly d positions. In particular, if G is a permutation group acting on Ω, then we obtain a $|G| \times n$ permutation array whose rows consist of the mage strings of all the elements of G. We refer to this array by G, and we use $h d(G)$ to refer to the hamming distance of this array.

The study of permutation arrays began (to our knowledge) with the papers [9] and [13], where good bounds on $M(n, d)$ (together with other results) were developed based on combinatorial methods, motivated by the Gilbert-Varshamov bounds for binary codes. In recent years there has been renewed interest in permutation arrays, motivated by suggested applications in power line transmission [12], [20], [28], [15], block ciphers [27], and in multilevel flash memories [17] and 18].

We review here some of the known results and methods for estimating $M(n, d)$.
Some elementary exact values and bounds on $M(n, d)$ are the following (summarized with short proofs in [8] $; M(n, 2)=n!, M(n, 3)=\frac{n!}{2}, M(n, n)=n, M(n, d) \geq M(n-1, d)$, $M(n, d) \geq M(n, d+1), M(n, d) \leq n M(n-1, d)$, and $M(n, d) \leq \frac{n!}{(d-1)!}$. More sophisticated bounds were developed in the above cited papers [9] and [13], with a recent improvement in [29]. The smallest interesting case for d is $d=4$. Here some interesting and non-elementary bounds for $M(n, 4)$ were developed in [11], using linear programming, characters on the symmetric group S_{n}, and Young diagrams. In [19] it is shown that if $K>0$ is a constant with $n>e^{30 / K^{2}}$ and $s<n^{1-K}$, then $M(n, n-s) \geq \theta(s!\sqrt{\log n})$. The lower bound is achieved by a polynomial time randomized construction, using the Lovasz Local Lemma in the analysis.

There are various construction methods for permutation arrays. First there is a connection with mutually orthogonal latin squares (MOLS). It was shown in [7] that if there are m MOLS of order n, then $M(n, n-1) \geq m n$. From this it follows that if q is a prime power, then $M(q, q-1)=q(q-1)$. Computational approaches for bounding $M(n, d)$ for small n and d, including clique search, and the use of automorphisms are described in [8], [16], and [23]. There are also constructions of permutation arrays that arise from the use of permutation polynomials, also surveyed in [8, which we mention briefly below.

Additional construction methods are coset search [2] and partition and extension [3]. In the first of these, one starts with with a permutation group G on n letters with $h d(G)=d$, and which is a subgroup of some group H (for example $H=S_{n}$). Now for disjoint permutation arrays A, B on the same set of letters, let $h d(A, B)=\min \{h d(\sigma, \tau): \sigma \in A, \tau \in B\}$. For $x \notin G$ we observe that the coset $x G$ of G in H is a permutation array with $h d(x G)=h d(G)$. For cosets $x_{1} G, x_{1} G, \cdots, x_{k} G$ of G, the Hamming distance of the permutation array $\cup_{1 \leq i \leq k} x_{i} G$ is the minimum of d and m, where $m=\min \left\{h d\left(x_{i} G, x_{j} G\right): 1 \leq i<j \leq k\right\}$. The method of coset search is to iteratively find coset representatives x_{i} so that m, while in general less than d, is still reasonably large. The partition and extension method is a way of obtaining constructive lower bounds $M(n+1, d+1)$ from such bounds for $M(n, d)$.

Moving closer to the subject of this paper, we consider a class of optimal constructions which arise through sharply transitive groups. We say that a permutation array A on a set Ω of size n is sharply k-transitive on Ω if given any two k-tuples $x_{1}, x_{2}, \cdots, x_{k}$ and $y_{1}, y_{2}, \cdots, y_{k}$ of distinct elements of Ω there exists a unique $g \in A$ such that $g\left(x_{i}\right)=y_{i}$ for all $1 \leq i \leq k$. In our applications A will be the set of image strings of a permutation group acting on Ω. From the bound $M(n, d) \leq \frac{n!}{(d-1)!}$ we have for any positive integer k that $M(n, n-k+1) \leq \frac{n!}{(n-k)!}$.

Now if G is a sharply k-transitive group acting on Ω, then $|G|=\frac{n!}{(n-k)!}$. Also, in such a G any two distinct elements g, h of G can agree in at most $k-1$ positions, since otherwise $g h^{-1}$ is a nonidentity element of G fixing at least k elements of Ω, contrary to sharp k-transitivity. Thus $h d(G) \geq n-k+1$. So a sharply k-transitive group G implies the existence of an optimal array (the set of image strings of elements of G) realizing $M(n, n-k+1)=\frac{n!}{(n-k)!}$. The following theorem gives a strong converse to the above, including the generalization to arbitrary arrays that may not be groups.

Theorem 1 [4] Let A be a permutation array on a set of n letters satisfying $h d(A) \geq n-k+1$. Then $|A|=\frac{n!}{(n-k)!}=M(n, n-k+1) \Longleftrightarrow A$ is sharply k-transitive on this set.

The sharply k-transitive groups (for $k \geq 2$) are known, and these are as follows [6], [10], [22]; $k=2$: the Affine General Linear Group $\operatorname{AGL}(1, q)$ acting on the finite field $G F(q)$, consisting of the transformations $\{x \rightarrow a x+b: x, a \neq 0, b \in G F(q)\}$,
$k=3$: the Projective Linear Group $\operatorname{PGL}(2, q)$ acting on $G F(q) \cup\{\infty\}$, consisting of the transformations $\left\{x \rightarrow \frac{a x+b}{c x+d}: x, a, b, c, d \in G F(q), a d-b c \neq 0\right\}$,
$k=4$: the Mathieu group M_{11} acting on a set of size 11,
$k=5$: the Mathieu group M_{12} acting on a set of size 12,
arbitrary k : the symmetric group S_{k} acting on a set of size k is sharply k and $(k-1)$-transitive, as well as the alternating group A_{k} acting on a set of size k is sharply $(k-2)$-transitive ([22], Theorem 7.1.4).

In this paper we obtain new lower bounds on $M(n, d)$ for n and d near a prime power. Previous results of this kind are given in [8] where it is shown that for $n=2^{k}$ with $n \not \equiv 1(\bmod$ 3) we have $M(n, n-3) \geq(n+2) n(n-1)$ and $M(n, n-4) \geq \frac{1}{3} n(n-1)\left(n^{2}+3 n+8\right)$. It is also shown that for any prime power n with $n \not \equiv 2(\bmod 3)$ we have $M(n, n-2) \geq n^{2}$. These results are based on permutation polynomials. Similar such results appearing in [2], are based on a contraction operation applied to permutation arrays defined in the next section. The latter results yield $M(n-1, n-3) \geq n^{2}-1$ when $n \not \equiv 1(\bmod 3)$, and $M(n-2, n-5) \geq n(n-1)$ when $n \not \equiv 2(\bmod 3)$ and $n \not \equiv 0,1(\bmod 5)$.

Our goal is to obtain new lower bounds when q is prime power satisfying $q \equiv 1(\bmod 3)$; that is, to resolve the case left open in [2] where the methods of that paper do not apply. For such q, we accomplish this by applying the contraction operation to the permutation arrays $A G L(1, q)$ and $P G L(2, q)$ (acting on $G F(q)$ and on $G F(q) \cup\{\infty\}$ respectively), obtaining the following constructive lower bounds.

1. for $q \geq 7, M(q-1, q-3) \geq\left(q^{2}-1\right) / 2$ for q odd and $M(q-1, q-3) \geq(q-1)(q+2) / 3$ for q even, and
2. for $q \geq 13, M(q, q-3) \geq K q^{2} \log q$ for some constant K if q is odd, and
3. bounds for $M(n, d)$ for a finite number of exceptional pairs n, d, obtained from the Mathieu groups.

We will use standard graph theoretic notation. In particular for a graph G and $S \subseteq V(G)$ we let $[S]_{G}$ be the graph with vertex set S and edge set $E\left([S]_{G}\right)=\{x y: x, y \in S, x y \in E(G)\}$, and we call it the graph induced by S. When G is understood by context, we abbreviate $[S]_{G}$ by $[S]$.

1.2 Contraction and the Contraction Graph

Consider a permutation array A acting on a set $\Omega=\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ of size n, where the elements of Ω are ordered by their subscripts. We distinguish some element, say x_{n}, by renaming it F.

Thus the image string of any element $\sigma \in A$ will be $\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \cdots \sigma(F)$, and we say that $\sigma\left(x_{i}\right)$ occurs in position or coordinate x_{i} of the string. Now for any $\pi \in A$, define the permutation π^{\triangle} on Ω by

$$
\pi^{\triangle}(x)= \begin{cases}\pi(F) & \text { if } x=\pi^{-1}(F) \\ F & \text { if } x=F \\ \pi(x) & \text { otherwise }\end{cases}
$$

Thus the image string of π^{\triangle} is obtained from the image string of π by interchanging the symbols F and $\pi(F)$ if $\pi(F) \neq F$, while $\pi^{\triangle}=\pi$ if and only if $\pi(F)=F$. In either case, π^{\triangle} has F as its final symbol. We let π_{-}^{\triangle} be the permutation on $n-1$ symbols obtained from π^{\triangle} by dropping the last symbol F from π^{\triangle}. As an example, if $\pi=a F b c d$, then $\pi^{\triangle}=a d b c F$, and $\pi_{-}^{\triangle}=a d b c$. We call the operation $\pi \rightarrow \pi_{-}^{\triangle}$ contraction, and we call π_{-}^{\triangle} the contraction of the permutation π. Further, for any subset $R \subset A$, let $R^{\triangle}=\left\{\pi^{\triangle}: \pi \in R\right\}$, and $R_{-}^{\triangle}=\left\{\pi_{-}^{\triangle}: \pi \in R\right\}$. So R_{-}^{\triangle} is a permutation array on the symbol set $\Omega-\{F\}$ of size $n-1$, and is called the contraction of R.

We note some basic properties related to the contraction operation.
Lemma 2 Let G be a permutation group acting on the set Ω of size n, and let $\pi, \sigma \in G$.
a) The only coordinates in either π or σ whose values are affected by the \triangle operation are $\pi^{-1}(F), \sigma^{-1}(F)$, and F. Thus $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right) \geq h d(\pi, \sigma)-3$.
b) Assume $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$. Then $\pi \sigma^{-1}$ contains a 3-cycle in its disjoint cycle factorization, and $|G|$ is divisible by 3.
c) Let $S \subseteq G$. Then $\left|S^{\triangle}\right|=\left|S_{-}^{\triangle}\right|$ and $h d\left(S^{\triangle}\right)=h d\left(S_{-}^{\triangle}\right)$. If also $h d(S)>3$, then $|S|=\left|S^{\triangle}\right|$.

Proof. Part a) follows immediately from the definition of the \triangle operation.
For b), the assumption implies that there are positions x_{i}, x_{j}, F at which the image strings of π and σ disagree and π^{\triangle} and σ^{\triangle} agree. So for some indices s, t we must have $\pi\left(x_{i}\right)=$ $x_{s}, \pi\left(x_{j}\right)=F, \pi(F)=x_{t}$, while $\sigma\left(x_{i}\right)=F, \sigma\left(x_{j}\right)=x_{t}, \sigma(F)=x_{s}$. Then $\pi \sigma^{-1}$ (composing left to right) contains the 3 -cycle $\left(x_{i}, F, x_{j}\right)$ in its disjoint cycle factorization. Thus the subgroup of G generated by $\pi \sigma^{-1}$ has order divisible by 3, and hence $|G|$ is divisible by 3 by Lagrange's theorem.

Consider c). The first two equalities follow from the fact that all image strings in S^{\triangle} have F as their last coordinate. To see $|S|=\left|S^{\Delta}\right|$ when $h d(S)>3$, suppose to the contrary that $\pi^{\triangle}=\sigma^{\triangle}$ for distinct $\pi, \sigma \in S$. As noted in the proof of part a), π^{\triangle} and σ^{\triangle} can agree in at most three positions where π and σ disagreed. Thus π and σ already agreed in at least $n-3$ positions. So $h d(\pi, \sigma) \leq 3$, a contradiction.

Consider a permutation array H on n symbols with $h d(H)=d$. The array H_{-}^{\triangle} is on $n-1$ symbols and satisfes $h d\left(H_{-}^{\triangle}\right) \geq d-3$ by Lemma 2 a,c. For the arrays $H=A G L(1, q), P G L(2, q)$ and certain Mathieu groups, our goal is to find a subset $I \subset H$ with $h d\left(I_{-}^{\triangle}\right) \geq d-2$; that is, a subset I whose contraction I_{-}^{\triangle} has Hamming distance larger by 1 than the lower bound $d-3$ for $h d\left(H_{-}^{\triangle}\right)$ given by Lemma 2 a . The lower bound $M(n-1, d-2) \geq\left|I_{-}^{\triangle}\right|$ follows. Now our underlying arrays H will satisfy $h d(H)>3$, so $h d(I) \geq h d(H)>3$. Thus by Lemma 2 c c we have $h d\left(I_{-}^{\triangle}\right)=h d\left(I^{\triangle}\right)$ and $\left|I_{-}^{\triangle}\right|=\left|I^{\triangle}\right|=|I|$. So we get $M(n-1, d-2) \geq|I|$, yielding the main results of this paper.

To find such a subset I of H, we employ a graph C_{H} defined as follows.

Definition 3 Let H be a permutation array with $h d(H)=d$. Define the contraction graph for H, denoted C_{H}, by $V\left(C_{H}\right)=H$ and $E\left(C_{H}\right)=\left\{\pi \sigma: \pi, \sigma \in H, h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=d-3\right\}$.

For $\pi \in C_{H}$, notice that if $\pi(F)=F$, then π is an isolated point in C_{H}. This is because then $\pi^{\triangle}=\pi$, so that for any other $\sigma \in C_{H}$ we have $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d\left(\pi, \sigma^{\triangle}\right) \geq h d(\pi, \sigma)-2$, implying no edge joining π and σ in C_{H}. We thus have the following characterization of edges in C_{H} :

$$
\begin{equation*}
\pi \sigma \in E\left(C_{H}\right) \Longleftrightarrow\left\{\pi(F) \neq F, \sigma(F) \neq F, \sigma\left(\pi^{-1}(F)\right)=\pi(F), \pi\left(\sigma^{-1}(F)\right)=\sigma(F)\right\} \tag{1}
\end{equation*}
$$

This condition on edges is illustrated in Figure 1.

Figure 1: Neighbors π, σ in $C_{H} ; \sigma\left(\pi^{-1}(F)\right)=\pi(F)$, and $\pi\left(\sigma^{-1}(F)\right)=\sigma(F)$
Since $h d\left(H^{\triangle}\right) \geq d-3$ by Lemma 2 a , it follows that any independent set I of vertices in C_{H} must satisfy $h d\left(I^{\triangle}\right) \geq d-2$. Now by using Lemma 2 a,c (together with $h d(H)>3$ for our arrays $H)$ get $M(n-1, d-2) \geq|I|$ as explained in the preceding paragraph. We are thus reduced to finding a large independent set in C_{H} for each of the arrays $H=A G L(1, q), P G L(2, q)$, and Mathieu groups considered in this paper.

2 The contraction graph for $\operatorname{AGL}(1, q)$

Let q be a prime power. Recall the Affine General Linear Group $A G L(1, q)$ acting as a permutation group on the finite field $G F(q)$ of size q, as the set of transformations $\{x \rightarrow a x+b: a \neq$ $0, x, b \in G F(q)\}$ under the binary operation of composition. For any $\pi \in A G L(1, q)$ the permutation π^{\triangle} on $G F(q)$ is defined as in the previous section, based on some ordering $x_{1}, x_{2}, \cdots, x_{q}$ of the elements of $G F(q)$, where $F=x_{q}$ is a distinguished element. Clearly $|A G L(1, q)|=q(q-1)$. By standard facts $A G L(1, q)$ is sharply 2-transitive in this action, and it is straightforward to see that $h d(A G L(1, q))=q-1$ (see Lemma 4 for most of that short proof).

Our goal in this section is to obtain a lower bound on $M(q-1, q-3)$ for prime powers $q \geq 7$ satisfying $q \equiv 1(\bmod 3)$. Our method will involve the contraction graph $C_{A G L(1, q)}$ for $A G L(1, q)$, which we henceforth abbreviate by $C_{A}(q)$.

By definition we then have $V\left(C_{A}(q)\right)=A G L(1, q)$, and $E\left(C_{A}(q)\right)=\left\{\pi \sigma: h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=\right.$ $q-4\}$. Following the plan described in the previous section, we find an independent set I in $C_{A}(q)$. Once we have such an I, then I_{-}^{\triangle} is a permutation array on $q-1$ symbols, and by Lemma 2. satisfies $h d\left(I_{-}^{\triangle}\right)=h d\left(I^{\triangle}\right) \geq q-3$. This implies the lower bound $M(q-1, q-3) \geq$ $\left|I_{-}^{\triangle}\right|=\left|I^{\triangle}\right|=|I|$, the last equality by Lemma 2 , since $q \geq 7$ implies $h d(I) \geq q-1>3$. The actual size of I will then yield our precise lower bound.

We are thus reduced to finding a large independent set I in $C_{A}(q)$, and from this we get the bound $M(q-1, q-3) \geq|I|$. We begin on that in the following Lemma, which establishes relations in the the finite field $G F(q)$ that correspond to edges in the graph $C_{A}(q)$.

Lemma 4 Let π and σ be vertices of the graph $C_{A}(q), q \equiv 1(\bmod 3)$, say with $\sigma(x)=a x+r$ and $\pi(x)=b x+s$.
a) If $a \neq b$, then $h d(\pi, \sigma)=q-1$.
b) If $\pi(F)=F$, then π is an isolated point in $C_{A}(q)$. There are $q-1$ points π satisfying $\pi(F)=F$.
c) Suppose π and σ are neighbors in $C_{A}(q)$. Then
c1) $h d(\pi, \sigma)=q-1$, and $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$, and
c2) $\frac{a}{b}$ and $\frac{b}{a}$ are the distinct roots of the quadratic $t^{2}+t+1=0$ over $\operatorname{GF}(q)$.
Proof. For a), just observe that $\pi(x)=\sigma(x)$ has the unique solution $x=\frac{s-r}{a-b}$.
For the first claim in b) suppose not, and let σ be a neighbor of π in $C_{A}(q)$. Then we have $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=q-4$, implying also that $h d(\pi, \sigma)=q-1$ by Lemma 2 a. Let i be the coordinate of agreement between π and σ. Since $\pi(F)=F$, we have $\pi^{\triangle}=\pi$. Thus $h d\left(\pi, \sigma^{\triangle}\right)=q-4$. Now σ^{\triangle} can have at most two coordinates, apart from i, in which it agrees with π, these being F and $j=\sigma^{-1}(F)$. So altogether π and σ^{\triangle} agree in at most the 3 coordinates i, j, F. So $q-4=h d\left(\pi, \sigma^{\triangle}\right) \geq q-3$, a contradiction.

Now consider the second claim in b). For any fixed $i \in G F(q), i \neq F$
Since $\pi(F)=F$, we have $q-1$ choices for the value $\pi(i)$ for any fixed $i \in G F(q), i \neq F$. Hence there are $q-1$ choices for the ordered pair $(\pi(F)(=F), \pi(i))$, each such choice determining π uniquely by the sharp 2-transitivity of $A G L(1, q)$ acting on $G F(q)$. The claim follows.

For c1), by the definition of edges in $C_{A}(q)$ we have $q-4=h d\left(\pi^{\triangle}, \sigma^{\triangle}\right) \geq h d(\pi, \sigma)-3$ using Lemma 2a. Since $h d(\pi, \sigma)=q$ or $q-1$, it follows that $h d(\pi, \sigma)=q-1$ and we have equality throughout, as required.

Consider c2). By part c1) we have $h d(\pi, \sigma)=q-1$ and $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$. So there are distinct $\alpha, \beta \in G F(q)$, with neither α nor β being F, such that $\sigma(F)=i, \sigma(\alpha)=F$, and $\sigma(\beta)=j$, and $\pi(F)=j, \pi(\alpha)=i$, and $\pi(\beta)=F$ for distinct $i, j \in G F(q)$. This gives the following set of equations in $G F(q)$.

$$
\left\{\begin{array}{c}
\sigma(\alpha)-\sigma(\beta)=F-j=a(\alpha-\beta) \tag{2}\\
\sigma(\alpha)-\sigma(F)=F-i=a(\alpha-F) \\
\pi(\alpha)-\pi(\beta)=i-F=b(\alpha-\beta) \\
\pi(\alpha)-\pi(F)=i-j=b(\alpha-F)
\end{array}\right.
$$

The second and third equations of (2) imply

$$
\begin{equation*}
a(\alpha-F)=-b(\alpha-\beta) . \tag{3}
\end{equation*}
$$

Now starting with the first equation of (2) we obtain

$$
\begin{aligned}
a(\alpha-\beta) & =F-j \\
& =(F-i)+(i-j) \\
& =(a+b)(\alpha-F) \quad(\text { by the second and fourth equations of (2) }) .
\end{aligned}
$$

Multiplying equation (3) by a and the last equation by b, we obtain the equations

$$
\left\{\begin{align*}
a^{2}(\alpha-F) & =-a b(\alpha-\beta) \tag{4}\\
a b(\alpha-\beta) & =b(a+b)(\alpha-F) .
\end{align*}\right.
$$

Thus $a^{2}(\alpha-F)=-b(a+b)(\alpha-F)$, and on dividing by $\alpha-F($ since $\alpha \neq F)$ we obtain

$$
\begin{equation*}
a^{2}+b(a+b)=0 \tag{5}
\end{equation*}
$$

Dividing equation (5) by a^{2} or by b^{2}, we obtain that a / b and b / a are both roots of the equation $t^{2}+t+1=0$.

We show that a / b and b / a are distinct. Assuming otherwise, then $a / b=1$ or -1 . If q is even then from $1+t+t^{2}=0$ we get the contradiction $1=0$ since the characteristic is 2 . Now assume q is odd. If $a / b=1$, then we get $1+1+1=0$, forcing $q \equiv 0(\bmod 3)$, a contradiction. If $a / b=-1$, then we get $1=0$, again a contradiction.

Let t_{1} and $\frac{1}{t_{1}}$ be the distinct roots of $t^{2}+t+1=0$ in $G F(q)$ for $q \equiv 1(\bmod 3)$ (by Corollary 23a). Let $\pi \in C_{A}(q)$ with $\pi(x)=a x+r$, and let σ be a neighbor of π in $C_{A}(q)$. Then by Lemma 4 2. 2 we have $\sigma(x)=a t_{1}+s_{1}$ or $\sigma(x)=a \frac{1}{t_{1}}+s_{2}$, so far with s_{1} and s_{2} undetermined. The next lemma shows that s_{1} and s_{2} are uniquely determined by π and t_{1}.

Lemma 5 Let q be a prime power with $q \equiv 1(\bmod 3)$. Suppose π is not an isolated point of $C_{A}(q)$, say with $\pi(x)=a x+r$. Let t_{1} be a root of $t^{2}+t+1=0$ in $G F(q)$. Then the neighbors of π in $C_{A}(q)$ are σ_{1} and σ_{2}, given by $\sigma_{1}(x)=a t_{1} x+\left(a-t_{1}\right) F+r\left(1+t_{1}\right)$ and $\sigma_{2}(x)=a \frac{1}{t_{1}} x+\left(a-\frac{1}{t_{1}}\right) F+r\left(1+\frac{1}{t_{1}}\right)$. In particular, each non-isolated point of $C_{A}(q)$ has degree 2 in $C_{A}(q)$.

Proof. : Let $N(\pi)$ be the set of neighbors of π in $C_{A}(q)$. First we verify that $\sigma_{1}, \sigma_{2} \in N(\pi)$, giving details only for $\sigma_{1} \in N(\pi)$ as the containment $\sigma_{2} \in N(\pi)$ is proved similarly. To do this, we show that all conditions of (1) are satisfied with σ_{1} playing the role of σ. Clearly $\pi(F) \neq F$ since π is not isolated. To show $\sigma_{1}(F) \neq F$, assume not. Suppose first that $a \neq 1$. Then $\sigma_{1}(F)=F$ yields $F=\frac{r}{1-a}$. But now we get $\pi(F)=\frac{a r}{1-a}+r=\frac{r}{1-a}=F$, a contradiction. Next suppose $a=1$ so $\pi(x)=x+r$. Then $\sigma_{1}(F)=F$ together with $a=1$ yields $r\left(1+t_{1}\right)=0$. Combining this with $t_{1} \neq-1$ yields $r=0$. But then $\pi(F)=F$, a contradiction.

So it remains to show that $\sigma_{1}\left(\pi^{-1}(F)\right)=\pi(F)$ and $\pi\left(\sigma_{1}^{-1}(F)\right)=\sigma_{1}(F)$. For the first equality, solving $a x+r=F$ we obtain $\pi^{-1}(F)=\frac{F-r}{a}$. Thus $\sigma_{1}\left(\pi^{-1}(F)\right)=a t_{1}\left(\frac{F-r}{a}\right)+(a-$ $\left.t_{1}\right) F+r\left(1+t_{1}\right)=a F+r=\pi(F)$, as required. For the second equality, from the formula for σ_{1} we obtain $\sigma_{1}^{-1}(F)=\frac{1}{a t_{1}}\left(F\left(1-a+t_{1}\right)-r\left(1+t_{1}\right)\right)$. Plugging this into π and simplifying, we obtain $\pi\left(\sigma_{1}^{-1}(F)\right)=\frac{1}{t_{1}}\left(F\left(1-a+t_{1}\right)-r\left(1+t_{1}\right)\right)+r$. Working backwards from the equality $\pi\left(\sigma_{1}^{-1}(F)\right)=\sigma_{1}(F)$ we must show that $\frac{1}{t_{1}}\left(F\left(1-a+t_{1}\right)-r\left(1+t_{1}\right)\right)=F\left(a-t_{1}+a t_{1}\right)+r t_{1}$. This is equivalent to $F\left(1-a+t_{1}\right)=r\left(t_{1}^{2}+t_{1}+1\right)+F\left(a t_{1}-t_{1}^{2}+a t_{1}^{2}\right)=F\left(a t_{1}-t_{1}^{2}+a t_{1}^{2}\right)$. We are now reduced to showing $1-a+t_{1}=a t_{1}-t_{1}^{2}+a t_{1}^{2}$. This follows from $t_{1}^{2}+t_{1}+1=0$.

Now let $\sigma \in N(\pi)$, and we show that $\sigma=\sigma_{1}$ or σ_{2}. By Lemma 4, we know that $\sigma(x)=a t_{1}+s_{1}$ or $\sigma(x)=a \frac{1}{t_{1}}+s_{2}$ for suitable $s_{1}, s_{2} \in G F(q)$. Suppose first that $\sigma(x)=a t_{1}+s_{1}$. Applying the equality $\sigma\left(\pi^{-1}(F)\right)=\pi(F)$ together with $\pi^{-1}(F)=\frac{F-r}{a}$, we get $a t_{1}\left(\frac{F-r}{a}\right)+s_{1}=a F+r$. so $s_{1}=\left(a-t_{1}\right) F+r\left(1+t_{1}\right)$. Thus $\sigma=\sigma_{1}$. A very similar argument shows that if $\sigma(x)=a \frac{1}{t_{1}}+s_{2}$, then $s_{2}=\left(a-\frac{1}{t_{1}}\right) F+r\left(1+\frac{1}{t_{1}}\right)$, and thus $\sigma=\sigma_{2}$. So we have $N(\pi)=\left\{\sigma_{1}, \sigma_{2}\right\}$, completing the proof.

Consider the subgroup $Q=\{x+b: b \in G F(q)\}$ of $A G L(1, q)$. Clearly $|Q|=q$, and for each $h \in G F(q), h \neq 0, Q$ has the coset $h x Q=\{h x+b: b \in G F(q)\}$, which we abbreviate by Q_{h}.

Theorem 6 Let q be a prime power with $q \equiv 1(\bmod 3)$. Then the connected components of $C_{A}(q)$ are as follows.
a) There are $q-1$ isolated points, these being the points π satisfying $\pi(F)=F$.
b) If q is odd, then each non-isolated point component is a cycle of length 6.
c) If q is even, then each non-isolated point component is a cycle of length 3.

Proof. For part a), we show that $\pi \in C_{A}(q)$ is an isolated point if and only if $\pi(F)=F$. Then a) follows by Lemma 4 b .

If $\pi(F)=F$, then immediately π is isolated in $C_{A}(q)$ by Lemma 4b. For the converse, suppose to the contrary that π is isolated and that $\pi(F) \neq F$. Let σ_{1} be given by $\sigma_{1}(x)=$ $a t_{1} x+\left(a-t_{1}\right) F+r\left(1+t_{1}\right)$ as in Lemma 5. Then the proof of Lemma 5, starting from the established claim $\pi(F) \neq F$ (this claim being an assumption here), shows that σ_{1} is a neighbor of π in $C_{A}(q)$. This contradicts π being isolated.

Consider part b). By Lemma 5 each nontrivial component of $C_{A}(q)$ is a cycle. Let π_{0} be a point on such a cycle C, say with $\pi_{0} \in Q_{a}$. Let t_{1} be a fixed root of $t^{2}+t+1=0$. Consider a sequence of 4 vertices $\pi_{0} \pi_{1} \pi_{2} \pi_{3}$ on C with $\pi_{j} \pi_{j+1} \in E\left(C_{A}(q)\right)$ for $0 \leq j \leq 2$. We may suppose that $\pi_{j} \in Q_{a t_{1}^{j}}$ by Lemma 5 and straightforward induction (otherwise replace t_{1} by $\frac{1}{t_{1}}$). Thus $\pi_{0}, \pi_{1}, \pi_{2}$ are distinct since they belong distinct cosets of Q. Since $t_{1}^{3}=1$, we see also that π_{0} and π_{3} belong to the same coset Q_{a} of Q. We now show that $\pi_{0} \neq \pi_{3}$. Writing $\pi_{1}(x)=b x+c$ (so $b=a t_{1}$), we apply the first and third equations of (2) with π_{0} and π_{1} playing the roles of σ and π respectively, to get $t_{1}=\frac{b}{a}=-\left(\frac{i-F}{j-F}\right)=-\left(\frac{\pi_{0}(F)-F}{\pi_{1}(F)-F}\right)$. Applying this equation two more times we get $1=t_{1}^{3}=-\left(\frac{\pi_{0}(F)-F}{\pi_{3}(F)-F}\right)$, so that $\left(\frac{\pi_{0}(F)-F}{\pi_{3}(F)-F}\right)=-1$. Thus $\pi_{0}(F) \neq \pi_{3}(F)$, so $\pi_{0} \neq \pi_{3}$. Thus each cycle component has length at least 4.

Consider now a sequence of 7 vertices $\pi_{0} \pi_{1} \cdots \pi_{6}$ on C with $\pi_{j} \pi_{j+1} \in E\left(C_{A}(q)\right)$ for $0 \leq j \leq 5$. We claim the first 6 of these $\pi_{0}, \pi_{1}, \cdots, \pi_{5}$ must be distinct as follows. Clearly any two vertices π_{j}, π_{j+3} are distinct, $0 \leq j \leq 2$, by the same argument that showed $\pi_{0} \neq \pi_{3}$. But any two vertices π_{i}, π_{j} with $i \not \equiv j(\bmod 3)$ are distinct, since $t_{1} \neq 1$ and $t_{1}^{2} \neq 1$ imply that they belong to different cosets of Q, proving the claim. Finally note that $1=t_{1}^{6}=\left(\frac{\pi_{0}(F)-F}{\pi_{6}(F)-F}\right)$, so that $\pi_{0}(F)=\pi_{6}(F)$. Since also π_{0} and π_{6} also belong to the same coset Q_{a} of Q, it follows that $\pi_{0}=\pi_{6}$. Thus the component C containing π_{0} is a cycle of length 6 , as required.

Now consider part c). Consider as above the sequence of 4 vertices $\pi_{0} \pi_{1} \pi_{2} \pi_{3}$ in a nontrivial component, with $\pi_{j} \pi_{j+1} \in E\left(C_{A}(q)\right)$ for $0 \leq j \leq 2$. We get $\left(\frac{\pi_{0}(F)-F}{\pi_{3}(F)-F}\right)=-1=1$ since q is even. So since also π_{0} and π_{3} belong to the same coset Q_{a} of Q, it follows that $\pi_{0}=\pi_{3}$. Thus the cycle containing π_{0} has length 3 .

Corollary 7 Let q be a prime power with $q \equiv 1(\bmod 3)$ and $q \geq 7$. Then
a) if q is odd, then $M(q-1, q-3) \geq\left(q^{2}-1\right) / 2$, and
b) if q is even, then $M(q-1, q-3) \geq(q-1)(q+2) / 3$.

Proof. For part a) we form an independent set I in $C_{A}(q)$ by taking 3 independent points in each cycle component of of length 6 , together with the set Y of isolated points. Then $M(q-1, q-3) \geq|Y|+\frac{1}{2}\left(\left|C_{A}(q)-Y\right|\right)=q-1+\frac{1}{2}(q(q-1)-(q-1))=\left(q^{2}-1\right) / 2$, as required.

For part b), we form an independent set I in $C_{A}(q)$ by taking one point from each length 3 cycle component, together with the set Y of isolated points. We then have $M(q-1, q-3) \geq$ $|Y|+\frac{1}{3}\left(\left|C_{A}(q)-Y\right|\right)=(q-1)(q+2) / 3$.

The lower bounds in this corollary should be compared to the lower bound $M(q, q-2) \geq q^{2}$ for prime powers $q \not \equiv 2(\bmod 3)$, derived by using permutation polynomials [8].

3 The contraction graph for $\operatorname{PGL}(2, q)$

Let q be a power of a prime. The permutation group $P G L(2, q)$ is defined as the set of one to one functions $\sigma: G F(q) \cup\{\infty\} \rightarrow G F(q) \cup\{\infty\}$, under the binary operation of composition,
given by

$$
\begin{equation*}
\left\{\sigma(x)=\frac{a x+b}{c x+d}: a, b, c, d \in G F(q), a d \neq b c, x \in G F(q) \cup\{\infty\}\right\} \tag{6}
\end{equation*}
$$

Here $\sigma(x)$ is computed by the rules:

1. if $x \in G F(q)$ and $x \neq-(d / c)$, then $\sigma(x)=\frac{a x+b}{c x+d}$,
2. if $x \in G F(q)$ and $x=-(d / c)$, then $\sigma(x)=\infty$,
3. if $x=\infty$, and $c \neq 0$, then $\sigma(x)=a / c$, and
4. if $x=\infty$, and $c=0$, then $\sigma(x)=\infty$.

We regard $P G L(2, q)$ as a permutation group acting on the set $G F(q) \cup\{\infty\}$ of size $q+1$ via the one to one map $x \mapsto \sigma(x)$. One can show that $|P G L(2, q)|=(q+1) q(q-1)$, and it is well known that $P G L(2, q)$ is sharply 3-transitive in its action on $G F(q) \cup\{\infty\}$ (see [24] for a proof). It is straightforward to verify that $h d(P G L(2, q))=q-1$, and by Theorem 1 we have $M(q+1, q-1)=|P G L(2, q)|=(q+1) q(q-1)$.

Take a fixed ordering of $G F(q) \cup\{\infty\}$ with ∞ as final symbol, say $x_{1}, x_{2}, \cdots, x_{q}, \infty$ where the x_{i} are the distinct elements of $G F(q)$. Then any element $\pi \in P G L(2, q)$ is identified with the length $q+1$ string $\pi\left(x_{1}\right) \pi\left(x_{2}\right) \pi\left(x_{3}\right) \cdots \pi\left(x_{q}\right) \pi(\infty)$, which again we call the image string of π. For any such $\pi \in P G L(2, q)$ the permutation π^{\triangle} on $G F(q) \cup\{\infty\}$ is defined as in the section introducing contraction, where $F=\infty$ is the distinguished element of $G F(q) \cup\{\infty\}$ in that definition. As an example, if $\pi=a \infty b c d e$, then $\pi^{\Delta}=a e b c d \infty$, and $\pi_{-}^{\triangle}=a e b c d$. In the same way, for any subset $R \subset P G L(2, q)$, the sets R^{\triangle}, and R_{-}^{\triangle} are defined as in that section, with $F=\infty$. Since $h d(P G L(2, q))=q-1=q+1-2$, the image strings of any two elements of $\operatorname{PGL}(2, q)$ agree in at most two positions. It follows from Lemma 2 a that for any $\pi, \sigma \in P G L(2, q)$ we have $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right) \geq h d(\pi, \sigma)-3 \geq q-4$. That is, π^{\triangle} and σ^{\triangle} can agree in at most 5 positions; up to 2 occurring from the original π and σ, and up to 3 more occurring from the π^{\triangle} and σ^{\triangle} operation.

As noted earlier, lower bounds for $M(q, q-3)$ and $M(q, q-4)$ when $q \not \equiv 1(\bmod 3)$ based on permutation polynomials are known [8]. Thus in this section, we restrict ourselves to the case $q \equiv 1(\bmod 3), q$ an odd prime power, where such bounds are not known. For technical reasons we take $q \geq 13$.

The plan will be similar in some respects to the one we used in the previous section. That is, for a certain set $I \subset P G L(2, q)$ we will find a permutation array $I_{-}^{\triangle} \subset P G L(2, q)_{-}^{\triangle}$ on q symbols with $h d\left(I_{-}^{\triangle}\right) \geq q-3$, thus obtaining the lower bound on $M(q, q-3) \geq\left|I_{-}^{\triangle}\right|$. This set I will be an independent set in the contraction graph $C_{P G L(2, q)}$ for $P G L(2, q)$, which we abbreviate by $C_{P}(q)$.

Since $h d(P G L(2, q))=q-1, C_{P}(q)$ is given by $V\left(C_{P}(q)\right)=P G L(2, q)$, and $E\left(C_{P}(q)\right)=$ $\left\{\pi \sigma: h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=q-4\right\}$. So edges $\pi \sigma$ of $C_{P}(q)$ correspond to pairs $\pi, \sigma \in P G L(2, q)$ for which $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)$ achieves its least possible value of $q-4$, occurring when π^{\triangle} and σ^{\triangle} agree in 5 positions, so consequently $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$. Thus a set $I \subseteq V\left(C_{P}(q)\right)$ is independent in $C_{P}(q)$ if and only if it satisfies $h d\left(I^{\triangle}\right) \geq q-3$. By Lemma 2 , we get $h d\left(I_{-}^{\triangle}\right)=h d\left(I^{\triangle}\right) \geq q-3$, while $\left|I_{-}^{\triangle}\right|=\left|I^{\triangle}\right|=|I|$, with the last equality following from $h d\left(I^{\triangle}\right)=q-3>3$ since $q \geq 13$.

We are thus reduced to finding an independent set I in $C_{P}(q)$, from which $M(q, q-3) \geq|I|$ follows.

To do this, it will be useful to represent functions in $\operatorname{PGL}(2, q)$ in a form different than the standard $\frac{a x+b}{c x+d}$ form.

Definition 8 Fix a prime power q.

1. Let $K, r, i \in G F(q)$ with $r \neq 0$. Define the function $f: G F(q) \cup\{\infty\} \rightarrow G F(q) \cup\{\infty\}$ by $f(x)=K+\frac{r}{x-i}$ for $x \notin\{i, \infty\}$, while $f(\infty)=K$ and $f(i)=\infty$.
2. Let $P=\left\{K+\frac{r}{x-i}: K, r, i \in G F(q), r \neq 0\right\}$ be the set of all functions defined in 1 .
3. Let $N \subset P G L(2, q)$ be given by $N=\left\{\pi \in P G L(2, q): \pi(x)=\frac{a x+b}{c x+d}, c \neq 0\right\}$.

We will now see that P is the same set of functions as N.
Lemma 9 Let the map $\alpha: N \rightarrow P$ be defined as follows. For any $\pi \in N$ with $\pi(x)=\frac{a x+b}{c x+d}$, let $\alpha(\pi) \in P$ be given by $\alpha(\pi)(x)=\frac{a}{c}+\frac{\frac{b c-a d}{c^{2}}}{x+\frac{d}{c}}$. Then
a) π and $\alpha(\pi)$ are the same function on $G F(q) \cup\{\infty\}$.
b) $|P|=|N|=q^{2}(q-1)$.
c) The map α is one to one and onto.

Proof. For a), straightforward manipulation shows that for $x \neq-\frac{d}{c}$ we have $\pi(x)=\frac{a}{c}+\frac{\frac{b c-a d}{c^{2}}}{x+\frac{d}{c}}=$ $\alpha(\pi)(x)$. Also by definition $\alpha(\pi)(\infty)=\frac{a}{c}=\pi(\infty)$ and $\alpha(\pi)\left(-\frac{d}{c}\right)=\infty=\pi\left(-\frac{d}{c}\right)$. so π and $\alpha(\pi)$ are the same function.

Consider b). Clearly $|P|=q^{2}(q-1)$ since there are $q-1$ choices for r, and q choices for each of K and i, independent of each other. To show $|N|=q^{2}(q-1)$, observe first that for any $\pi \in P G L(2, q)$ with $\pi(x)=\frac{a x+b}{c x+d}$ we have $c=0 \Leftrightarrow \pi(\infty)=\infty$. The \Rightarrow direction is immediate by definition. To see \Leftarrow, assume $c \neq 0$. Then $\pi(\infty)=\frac{a}{c} \neq \infty$, completing the proof of the observation. Next we have $\pi(\infty)=\infty \Leftrightarrow \pi(x)=A x+B \in A G L(1, q)$ for all x for suitable $A \neq 0, B \in G F(q)$, by definition of computing in $P G L(2, q)$. Thus we have $|N|=|P G L(2, q)|-|A G L(2, q)|=(q+1) q(q-1)-q(q-1)=q^{2}(q-1)$.

Part c) is immediate from parts a) and b), since any two distinct elements of N are distinct as functions. As an alternative (constructive) proof, let $f(x)=K+\frac{r}{x-i} \in P$ be given. Then for $\pi(x)=\frac{K x+r-i K}{x-i} \in N$ we have $\alpha(\pi)=f$. Thus α is onto, and since $|P|=|N|, \alpha$ is also one to one.

We now see how the above observations, together with results which come later, reduce the study of $C_{P}(q)$ to the set P of permutations.. It was shown above that for $\pi \in P G L(2, q)$, we have $\pi(\infty)=\infty \Leftrightarrow c=0$. By condition (1) (with $\infty=F$) we see that $\pi(\infty)=\infty$ implies that π is an isolated point in $C_{P}(q)$, and we will see later that for $C_{P}(q)$ the converse is also true. So to study the structure of $C_{P}(q)$ apart from its isolated points, we are reduced to studying its subgraph induced by the permutations in N. By the bijection $\alpha: N \leftrightarrow P$, under which $\pi \in N$ and $\alpha(\pi) \in P$ are the same permutation on $G F(q) \cup\{\infty\}$, we are then reduced to studying P.

Lemma 10 Let $\pi, \sigma \in P$ with $\pi(x)=a+\frac{r}{x-i}, \sigma(x)=b+\frac{s}{x-j}$ with $r, s \neq 0$. Then $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=$ $h d(\pi, \sigma)-3 \Longleftrightarrow(b-a)(j-i)=r$ and $r=s$.

Proof. \Longrightarrow : By assumption we have $\pi(\infty)=a$ and $\pi(i)=\infty$, together with $\sigma(j)=\infty$ and $\sigma(\infty)=b$. By Lemma $2 a$ the only coordinates of either π or σ whose values are affected by the \triangle operation are the 3 coordinates $\pi^{-1}(\infty)=i, \sigma^{-1}(\infty)=j$, and ∞. So the assumption $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$ implies that $\sigma(i)=a$ and $\pi(j)=b$. Thus we get $\pi(j)=a+\frac{r}{j-i}=b$, yielding $(b-a)(j-i)=r$ as required. Now interchanging the roles of π and σ in this argument, specifically, using $\sigma(i)=b+\frac{s}{i-j}=a$, we get $(a-b)(i-j)=s$, so also $r=s$.

Figure 2: The graph P_{1}, partitioned into levels B_{0} and $B_{g^{i}}, 1 \leq i \leq q-1$.
$\Longleftarrow: ~ A g a i n ~ b y ~ a s s u m p t i o n ~ w e ~ h a v e ~ \pi(\infty)=a, \sigma(\infty)=b, \pi(i)=\infty, \sigma(j)=\infty$, and $(b-a)(j-i)=r$. To prove $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$, it remains only to show that $\pi(j)=b$ and $\sigma(i)=a$. For simplicity we let $r=s=1$, since the argument does not depend on $r=s$. Solving for b in $(b-a)(j-i)=1$ we get $b=\frac{1}{j-i}+a=\pi(j)$. Solving for a we get $a=b-\frac{1}{j-i}=b+\frac{1}{i-j}=\sigma(i)$, as required.

Lemma 11 Let $q=p^{m}$, where p is an odd prime, with $q \equiv 1(\bmod 3), q \geq 13$. Let $\pi, \sigma \in P$, say with $\pi(x)=a+\frac{r}{x-i}, \sigma(x)=b+\frac{s}{x-j}$, with $r, s \neq 0$. Then $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3 \Longleftrightarrow$ $\pi \sigma \in E\left(C_{P}(q)\right)$.

Proof. \Longleftarrow : By definition of edges in $C_{P}(q)$ and Lemma $2 a$ we have $q-4=h d\left(\pi^{\triangle}, \sigma^{\triangle}\right) \geq$ $h d(\pi, \sigma)-3$. Now since $q-1 \leq h d(\pi, \sigma) \leq q+1$, equality is forced together with $h d(\pi, \sigma)=q-1$. This yields $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$.
\Longrightarrow : By the assumption $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$ and $h d(\pi, \sigma) \geq q-1$ we are reduced to showing that $h d(\pi, \sigma)=q-1$; that is, that π and σ already agree in two coordinates.

By assumption and Lemma 10 we have $r=s$, so write $\pi(x)=a+\frac{r}{x-i}$ and $\sigma(x)=b+\frac{r}{x-j}$, for $a, b, i, j, k \in G F(q)$ with $r \neq 0$. Note also $i \neq j$, since otherwise by Lemma 10 we get $r=0$, a contradiction.

We now derive a quadratic equation over $G F(q)$ whose distinct roots are the coordinates of agreement between π and σ. Since $h d\left(\pi^{\triangle}, \sigma^{\triangle}\right)=h d(\pi, \sigma)-3$, by Lemma 10 we have $(b-a)(j-i)=r$. Thus $b=\frac{r}{j-i}+a$. Now we set $\pi(x)=\sigma(x)$ to find the possible coordinates x at which π and σ agree, understanding that x can be neither i nor j since π and σ can have no agreements in any of the coordinates $i=\pi^{-1}(\infty), j=\sigma^{-1}(\infty)$, or ∞ by Lemma 2 a . Substituting $\frac{r}{j-i}+a$ for b and simplifying we obtain $\frac{1}{x-i}-\frac{1}{x-j}=\frac{1}{j-i}$. Hence $\frac{i-j}{(x-i)(x-j)}=\frac{1}{j-i}$, and we get the quadratic $x^{2}-(i+j) x+i j+(i-j)^{2}=0$. By Corollary 23b there are two distant roots to this equation, giving the two coordinates of agreement for π and σ as follows; $x_{1}=\frac{1}{2}[i(1+\sqrt{-3})+j(1-\sqrt{-3})]$, and $x_{2}=\frac{1}{2}[i(1-\sqrt{-3})+j(1+\sqrt{-3})]$.

Hence by our reduction at the beginning of the proof it follows that $\pi \sigma \in E\left(C_{P}(q)\right)$, as required.

The preceding two Lemmas yield the following.

Corollary 12 Let $q=p^{m}$, where p is an odd prime, with $q \equiv 1(\bmod 3), q \geq 13$.
a) Let $\pi, \sigma \in P$, say with $\pi(x)=a+\frac{r}{x-i}, \sigma(x)=b+\frac{s}{x-j}, r, s \neq 0$. Then $\pi \sigma \in E\left(C_{P}(q)\right) \Longleftrightarrow$ $r=s$ and $(b-a)(j-i)=r$.
b) $\pi \in P G L(2, q)$ is an isolated point in $C_{P}(q) \Longleftrightarrow \pi(\infty)=\infty$.

Proof. Part a) follows immediately from Lemmas 10 and 11 .
For part b), suppose first that $\pi(\infty)=\infty$. Then immediately π is isolated in $C_{P}(q)$ by the equivalence (1) (with $\infty=F$) applicable to any contraction graph.

Conversely, suppose to the contrary that π is isolated in $C_{P}(q)$ and $\pi(\infty)=x \neq \infty$. Let $i=\pi^{-1}(\infty)$, and let j be any coordinate with $j \notin\{i, \infty\}$, and let $\pi(j)=y$. Then by sharp 3 transitivity of $P G L(2, q)$ we can find an element $\sigma \in P G L(2, q)$ satisfying $\sigma(j)=\infty, \sigma(i)=x$, and $\sigma(\infty)=y$. Then we get $h d\left(\sigma^{\triangle}, \pi^{\triangle}\right)=h d(\sigma, \pi)-3$. So by Lemma 11 we have $\pi \sigma \in$ $E\left(C_{P}(q)\right)$, contradicting π being isolated.

The next two theorems, which use the preceding Corollary, tell us more about $C_{P}(q)$. For $S \subset C_{P}(q)$, recall that $[S]$ is the subgraph of $C_{P}(q)$ induced by S. When r is fixed by context, we denote a vertex $\pi \in C_{P}(q), \pi \in P$, with $\pi(x)=a+\frac{r}{x-i}$, by the abbreviation (i, a).

Consider the partition of P given by $P=\cup_{r \neq 0} P_{r}$, where for $r \in G F(q)$ with $r \neq 0, P_{r}=$ $\left\{a+\frac{r}{x-i}: a, i \in G F(q)\right\}$, so $\left|P_{r}\right|=q^{2}$. Further consider the partition of P_{r} given by $P_{r}=$ $\cup_{i \in G F(q)} B_{i}(r)$, where $B_{i}(r)=\left\{a+\frac{r}{x-i}: a \in G F(q)\right\}$.

Theorem 13 Let $q=p^{m}$, where p is an odd prime, with $q \equiv 1(\bmod 3), q \geq 13$. Then the following hold in the graph $C_{P}(q)$.
a) For any $r \neq s, r, s \neq 0$, we have $\left[P_{r}\right] \cong\left[P_{s}\right]$.
b) For any $r \neq 0$ and $i \neq j,\left[B_{i}(r) \cup B_{j}(r)\right]$ is a perfect matching, which matches $B_{i}(r)$ to $B_{j}(r)$.
c) For any $r \neq 0$, the subgraph $\left[P_{r}\right]$ is regular of degree $q-1$.
d) Let $v \in C_{P}(q)$ be a non isolated point, and $N(v)$ the set of neighbors of v in $C_{P}(q)$. Then $[N(v)]$ is a disjoint union of cycles.

Proof. For a), consider for any $r \in G F(q), r \neq 0$, the map $\varphi: P_{1} \rightarrow P_{r}$ given by $\varphi\left(a+\frac{1}{x-i}\right)=$ $a+\frac{r}{x-r i}$. Let $v, w \in P_{1}$, say with $v(x)=a+\frac{1}{x-i}$ and $w(x)=b+\frac{1}{x-j}$. Then $v w \in E\left(\left[P_{1}\right]\right) \Leftrightarrow$ $(b-a)(j-i)=1 \Leftrightarrow(b-a)(r j-r i)=r \Leftrightarrow \varphi(v) \varphi(w) \in E\left(\left[P_{r}\right]\right)$. Thus φ is a graph isomorphism, and since r was arbitrary, it follows that for any $s \neq 0$ we have $\left[P_{r}\right] \cong\left[P_{1}\right] \cong\left[P_{s}\right]$.

Consider b). Fix r, and consider any two points (i, a) and (j, b) of P_{r}. By Corollary 12 we have $(i, a)(j, b) \in E\left(C_{P}(q)\right)$ if and only if $i \neq j$ and $(b-a)(j-i)=r$ in $G F(q)$. Let $H_{i j}=\left[B_{i}(r) \cup B_{j}(r)\right]$ for $i \neq j$. Note there can be no edge in $H_{i j}$ of the form $(i, a)(i, b)$ since $(b-a)(i-i)=0 \neq r$, and similarly no edge of the form $(j, a)(j, b)$. Now given $(i, a) \in B_{i}(r)$, a point $(j, b) \in B_{j}(r)$ is a neighbor of (i, a) if and only if $(b-a)(j-i)=r$ by Corollary 12 .

Thus for this fixed i and j we can uniquely determine b by the equation $b=r(j-i)^{-1}+a$, showing that (j, b) is the only neighbor of (i, a) in $B_{j}(r)$. A symmetric argument shows that each point in $B_{j}(r)$ has a unique neighbor in $B_{i}(r)$. Thus $E\left(H_{i j}\right)$ is a perfect matching, which matches $B_{i}(r)$ to $B_{j}(r)$.

For c), let $v \in C_{P}(q)$, say with $v \in B_{i}(r) \subset P_{r}$ for some $r \neq 0$. By Corollary 12, any neighbor of v in $C_{P}(q)$ must also lie in P_{r}. By part b), the neighbors of v are in one to one correspondence with the sets $B_{j}(r), j \neq i, j \in G F(q)$. Thus v has exactly $|G F(q)|-1=q-1$ neighbors in $C_{P}(q)$.

For d), take $v \in C_{P}(q)$, and by the isomorphism of subgraphs [P_{r}] from part a), we can take $v=(i, a) \in P_{1}$. By Corollary 12 we have $N(v) \subset P_{1}$. It suffices to show that $[N(v)]$ is regular of degree 2. Let $(j, b) \in N(v)$, so $j \neq i$ by part b). Now any neighbor (k, c) of (j, b) in $N(v)$ must

Figure 3: Perfect matching between any two levels of P_{1}.
lie in $N((i, a)) \cap N((j, b))$. So to show that (j, b) has degree 2 in $[N(v)]$, it suffices to show that $(k, c) \in P_{1}$ satisfies $(k, c) \in N((i, a)) \cap N((j, b))$ if and only if k is a root in $G F(q)$ of a quadratic equation over $G F(q)$ having two distinct roots in $G F(q)$.

Suppose first that $(k, c) \in N((i, a)) \cap N((j, b))$. By Corollary 12 we must have the equations

$$
(c-a)(k-i)=1,(b-c)(j-k)=1,(b-a)(j-i)=1
$$

Using the second and third equations we get $c=(j-i)^{-1}-(j-k)^{-1}+a$, and from the first equation $c=(k-i)^{-1}+a$. Setting these two expressions for c equal we obtain $(k-i)^{-1}+(j-$ $k)^{-1}=(j-i)^{-1}$. Some simplification leads to the quadratic $k^{2}-k(i+j)+i j+(j-i)^{2}=0$ with coefficients over $G F(q)$ and unknown k. By Corollary 23b from the Appendix, we see that that there are two distinct solutions for k; namely $k_{1}=\frac{1}{2}[i(1+\sqrt{-3})+j(1-\sqrt{-3})]$, and $k_{2}=\frac{1}{2}[i(1-\sqrt{-3})+j(1+\sqrt{-3})]$.

Conversely suppose that k is one of the two distinct solutions of $k^{2}-k(i+j)+i j+(j-i)^{2}=0$. Then $(k-i)(j-k)=-k^{2}+k(i+j)-i j=(j-i)^{2}$, and using $\frac{1}{(k-i)(j-k)}=\left(\frac{1}{j-i}\right)\left(\frac{1}{k-i}+\frac{1}{j-k}\right)$, one can derive $\frac{1}{k-i}+\frac{1}{j-k}=\frac{1}{j-i}$. Now set $c=\frac{1}{k-i}+a$, so immediately we get $(c-a)(k-i)=1$. Since (i, a) and (j, b) are neighbors we have $(b-a)(j-i)=1$, so $b=\frac{1}{j-i}+a$. It follows that $c=\frac{1}{k-i}+a=\frac{1}{j-i}-\frac{1}{j-k}+a=b-\frac{1}{j-k}$. Hence we get $(b-c)(j-k)=1$. Thus the three equations $(c-a)(k-i)=1,(b-c)(j-k)=1$, and $(b-a)(j-i)=1$ hold, showing that $(k, c) \in N((i, a)) \cap N((j, b))$ by Corollary 12 .

Note that once k is determined (as one of the two distinct roots), then the point (k, c) is uniquely determined by the perfect matching between $B_{k}(1)$ and $B_{i}(1)$ (or $\left.B_{j}(1)\right)$. Thus we obtain that an arbitrary point $(j, b) \in N(v)$ has exactly two neighbors in $N(v)$, completing d).

To round out the structure of $C_{P}(q)$ we consider the connected components of $C_{P}(q)$.
Theorem 14 Let $q=p^{m}$, where p is an odd prime, with $q \equiv 1(\bmod 3), q \geq 13$. Then the connected components of $C_{P}(q)$ are as follows.

1) the isolated points - these are of the form $\pi(x)=a x+b, a \neq 0$, and there are $q(q-1)$ of them,
2) the $q-1$ many connected components $\left[P_{r}\right]$ induced by the sets P_{r}.

Proof. By Corollary 12b we have that $\pi \in P G L(2, q)$ is an isolated point in $C_{P}(q)$ if and only if $\pi(\infty)=\infty$. This is equivalent to $\pi(x)=a x+b, a \neq 0$ and there are $q(q-1)$ such points, completing part 1).

The remaining permutations are all of the form $\pi(x)=a+\frac{r}{x-i}$ for suitable $a, r, i \in G F(q)$ with $r \neq 0$ as shown earlier. Hence it suffices to analyze the connected component structure of $\left[\cup_{r \neq 0} P_{r}\right]$. By Corollary 12 and Theorem 13a, to prove part 2) it suffices to prove that any one of the $\left[P_{r}\right]$, say $\left[P_{1}\right]$, is connected.

Recall the partition $P_{1}=\cup_{i \in G F(q)} B_{i}(1)$ defined above, and from now on we abbreviate $B_{i}(1)$ by B_{i}. Let g by a generator of the multiplicative cyclic subgroup of nonzero elements in $G F(q)$. Then we can write this partition as $P_{1}=B_{0} \cup\left(\cup_{1 \leq k \leq q-1} B_{g^{k}}\right)$. We regard the sets in this partition as "levels" of $C_{P}(q)$; where B_{0} is level 0 and $B_{g^{k}}$ is level $k, 1 \leq k \leq q-1$. See Figure 2 for an illustration of P_{1} from this viewpoint, where in that Figure we continue with the notation (i, a) for $a+\frac{1}{x-i}$. In particular, $\left(g^{t}, a\right)$ refers to $a+\frac{1}{x-g^{t}}$. By Theorem 13 b the subgraph of $\left[P_{1}\right]$ induced by any two levels has edge set which is a perfect matching, as illustrated in Figure 3.

First we observe that to show that $\left[P_{1}\right]$ is connected it suffices to show that any two vertices in B_{0} are joined by a path in $\left[P_{1}\right]$. For if that was true, then we can find a path in $\left[P_{1}\right]$ from $(0,0)$ to any vertex $w \in P_{1}$ (thus showing connectedness of $\left.\left[P_{1}\right]\right)$ as follows. If $w \in B_{0}$ we are done by assumption. So suppose $w \notin B_{0}$, say with $w \in B\left(g^{k}\right)$. Let v be the unique neighbor in B_{0} of w under the perfect matching $E\left(\left[B_{0} \cup B\left(g^{k}\right)\right]\right)$. Let P be the path from $(0,0)$ to v in $\left[P_{1}\right]$ which exists by assumption. Then P followed by the edge $v w$ is a walk joining $(0,0)$ to w, so P contains a path from $(0,0)$ to w.

By Theorem 13b there is a (unique) path in $\left[P_{1}\right]$ starting at $(0,0)$ and passing through levels $1,2, \cdots, q-1$ in succession. Let $(0,0)-\left(g, \alpha_{1}\right)-\left(g^{2}, \alpha_{2}\right)-\ldots-\left(g^{q-1}, \alpha_{q-1}\right)$ be this path, illustrated in bold lines in Figure 4, for suitable $\alpha_{k} \in G F(q)$. For $k \geq 1$ let $\left(0, \beta_{k}\right) \in B_{0}$ be the unique neighbor in level 0 of the vertex $\left(g^{k}, \alpha_{k}\right)$ in level k. The edges $\left(g^{k}, \alpha_{k}\right)\left(0, \beta_{k}\right)$ are illustrated by the dotted lines in in Figure 4.

This path and the points $\left(0, \beta_{k}\right)$ are illustrated in Figure 4. Our first step is to obtain the values of α_{k} and β_{k}.
Claim 1: We have
a) $\alpha_{1}=\frac{1}{g}, \alpha_{2}=\frac{1}{g-1}$, and $\alpha_{k}=\frac{g^{k-1}+g^{k-3}+g^{k-4}+\cdots+g+1}{(g-1) g^{k-1}}$ for $k \geq 3$.
b) $\beta_{1}=0$, and $\beta_{k}=\frac{\left(g^{2}-g+1\right)\left(1+g+g^{2}+g^{3}+\cdots+g^{k-2}\right)}{g^{k}(g-1)}$ for $k \geq 2$.

Proof of Claim 1: We repeatedly use the fact, proved earlier, that if (r, a) and (s, b) are adjacent vertices in the contraction graph $C_{P}(q)$, then $(s-r)(b-a)=1$.

For part a), since $(0,0)-\left(g, \alpha_{1}\right)$ is an edge in $C_{P}(q)$ we have $\left(\alpha_{1}-0\right)(g-0)=1$, so $\alpha_{1}=\frac{1}{g}$. Since $\left(g, \alpha_{1}\right)-\left(g^{2}, \alpha_{2}\right)$ is an edge we have $\left(\alpha_{2}-\frac{1}{g}\right)\left(g^{2}-g\right)=1$, yielding $\alpha_{2}=\frac{1}{g-1}$, and similarly $\left(\alpha_{3}-\frac{1}{g-1}\right)\left(g^{3}-g^{2}\right)=1$, yielding $\alpha_{3}=\frac{g^{2}+1}{(g-1) g^{2}}$. Now for $k \geq 3$ we proceed by induction, having proved the base case $k=3$. Since $\left(g^{k}, \alpha_{k}\right)-\left(g^{k-1}, \alpha_{k-1}\right)$ is an edge, we have $\left(\alpha_{k}-\alpha_{k-1}\right)\left(g^{k}-g^{k-1}\right)=1$. Solving for α_{k} and applying the inductive hypothesis to α_{k-1}, we obtain $\alpha_{k}=\frac{1}{g^{k}-g^{k-1}}+\frac{g^{k-2}+g^{k-4}+g^{k-5}+\cdots+g+1}{(g-1) g^{k-2}}$, which after simplification yields the claim.

For part b), we have $\beta_{1}=0$ since $(0,0)-\left(g, \alpha_{1}\right)$ is an edge by definition. Since $\left(g^{2}, \alpha_{2}\right)-\left(0, \beta_{2}\right)$ is an edge, we have $\left(\frac{1}{g-1}-\beta_{2}\right)\left(g^{2}-0\right)=1$, and solving for β_{2} and simplifying we get the claim for $k=2$. Consider now $k \geq 2$. The existence of edge $\left(g^{k}, \alpha_{k}\right)-\left(0, \beta_{k}\right)$ gives $\left(\alpha_{k}-\beta_{k}\right) g^{k}=1$, so $\beta_{k}=\alpha_{k}-\frac{1}{g^{k}}$. Using the formula for α_{k} from part a), we have $\beta_{k}=\frac{g^{k-1}+g^{k-3}+g^{k-4}+\cdots+g+1}{(g-1) g^{k-1}}-\frac{1}{g^{k}}=$ $\frac{g^{k}+g^{k-2}+g^{k-3}+\cdots+g^{2}+1}{(g-1) g^{k}}=\frac{\left(g^{2}-g+1\right)\left(1+g+g^{2}+g^{3}+\cdots+g^{k-2}\right)}{g^{k}(g-1)}$. QED
 distinct.

Figure 4: The path $(0,0)-\left(g, \alpha_{1}\right)-\left(g^{2}, \alpha_{2}\right)-\cdots-\left(g^{q-1}, \alpha_{q-1}\right)$ in P_{1}, where $\left(0, \beta_{i}\right)$ is the level 0 neighbor of $\left(g^{i}, \alpha_{i}\right)$.

Proof of Claim 2: In applying Claim 1, we note first that g could have been chosen so as not to be a root of $x^{2}-x+1=0$ as follows. The number of roots in $G F(q)$ to this quadratic is at most 2. Now the number of generators in the multiplicative cyclic group $G F(q)-\{0\}$ of order $q-1$ is the euler totient function $\phi(q-1)$, defined as the number of integers $1 \leq s \leq q-1$ which are relatively prime to $q-1$. Since q is an odd prime power with $q \geq 13$, we know that $\phi(q-1)>2$, so such a g exists.

We show that for for any pair j, k with $1 \leq j<k \leq q-1$ we have $\beta_{k} \neq \beta_{j}$.
Consider first the case $j=1$. Since $\beta_{1}=0$, we need to show that $\beta_{k} \neq 0$ for $2 \leq k \leq$ $q-1$. Supposing the contrary and applying Claim 1 b we get $\frac{\left(g^{2}-g+1\right)\left(1+g+g^{2}+g^{3}+\cdots+g^{k-2}\right)}{g^{k}(g-1)}=\overline{0}$. Canceling the nonzero factor $\frac{g^{2}-g+1}{g^{k}(g-1)}$ (by the preceding paragraph) on the left side, we get $0=\left(1+g+g^{2}+g^{3}+\cdots+g^{k-2}\right)=\frac{g^{k-1}-1}{g-1}$. This implies that $g^{k-1}-1=0$, so g has order $k-1$. This is impossible since $k-1 \leq q-2$ while g, being a generator of the cyclic group $G F(q)-\{0\}$, must have order $q-1$.

So now suppose that $j \geq 2$. Assuming the contrary that $\beta_{k}=\beta_{j}$ and applying Claim 1 b , we get after simplification that $1+g+g^{2}+g^{3}+\cdots+g^{k-2}=g^{k-j}\left(1+g+g^{2}+g^{3}+\cdots+g^{j-2}\right)=$ $g^{k-j}+g^{k-j+1}+\cdots+g^{k-2}$. Thus we have $0=1+g+g^{2}+\cdots+g^{k-j-1}=\frac{g^{k-j}-1}{g-1}$. So $g^{k-j}=1$, which is impossible since $k-j \leq q-3$, while g has order $q-1$. QED

We introduce some notation in preparation for the rest of the argument. Let $Z=\left\{\left(0, \beta_{k}\right)\right.$: $1 \leq k \leq q-1\} \subset B_{0}$. Since $\left|B_{0}\right|=q$, by Claim 2 we have $\left|B_{0}-Z\right|=1$, and we let u be the unique vertex of $B_{0}-Z$. Further for any subset T of vertices in $C_{P}(q)$, we let $N(T)=\left\{v \in C_{P}(q): v \notin T, v t \in E\left(C_{P}(q)\right)\right.$ for some $\left.t \in T\right\}$ be the neighbor set of T in $C_{P}(q)$. Recall also that $[T]$ denotes the subgraph of $C_{P}(q)$ induced by T.
Claim 3: Let $H=[Z \cup N(Z)]_{C_{P}(q)}$, and $H^{\prime}=[\{u\} \cup N(u)]_{C_{P}(q)}$.
a) H^{\prime} is connected.
b) H is connected.
c) $V(H) \cap V\left(H^{\prime}\right)=\emptyset$
d) We have the partition $V\left(P_{1}\right)=V(H) \cup V\left(H^{\prime}\right)$.

Proof of Claim 3: For part a), we apply Theorem 13b to deduce that H^{\prime} has the spanning star subgraph $K_{1, q-1}$, where the center is u and the leaves, one in each level $B_{i}, i \neq 0$, form $N(u)$. Thus H^{\prime} is connected.

Consider part b). Since $\beta_{1}=0$ we have $(0,0) \in Z \subset V(H)$. Thus it suffices to show that for any $w \in V(H)$ there is a path in H joining $(0,0)$ to w.

Suppose first that $w \in Z$, so $w=\left(0, \beta_{k}\right)$ for some k. Observe that $\left(g^{i}, \alpha_{i}\right) \in N(Z)$ for all i by definition. So the path $(0,0)-\left(g, \alpha_{1}\right)-\left(g^{2}, \alpha_{2}\right)-\ldots-\left(g^{k}, \alpha_{k}\right)$ followed by the edge $\left(g^{k}, \alpha_{k}\right)-\left(0, \beta_{k}\right)$ is path in H joining $(0,0)$ to w.

Next suppose $w \in N(Z)$, say with w adjacent to $\left(0, \beta_{k}\right) \in Z$. Then the path $(0,0)-\left(g, \alpha_{1}\right)-$ $\left(g^{2}, \alpha_{2}\right)-\ldots-\left(g^{k}, \alpha_{k}\right)$ followed by the length 2 path $\left(g^{k}, \alpha_{k}\right)-\left(0, \beta_{k}\right)-w$ is a walk in H joining $(0,0)$ to w, and this walk contains the required path.

Next consider c). Suppose not, and let $z \in V(H) \cap V\left(H^{\prime}\right)$, say with $z \in B\left(g^{k}\right)$, noting that $k \geq 1$ since each level, in particular B_{0}, is an independent set in [P_{1}]. Then z has two distinct neighbors in B_{0}; namely u and $\left(0, \beta_{j}\right)$, for some $1 \leq j \leq q-1$. This contradicts the fact that the edge set of $\left[B\left(g^{k}\right) \cup B_{0}\right.$] is a perfect matching between the levels $B\left(g^{k}\right)$ and B_{0} by Theorem 13b. Thus $V(H) \cap V\left(H^{\prime}\right)=\emptyset$.

Consider now d). By part c), it suffices to show that $\left|V\left(P_{1}\right)\right|=|V(H)|+\left|V(H)^{\prime}\right|$. By Theorem 13b, it follows that $|V(H)|=|Z| q=(q-1) q$. For the same reason $\left|V\left(H^{\prime}\right)\right|=q$. Therefore $\left|V\left(P_{1}\right)\right|=q^{2}=|V(H)|+\left|V(H)^{\prime}\right|$ as required. QED

We can now complete the proof of the theorem by showing that P_{1} is connected. In view of Claim 3, to do this we are reduced to showing that there is an edge $v w \in E\left(\left[P_{1}\right]\right)$ with $v \in H^{\prime}$ and $w \in H$. Suppose no such edge exists. Since $\left[P_{1}\right]$ is $(q-1)$-regular by Theorem 13 , it follows that H^{\prime} is a simple $q-1$ regular graph on q vertices. Thus $H^{\prime}=K_{q}$. Hence $[N(u)]=K_{q-1}$. But this is a contradiction for $q \geq 5$ since by Theorem 13d the neighborhood of any nonisolated point in $C_{P}(q)$ is regular of degree 2 , while $[N(u)$] is regular of degree $q-2>2$ since we have assumed $q \geq 13$.

We can now obtain our independent set in $C_{P}(q)$ as a consequence of our previous results and the following theorem of Alon [1].

Theorem 15 [1] Let $G=(V, E)$ be a graph on N vertices with average degree $t \geq 1$ in which for every vertex $v \in V$ the induced subgraph on the set of all neighbors of v is r-colorable. Then the maximum size $\alpha(G)$ of an independent set in G satisfies $\alpha(G) \geq \frac{c}{\log (r+1)} \frac{N}{t} \log t$, for some absolute constant c.

Corollary 16 Let q be a power of an odd prime p, with $q \equiv 1(\bmod 3), q \geq 13$.
a) $\alpha\left(C_{P}(q)\right) \geq K q^{2} \log q$ for some constant K.
b) $M(q, q-3) \geq K q^{2} \log q$ for some constant K.

Proof. Consider a). By Corollary 12 there is no edge between any two subgraphs $\left[P_{r}\right]$ and $\left[P_{s}\right]$ for $r \neq s$. Since there are q such subgraphs, and by Theorem 13 a) they are pairwise isomorphic, it suffices to show that $\alpha\left(P_{1}\right) \geq K q \log q$ for some constant K.

We now apply Alon's theorem to the subgraph $\left[P_{1}\right]$ of $C_{P}(q)$. Now $\left[P_{1}\right]$ is $(q-1)$-regular by Theorem 13k, and has q^{2} points. Since the neighborhood of every point is a disjoint union of cycles by Theorem 13d, this neighborhood must be 3-colorable. It follows by Alon's theorem that $\left[P_{1}\right]$ contains an independent set of size $\frac{c}{\log 4} \frac{q^{2}}{q-1} \log (q-1) \sim K q \log q$, for some constant K.

For b), let I be an independent set in $C_{P}(q)$ of size $K q^{2} \log q$ for suitable constant K, guaranteed to exist by by part a). Then by the reduction made in the discussion preceding Lemma 10 we have $M(q, q-3) \geq|I| \geq K q^{2} \log q$.

4 Special case lower bounds for $M(n, d)$ via the Mathieu groups

In this section we consider the Mathieu groups $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}$, discovered by E. Mathieu in 1861 and 1873. These permutation groups are the earliest known example of sporadic simple groups. See [10], [6], or [25] for a discussion of their construction. These groups act on $11,12,22,23,24$ letters respectively, with M_{11} being a 1 point stabilizer of M_{12}, while M_{23} and M_{22} are 1 and 2 point stabilizers of M_{24} respectively.

In this section we apply the contraction operation to these permutation groups to obtain new permutation arrays, with resulting lower bounds for $M(n, d)$ for suitable n and d.

Since M_{12} is sharply 5 -transitive we have by Theorem 1 that $h d\left(M_{12}\right)=8$ and $M(12,8)=$ $\left|M_{12}\right|=95040$. Similarly since M_{11} is sharply 4-transitive we have $M(11,8)=\left|M_{11}\right|=7920$. For M_{24} we do not have sharp transitivity. But observe that for any permutation group G acting on some set, and three elements $\pi, \sigma, \tau \in G$, we have $h d(\pi, \sigma)=h d(\pi \tau, \sigma \tau)=h d(\tau \pi, \tau \sigma)$. Thus $h d(G)=\min \{h d(1, \sigma): \sigma \in G\}$. From the set of disjoint cycle structures of elements of M_{24} (available at [30]) we find that the largest number of 1-cycles in the disjoint cycle structure of any nonidentity element of M_{24} is 8 . Thus $h d\left(M_{24}\right)=24-8=16$, and from the stabilizer relation also $h d\left(M_{23}\right)=h d\left(M_{22}\right)=16$. We thus obtain $M(24,16) \geq\left|M_{24}\right|=24,423,040$, $M(23,16) \geq\left|M_{23}\right|=10,200,960$, and $M(22,16) \geq\left|M_{22}\right|=443,520$.

We now apply the contraction operation to these groups. Considering the action of M_{12} on the 12 -letter set $\Omega=\left\{x_{1}, x_{2}, \cdots, x_{12}\right\}$, we designate some element, say x_{12}, of Ω as the distinguished element F in the definition of π^{\triangle}. Then define for each $\pi \in M_{12}$ the permutation π^{\triangle} on the set Ω exactly as in the introduction. Thus, using the natural ordering of elements of Ω by subscript, the image string of any $\sigma \in M_{12}$ can be written $\sigma\left(x_{1}\right) \sigma\left(x_{2}\right) \cdots \sigma\left(x_{11}\right) \sigma(F)$.

As before, we let π_{-}^{\triangle} be the permutation on 11 symbols obtained from π^{\triangle} by dropping the final symbol F, and for any subset $S \subset M_{12}$, we let $S_{-}^{\triangle}=\left\{\pi_{-}^{\triangle}: \pi \in S\right\}$, sometimes writing this as $(S)_{-}^{\triangle}$.

Proposition 17 a) $h d\left(\left(M_{12}\right)_{-}^{\triangle}\right) \geq 6$.
b) $M(11,6) \geq\left|M_{12}\right|=95040$.
c) $M(10,6) \geq 8640$.

Proof. We start with a). Suppose not. Since $h d\left(M_{12}\right)=8$, and for any $\alpha, \beta \in M_{12}$ we have $h d\left(\alpha^{\triangle}, \beta^{\triangle}\right) \geq h d(\alpha, \beta)-3$ by Lemma 2 a, the contrary assumption implies $h d\left(\left(M_{12}^{\triangle}\right)_{-}\right)=5$. Thus there is a pair $\sigma, \tau \in M_{12}$ such that $h d(\sigma, \tau)=8$ and $h d\left(\sigma^{\triangle}, \tau^{\triangle}\right)=5$; so $h d\left(\sigma^{\triangle}, \tau^{\triangle}\right)=$ $h d(\sigma, \tau)-3$. Thus by Lemma 2 b we know that $\pi \sigma^{-1}$ has a 3 -cycle in its disjoint cycle factorization so the order of $\pi \sigma^{-1}$ is divisible by 3 .

Since $h d(\sigma, \tau)=8$ and π and σ are permutations on 12 letters, it follows that there are four positions, call them $x_{i}, 1 \leq i \leq 4$, at which π and σ agree. Then $\pi \sigma^{-1}$ belongs to the subgroup H of M_{12} fixing these four positions; that is $H=\left\{\alpha \in M_{12}: \alpha\left(x_{i}\right)=x_{i}, 1 \leq i \leq 4\right\}$. This H, denoted M_{8}, is known to be isomorphic to Q_{8}, the quaternion group of order 8 ([5], section 3.2). We can also verify this directly by making use of GAP (Groups, Algorithms, Programming), a
system for computational discrete algebra. The following output employing GAP shows that $H \cong Q_{8}$, the quaternion group of order 8 ([14])
gap $>G:=$ MathieuGroup(12);;
gap $>H=\operatorname{Stabilizer}(G,[1,2,3,4]$, OnTuples);;
gap $>$ StructureDescription (H);
" $Q_{8}^{\prime \prime}$
Now the order of $\pi \sigma^{-1}$ is divisible by 3 as noted above. But 3 does not divide $\left|Q_{8}\right|$, a contradiction to Lagrange's theorem.

Consider next b). Using Lemma 2 c and $h d\left(M_{12}\right)=8>3$, we have $\left|M_{12}\right|=\left|\left(M_{12}\right)_{-}^{\triangle}\right|$. Thus $\left(M_{12}\right)_{-}^{\triangle}$ is a permutation array on 11 letters of size $\left|M_{12}\right|$ with $h d\left(\left(M_{12}\right)_{-}^{\triangle}\right) \geq 6$. Part b) follows.

For part c), we recall from the introduction the elementary bound $M(n-1, d) \geq \frac{M(n, d)}{n}$. Using part a), we then obtain $M(10,6) \geq \frac{M(11,6)}{11} \geq 8640$.

We remark that using the same method as in part b) of the above proposition one can show $M(10,6) \geq\left|M_{11}\right|=7920$. But this is obviously weaker than the bound we give in part c).

We now consider the contraction of M_{24} and resulting special case bounds for $M(n, d)$. Using similar notation as for M_{12} above, we let M_{24} act on the set of 24 letters $\Theta=\left\{x_{1}, x_{2}, \cdots, x_{24}\right\}$, and we designate x_{24} as the distinguished symbol F in the definition of π^{\triangle} from the introduction. Now define π^{\triangle} for any $\pi \in M_{24}$ as in the introduction, along with accompanying definitions S^{\triangle} and S_{-}^{\triangle} for $S \subseteq M_{24}$.

Proposition 18 a) $h d\left(\left(M_{24}\right)_{-}^{\triangle}\right) \geq 14$.
b) $M(23,14) \geq\left|M_{24}\right|=244,823,040$.
c) $M(22,14) \geq \frac{\left|M_{24}\right|}{23}=10,644,480$.
d) $M(21,14) \geq \frac{\left|M_{24}\right|}{23 \cdot 22}=483,840$.

Proof.
For a), suppose not. Since $h d\left(M_{24}\right)=16$, and for any $\alpha, \beta \in M_{24}$ we have $h d\left(\alpha^{\triangle}, \beta^{\triangle}\right) \geq$ $h d(\alpha, \beta)-3$, it follows that $h d\left(\left(M_{24}\right)_{-}^{\triangle}\right)=13$. Thus there is pair $\sigma, \tau \in M_{24}$ such that $h d(\sigma, \tau)=$ 16 and $h d\left(\sigma^{\triangle}, \tau^{\triangle}\right)=13$; so $h d\left(\sigma^{\triangle}, \tau^{\triangle}\right)=h d(\sigma, \tau)-3$. Hence by Lemma $2 \mathrm{~b}, \tau \sigma^{-1}$ has a 3 -cycle in its disjoint cycle structure factorization.

Since $h d(\sigma, \tau)=16$, and σ and τ are permutations on 24 letters, it follows that σ and τ must agree on 8 positions. Thus $\tau \sigma^{-1}$ belongs to the subgroup H of M_{24} fixing these 8 positions. From the structure theory of M_{24}, we know that if these 8 positions form an "octad" (among the 24 positions), then $H=M_{16} \cong Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$, the elementary Abelian group of order 16 ([25] Theorem 3.21, and [26] pp. 197-208). Again, this can also be verified directly using GAP from the following output ([14]).

```
gap \(>G:=\) MathieuGroup(24);;
gap \(>H:=\operatorname{Stabilizer}(G,[1,2,3,4,5]\), OnTuples);;
gap \(>S=\operatorname{SylowSubgroup}(H, 2) ;\);
gap \(>\) octad \(:=\) Filtered \(([1 . .24], x \rightarrow\) not \(x\) in MovedPoints \((S))\);
[1,2,3,4,5,8,11,13]
gap \(>H:=\) Stabilizer ( \(G\), octad, OnTuples);;
gap \(>\) StructureDescription \((H)\);
\(" C_{2} \times C_{2} \times C_{2} \times C_{2}^{\prime \prime}\).
```

If these 8 positions do not form an octad, then H is the identity ([25), Lemma 3.1). Now the order of $\tau \sigma^{-1}$ is divisible by 3 , so 3 must divide $|H|$. By Lagrange's theorem, this contradicts that $|H|$ has order either 16 or 1 .

Consider next b). Using Lemma 2 c and $h d\left(M_{24}\right)=16>3$, we have $\left|M_{24}\right|=\left|\left(M_{24}\right)_{-}^{\triangle}\right|$. Thus $\left(M_{24}\right)_{-}^{\triangle}$ is a permutation array on 23 letters of size $\left|M_{24}\right|$, and by part a) we have $h d\left(\left(M_{24}\right)_{-}^{\triangle}\right) \geq$ 14. Part b) follows.

For part c), we again use the bound $M(n-1, d) \geq \frac{M(n, d)}{n}$. Using part b), we then obtain $M(22,14) \geq \frac{M(23,14)}{23} \geq \frac{\left|M_{24}\right|}{23}=10,644,480$.

For d), using $M(n-1, d) \geq \frac{M(n, d)}{n}$ again we get $M(21,14) \geq \frac{M(22,14)}{22} \geq \frac{\left|M_{24}\right|}{23 \cdot 22}=483,840$.

5 Concluding Remarks

We mention some problems left open from our work.

1. Recall that if I is an independent set in $C_{P}(q)$, then $M(q, q-3) \geq|I|$. To find a large such I, one can focus on any nontrivial connected component, say P_{1}, of $C_{P}(q)$. If P_{1} contains an independent set of size k, then by the isomorphism of the connected components $P_{i}, 1 \leq i \leq q-1$, we get an independent set of size $k(q-1)+q(q-1)=(q-1)(k+q)$ in $C_{P}(q)$, where $q(q-1)$ counts the number of isolated points in $C_{P}(q)$. Our lower bound $M(q, q-3) \geq K q^{2} \log q$ implies, again by the isomorphism of components, that $\alpha\left(P_{1}\right) \geq C q \log q$ (where $\alpha(G)$ is the maximum size of an independent set in a graph G), for some constant C. We therefore ask whether an improvement on this lower bound for $\alpha\left(P_{1}\right)$ can be found.

Now $V\left(P_{1}\right)$ can be viewed as a rectangular array $\{(i, a): i, a \in G F(q)\}$ as in Figure 2, where we let i be the row index, and a the column index. By Corollary 12 a an independent set in P_{1} is just a subset S of this array with the property that for any two points $(i, a),(j, b) \in S$ we have $(b-a)(j-i) \neq 1$ in $G F(q)$. Using the integer programming package GUROBI, we computed independent sets in P_{1} of size k for various q. This k, together with the resulting lower bound $(q-1)(k+q)$ for $M(q, q-3)$ are presented in Table 1. The primes $q=41,47,53,59,71,83,89$, for example, are not included in this table since $q \not \equiv 1(\bmod 3)$, and hence $M(q, q-3) \geq(q+1) q(q-1)$, an improvement over the lower bound obtained using GUROBI.
2. We also ask for good upper bounds on $\alpha\left(P_{1}\right)$.

6 Appendix - Some facts from Number Theory

In this section we review some facts from number theory that were used in this paper.
We start with some notation. For an odd prime p and integer $r \not \equiv 0(\bmod p)$, define the Legendre symbol $\left(\frac{r}{p}\right)$ to be 1 (resp. -1) if r is a quadratic residue (resp. nonresidue); that is a square (resp. nonsquare) $\bmod p$. If $r \equiv 0(\bmod p)$, then define $\left(\frac{r}{p}\right)=0$. A couple of simple facts about this symbol are these.

Lemma 19 For an odd prime p and integers r and s we have the following.
a) $\left(\frac{-1}{p}\right)=1$ if $p \equiv 1(\bmod 4)$, and $\left(\frac{-1}{p}\right)=-1$ if $p \equiv 3(\bmod 4)$.
b) $\left(\frac{r s}{p}\right)=\left(\frac{r}{p}\right)\left(\frac{s}{p}\right)$.

Proof. For a), suppose $p \equiv 1(\bmod 4)$. So write $p=4 k+1$, and consider the multiplicative group of nonzero elements mod p, which has order $4 k$ and is cyclic. Let x be a generator of this
group. Then note that in this group we have $1=x^{4 k}=\left(x^{2 k}\right)^{2}$, while also $(-1)^{2}=1$ in this group. Since the quadratic $z^{2}-1=0$ has exactly two solutions $z=1$ or -1 in $G F(q)$, and since $x^{2 k} \neq 1$ since x is a generator, it follows that $x^{2 k}=-1$. Thus -1 is a square $\bmod p$.

If $p \equiv 3(\bmod 4)$, then this cyclic group has order $4 k+2$ for some integer k. This time we have $1=\left(x^{2 k+1}\right)^{2}$, so that by the same reasoning as above we have $x^{2 k+1}=-1$. This shows that -1 is not a square $\bmod p$, since it is on odd power of the generator.

Consider now b). Just observe that the product $r s$ is a square $\bmod p$ if and only if both r and s are squares $\bmod p$ or if both r and s are non-squares $\bmod p$. Part b) then follows immediately.

We now recall the quadratic reciprocity law.
Theorem 20 (Gauss Quadratic Reciprocity Law) For odd primes p and q we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)} .
$$

There are lots of proof of quadratic reciprocity in the literature, so we omit the proof here. Now let's apply these facts to determining $\left(\frac{-3}{p}\right)$ for odd primes p.

Theorem 21 Let $p>3$ be an odd prime. Then
a) If $p \equiv 1(\bmod 6)$, then -3 is a quadratic residue $\bmod p$.
b) If $p \equiv 5(\bmod 6)$, then -3 is a quadratic nonresidue $\bmod p$.

Proof. By the lemma above we have $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)$, while by quadratic reciprocity we have $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)(-1)^{\frac{p-1}{2}}$. Thus

$$
\left(\frac{-3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{-1}{p}\right)\left(\frac{p}{3}\right) .
$$

The factors on the right depend on the residue classes of $p \bmod 4$ and $p \bmod 3$. Thus we consider the four cases defined by the combinations of these two possibilities, obtaining results that initially depend on the residue class of $p \bmod 12$.
case 1: $p \equiv 1(\bmod 4)$ and $p \equiv 1(\bmod 3)$; equivalently $p \equiv 1(\bmod 12)$.
Now $p \equiv 1(\bmod 3)$ says that $\left(\frac{p}{3}\right)=1$. Also $p \equiv 1(\bmod 4)$ implies $(-1)^{\frac{p-1}{2}}=1$ and by Lemma 19 also implies $\left(\frac{-1}{p}\right)=1$. So by the formula above we have $\left(\frac{-3}{p}\right)=1$, showing that -3 is a quadratic residue when $p \equiv 1(\bmod 12)$.
case 2: $p \equiv 1(\bmod 4)$ and $p \equiv 2(\bmod 3)$; equivalently $p \equiv 5(\bmod 12)$.
Now $p \equiv 2(\bmod 3)$ says that $\left(\frac{p}{3}\right)=-1$. Also $p \equiv 1(\bmod 4)$ implies $(-1)^{\frac{p-1}{2}}=1$ and also Lemma 19 implies $\left(\frac{-1}{p}\right)=1$. So by the formula above we have $\left(\frac{-3}{p}\right)=-1$, showing that -3 is a quadratic nonresidue when $p \equiv 5(\bmod 12)$.
case 3: $p \equiv 3(\bmod 4)$ and $p \equiv 1(\bmod 3)$; equivalently $p \equiv 7(\bmod 12)$.
Since $p \equiv 1(\bmod 3)$ we have $\left(\frac{p}{3}\right)=1$. Also $p \equiv 3(\bmod 4)$ implies $(-1)^{\frac{p-1}{2}}=-1$, and also Lemma 19 implies $\left(\frac{-1}{p}\right)=-1$. So by the formula above we have $\left(\frac{-3}{p}\right)=1$, showing that -3 is a quadratic residue when $p \equiv 7(\bmod 12)$.
case 4: $p \equiv 3(\bmod 4)$ and $p \equiv 2(\bmod 3)$; equivalently $p \equiv 11(\bmod 12)$.
Since $p \equiv 2(\bmod 3)$ we have $\left(\frac{p}{3}\right)=-1$. Again $p \equiv 3(\bmod 4)$ implies that $(-1)^{\frac{p-1}{2}}=-1$, and also that $\left(\frac{-1}{p}\right)=-1$. So by the formula above we get $\left(\frac{-3}{p}\right)=-1$, showing that -3 is a quadratic nonresidue when $p \equiv 11(\bmod 12)$.

Putting together cases 1 and 3 , we see that -3 is a quadratic residue $\bmod p$ when $p \equiv 1(\bmod$ 6), while cases 2 and 4 show that -3 is a quadratic nonresidue $\bmod p$ when $p \equiv 5(\bmod 6)$, as required.

Corollary 22 Consider the prime power $q=p^{m}$, where $p>3$ is an odd prime. If $q \equiv 1$ (mod $3)$, then -3 is a square in the finite field $G F(q)$.

Proof. Since $p>3$ is an odd prime we have either $p \equiv 1(\bmod 6)$ or $p \equiv 5(\bmod 6)$. If $p \equiv 1(\bmod$ 6), then -3 is already a square in the prime subfield $G F(p) \subseteq G F(q)$ by Theorem 21, so -3 is a square in $G F(q)$, as required.

So suppose $p \equiv 5(\bmod 6)$. Consider the quadratic extension $G F(p)(\sqrt{-3})$ of $G F(p)$ obtained by adjoining to $G F(p)$ a root of the irreducible (by Theorem 21) polynomial $x^{2}+3$ over $G F(p)$. Then $G F(p)(\sqrt{-3}) \cong G F\left(p^{2}\right)$, and -3 is a square in $G F\left(p^{2}\right)$.

Since $q \equiv 1(\bmod 3)$, then since $p \equiv 5(\bmod 6)$ we have $p \equiv 2(\bmod 3)$, so it follows that m must be even. We recall the basic fact from finite fields that $G F\left(p^{r}\right) \subseteq G F\left(p^{s}\right)$ if and only if $r \mid s$. It follows that $G F\left(p^{2}\right) \subseteq G F(q)$. Thus since -3 is a square in $G F\left(p^{2}\right)$, then -3 is a square in $G F(q)$.

Corollary 23 Let $q=p^{m}$ be a prime power, $q \equiv 1(\bmod 3)$.
a)The equation $x^{2}+x+1=0$ has two distinct solutions in $G F(q)$. If x_{1} is such a root, then $\frac{1}{x_{1}}$ is the other distinct root.
b)For q odd and distinct $i, j \in G F(q)$, the equation $x^{2}-(i+j) x+i j+(i-j)^{2}=0$ has two distinct roots in $G F(q)$.

Proof. Consider a), and suppose first that p is odd. Since the characteristic of the field is odd, we may find the solutions by the standard quadratic formula. We obtain the solutions $x=\frac{1}{2}[-1+\sqrt{-3}], \frac{1}{2}[-1-\sqrt{-3}]$, where we have used the existence of $\sqrt{-3}$ in $G F(q)$ by Corollary 22. These solutions are distinct since p is odd.

Now suppose $p=2$. Recall the trace function $\operatorname{Tr}_{G F(q) / G F(2)}(x)=\sum_{i=0}^{m-1} x^{2^{i}}$, defined for any $x \in G F(q)$, which we abbreviate by $\operatorname{Tr}(x)$. It can be shown (see [21]) that the quadratic equation $a x^{2}+b x+c=0$, with $a, b, c \in G F\left(2^{m}\right), a \neq 0$, has two distinct solutions in $G F\left(2^{m}\right)$ if and only if $b \neq 0$ and $\operatorname{Tr}\left(\frac{a c}{b^{2}}\right)=0$. In our case we have $a=b=c=1$, so $\frac{a c}{b^{2}}=1$. Since $p=2$ and $q \equiv 1(\bmod 3), m$ must be even. Thus there are an even number of terms in the sum defining $\operatorname{Tr}(x)$, each of them equal to 1 . So since the characteristic is 2 , we get $\operatorname{Tr}\left(\frac{a c}{b^{2}}\right)=0$ in our case. It follows that $x^{2}+x+1=0$ has two distinct solutions when $p=2$, as required.

Observe that if x_{1} is a root of of $x^{2}+x+1=0$, then by direct substitution so is $\frac{1}{x_{1}}$. To show that x_{1} and $\frac{1}{x_{1}}$ are distinct, assume not. Then $x_{1}=1$ or -1 . If q is even, then $x_{1}^{2}+x_{1}+1=0$ implies that $1=0$ since the characteristic of the field is 2 , a contradiction. Assume q is odd. Then if $x_{1}=1$ we get $1+1+1=0$, implying $q \equiv 0(\bmod 3)$, a contradiction. If $x_{1}=-1$, then we get $1=0$, contradiction. Thus x_{1} and and $\frac{1}{x_{1}}$ are distinct.

Next consider b). Applying the quadratic formula in this field of odd characteristic, we get the two solutions $x=\frac{1}{2}\left[i+j \pm \sqrt{(i+j)^{2}-4\left(i j+(j-i)^{2}\right)}\right]=\frac{1}{2}\left[i+j \pm \sqrt{-3\left(i^{2}+j^{2}\right)+6 i j}\right]=$ $\frac{1}{2}\left[i+j \pm \sqrt{-3(i-j)^{2}}\right]=\frac{1}{2}[i+j \pm \sqrt{-3}(i-j)]$. Now since -3 is a square in $G F(q)$ for $q \equiv 1(\bmod 3)$ by Corollary 22 , it follows that the two solutions for x can be written as $x_{1}=$ $\frac{1}{2}[i(1+\sqrt{-3})+j(1-\sqrt{-3})]$, and $x_{2}=\frac{1}{2}[i(1-\sqrt{-3})+j(1+\sqrt{-3})]$. Also these two solutions are distinct since $i \neq j$ and q is odd.

References

[1] N. Alon: Independence numbers of locally sparse graphs and a Ramsey type result, Random Structures and Algorithms 9(3) (1996), 271-278.
[2] S. Bereg, A. Levy, and I.H. Sudborough: Constructing Permutation Arrays from Groups, Designs, Codes, and Cryptography 86(5) (2018), 1095-1111.
[3] S. Bereg, L. Morales, and I.H. Sudborough: Extending permutation arrays: improving MOLS bounds, Designs, Codes, and Cryptography 83(3) (2017), 661-883.
[4] I. Blake, G. Cohen, and M. Deza: Coding with permutations, Information and Control 43 (1979), 1-19.
[5] L.S. Boya: Introduction to Sporadic Groups, Proceedings of the Workshop "Supersymmetric Quantum Mechanics and Spectral Design", SIGMA 7 (2011), 1-18.
[6] P.J. Cameron: Permutation Groups, Cambridge University Press, Vol. 45 (1999).
[7] C.J. Colbourn, T. Klove, Alan C.H. Ling: Permutation arrays for powerline communication and mutually orthogonal latin triangles, IEEE Transactions on Information Theory $5 \mathbf{5 (6)}$, 1289-1291.
[8] W. Chu, C.J. Colbourn, and P. Dukes: Constructions for permutation codes in powerline communications, Designs, Codes, and Cryptography 32 (2004), 51-64.
[9] M. Deza and S.A. Vanstone: Bounds for permutation arrays, J. of Statistical Planning and Inference 2(2) (1978), 197-209.
[10] J. Dixon and B. Mortimer: Permutation Groups, Graduate Texts in Mathematics Vol. 163, Springer-Verlag, New York (1996).
[11] P. Dukes and N. Sawchuk: Bounds on permutation codes of distance four, J. of Algebr. Comb. 31 (2010), 143-158.
[12] H.C. Ferreira and A.J.H. Vinck: Interference cancellation with permutation trellis arrays, Proc. IEEE Vehicular Technology Conf., Boston, MA, USA (Sept. 2000), 2401-2407.
[13] P. Frankl and M. Deza: On the maximum number of permutations with given maximal or minimal distance, J. of Combinatorial Theory, Series A 22(3) (1977), 352-360.
[14] D.F. Holt, personal communication.
[15] S. Huczynska: Powerline communications and the 36 officers problem, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 364(1849) (2003), 34-40.
[16] I. Janiszczak, W. Lempkin, P.R. Ostergard, and R. Staszewski: Permutation codes invariant under isometries, Designs, Codes, and Cryptography 75(3) 2015, 497-507.
[17] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck: Rank modulation for flash memories, Proc. IEEE Symp. Inf. Theory (2008), 1731-1735.
[18] A. Jiang, M. Schwartz, and J. Bruck: Error-correcting codes for rank modulation, Proc. IEEE Symp. Inf. Theory (2008), 1736-1740.
[19] P. Keevash and C.Y. Ku: A random construction for permutation codes and the covering radius, Designs, Codes, and Cryptography 41 (2006), 79-86.
[20] N. Pavlidou, A.J.H. Vinck, J. Yazdani, and B. Honary: Powerline communications: state of the art and future trends, IEEE Commun. Mag. 41(4) (2003), 34-40.
[21] K. Pommerening: Quadratic equations in finite fields of characteristic 2, unpublished manuscript (2000), English version (February 2012).
[22] Derek J.S. Robinson: A Course in the Theory of Groups, Graduate Texts in Mathematics Vol. 80, Springer-Verlag, New York (1996).
[23] D.H. Smith and R. Montemanni: A new table of permutation codes, Designs, Codes, and Cryptography 63(2) (2012), 241-253.
[24] D.R. Stinson: Combinatorial Designs, Springer, India (2010).
[25] Leo Taslaman, The Mathieu groups, M.S. thesis, Lund University, 2009.
[26] T. Thompson: From error-corecting codes through sphere packing to simple groups, Carus Mathematical Monographs 21, Mathematical Association of America (1983).
[27] D.R. de la Torre, C.J. Colbourn, and A.C.H. Ling: An application of permutation arrays to block ciphers, Proc. 31st Southeastern Int. Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, Fl., USA 145 (2000), 5-7.
[28] A.J.H. Vinck: Coded modulation for powerline commumnications, A.E.U. Int. J. Electronic Commun. 54 (2000), 45-49.
[29] X. Wang, Y. Zhang, Y. Yang, and G. Ge: New bounds of permutation codes under Hamming metric and Kendall's τ-metric, Designs, Codes, and Cryptography 85(3) (2017), 533545.
[30] https://en.wikipedia.org/wiki/Mathieu group M_{24}

q	k	$(q-1)(k+q) \leq M(q, q-3))$
7	13	120
13	33	552
19	81	1800
31	122	4590
37	191	8208
43	191	9828
49	226	13200
61	314	22500
67	340	26862
73	382	32760
79	415	38532
97	535	60672
103	598	71502
109	637	80568
121	2613	328080
127	768	112770
139	867	138828
151	945	164400
157	984	177996
163	1031	193428
169	1069	207984
181	1174	243900
193	1262	279360
199	1310	298782
211	1403	338940
223	1496	381618
229	1565	409032
241	1671	458880
277	1956	616308
283	2009	646344
289	2045	672192
307	2197	766224
313	2272	806528
331	2396	899910
337	2462	940464
343	2501	972648

Table 1: Independent set of size k in P_{1} obtained by integer programming, and resulting lower bound $(q-1)(k+q)$ for $M(q, q-3)$, when $q \equiv 1(\bmod 3)$.

[^0]: *Computer Science Dept., University of Texas at Dallas, Richardson, TX 75083, USA
 ${ }^{\dagger}$ Dept. of Mathematics, Miami University, Oxford, OH 45056, USA

