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Abstract Analyzing the security of cryptosystems under attacks based on the mali-
cious modification of memory registers is a research topic of high importance. This
type of attacks may affect the randomness of the secret parameters by forcing a lim-
ited number of bits to a certain value which can be unknown to the attacker. In this
context, we revisit the attack on DSA presented by Faugere, Goyet and Renault during
the conference SAC 2012: we simplify their method and we provide a probabilistic
approach in opposition to the heuristic proposed in the former to measure the lim-
its of the attack. More precisely, the main problem is formulated as the search for a
closest vector to a lattice, then we study the distribution of the vectors with bounded
norms in a this family of lattices and we apply the result to predict the behavior of
the attack. We validated this approach by computational experiments.
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1 Introduction

The security of the main public-key cryptosystems is based on the difficulty of solv-
ing certain mathematical problems. In this context, the most commonly used prob-
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lems come from Number Theory, most notably the integer factorization problem and
the discrete logarithm on finite cyclic groups. DSA and RSA are two of the most used
cryptosystems and their security relays in these problems. There are many software
products like SSH, OpenPGP, S/MIME and SSL which use RSA for encrypting and
signing and DSA for signing. The National Institute of Standards and Technology
has also promoted the use of elliptic curve cryptography, whose security is based on
the discrete logarithm problem in special groups. Although, the National Security
Agency has recently advocated to start replacing these cryptosystems [2] because of
the potential developments in quantum computing, the perspective is that these cryp-
tosystems are going to be widely use in the short term.

In this paper, we study a cryptosystem based on the discrete logarithm problem.
Apart from the advances in quantum computing and some recent results on quasi-
polynomial complexity algorithms for solving the discrete logarithm problem in mul-
tiplicative groups of small characteristic fields [3l[16,[17,[19] and for certain abelian
groups [32], the discrete logarithm problem on finite fields of large characteristic re-
mains solvable in subexponential time only and the best algorithm known is given by
Adleman and DeMarrais |[[1]].

The discrete logarithm problem in elliptic curves seems to be even harder. Al-
though there are results for anomalous curves [4]] and curves defined in extension
fields [7], known approaches run in exponential time (see the survey by Galbraith
and Gaudry [13]]).

However, this fact does not mean that attacking secure cryptosystems is hopeless.
Many practical attacks are possible because there is additional information avail-
able due to the knowledge of implementation. For example, Genkin, Shamir and
Tromer [[15] showed that it is possible to recover the private key of a 4096-RSA cryp-
tosystem using the sound pattern generated during the decryption of some chosen
data.

These advances point to a new research question: which information should be
added in order to solve this problem in polynomial time. This question has been in
the spotlight for a long time. Indeed, Rivest and Shamir [[29] introduced the notion of
oracle to formalize this approach in the context of factorization of RSA modules.

In this article, we focus on the Digital Signature Algorithm (DSA) [11] whose se-
curity is based on the difficulty of the DLP in multiplicative groups of finite fields (see
Section 2] for more details). The first proposal of using an oracle on DSA comes from
Howgrave-Graham and Smart [18]] using the LLL lattice reduction algorithm [21] to
take benefit from the knowledge of a small number of bits in many ephemeral keys.
However, these results were only heuristics, even though confirmed by experimenta-
tion. Nguyen and Shparlinski [25/26] presented the first polynomial time algorithm
that provably recovers the secret DSA key if about logl/ 2(q) LSB (or MSB) of each
ephemeral key are known (g denoting the order of the chosen group, see Section
for a polynomially bounded number of corresponding signed messages. Other attacks
take advantage using the bits in the ephemeral key and the Fast Fourier Transform [5}
6. We remark that, although, these type of attacks normally need less bits, the com-
putational cost is bigger. However, there is a common point between these attacks.
They need explicit information about the bits used and they bypass the problem of
computing discrete logarithms.
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At SAC 2012, Faugere, Goyet and Renault [9] restricted the power of the oracle
by introducing an implicit attack on DSA. More precisely, they do not assume that
the oracle explicitly outputs bits of the ephemeral keys but rather provides only im-
plicit information. In this implicit scenario, the oracle is stated in the following way:
the attacker knows some signatures that were computed with ephemeral keys sharing
some bits. Instead of an explicit information related to the value of these shared bits
the implicit information provides only the positions of the shared bits. In an applica-
tion point of view, this oracle can be instantiated by an invasive attack where some
registers used by a pseudo random generator would be destroyed by a laser and keep
always the same unknown value during the computation of many signatures. The in-
troduction of implicit information given by an oracle where first presented by May
and Ritzenhofen [22] in the context of the RSA cryptosystem and well studied since
then (e.g. [10L30])). The attack proposed in [9] is heuristic based. The contribution of
this article is to provide a rigorous proof and analyze the applicability of this attack.
This article presents results for the DSA over a finite field, but we remark that these
techniques can be adapted for the elliptic curve version (ECDSA) as well.

The paper is organized as follows. Section [2] gives an overview of DSA, recalls
the attack proposed in [9]] and presents the main contribution of this paper. Section
presents the background in uniform distribution theory necessary to understand the
probabilistic approach. Sectiond]presents the proofs of our main results and Section[3]
shows the performance of the attack in experiments and discusses the relation with
the theoretical results.

2 Implicit attack on DSA

We follow the same notation as in the article [9] and go through the technique pro-
posed there. The next diagram represents the protocol to generate a public key and
signing a message using DSA with finite fields. For readers not familiar with DSA,
we provide the explicit details.

step 0 step 1 step 2
| | | |
User generates User publishes To sign m
pql(p—1) g D q,8% user calculate r, s
g € F), of order ¢ as in Equation (3)
andkey 1 <a<gq. and send m, r, s.

Let M be a positive integer, p be a a L-bit prime and ¢ be a prime divisor of p — 1
satisfying 2Y~! < ¢ < 2™ The integers p and ¢ are recommended to be chosen such
that (p,q) € {(1024,160), (2048,224),(2048,256),(3072,256) } see [12].

The finite field of g elements is denoted by F, and each of its element is uniquely
represented by an integer in the range {(1 —¢)/2,...,(¢—1)/2}. This also implies
that in the sequel, any number modulo ¢ gives a number in the previous range. For
the DSA signature scheme, the user selects a random element a € I, which must be
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kept private, and then publishes g, p, an element g € F), of multiplicative order g and
g* mod p.

For efficiency and security reasons, the bit-size of the messages signed with DSA
has to be the same as the one of ¢ (e.g. 160 or 256). Thus for a general message it is
necessary to consider its hash and only sign this hash. In the sequel, we denote by .7
this hash function and the hash of the message with m (which its bit-size is assumed
to be adapted to the chosen g). The hash function is not important in the results, if it
has standard security requirements.

To sign m, the user generates a random number k € I, (called the ephemeral key)
and calculates,

ri=g* modp modqg and s:=k '(m+ar)modgq. (1

The user requires that r and s are not zero, and in this case, (r,s) is a valid signature.
Otherwise, the user generates another k and calculates (r,s) again.

2.1 Scenario of the attack

We suppose that the user wants to sign n messages, whose hashes are my,...,m,, so
he generates ki, ..., k, and publishes the signatures (s1,71),..., (s;,r,). We also sup-
pose that, due to some malicious actions of the attacker, the corresponding ephemeral
keys differs only in a block of bits of known length so the attacker knows that,

my +ar; —s1k; =0 mod g,

my + ary — spkp = 0 mod g,

2)
my, + ar, — spk, = 0 mod g,
where k; have the following property,
ki=kK+2%+2",K, |k|<2M8 fori=1,...,n 3)

with k', k" two unknown fixed z-bit and (M —t')-bit integers respectively. Thus, there
is a total of & = M —t' +1 shared bits. Notice that we can substitute k; using Equa-
tion (3) in Equation (2) and eliminate variables &’ and k" which results in the follow-
ing set of equations,

aﬁz =0 —|—/~€1 —7(2 mod g,
aPs = a3 +ki — k3 mod ¢,

aﬁn = 0Oy +I~(l _]En mod q,

where k; come from (3) and o, fB; € [F, are public values defined as,

o :=2""(s; 'm; — sy 'my) mod g,

“4)
Bi = 2_’(sl_lr1 —s5;7'7;) mod g.
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Next, we can build a lattice using the rows of the following matrix,

M-8 0 og... 0

0 27%B Bs... B
0 0 g 0..0

0 0 0g..0]}" o)
0 0 0O0...gqg
and find a short vector in it using an appropriate algorithm, for example [31]. The

attacker hopes to recover the following vector,

(ZM_S,—QQ_S,];Q —7{1,...,]{" —kl)7

which has a rather short norm. This is the algorithm proposed in [9], with some
discussion depending on the parameters.

2.2 Contributions

Our first contribution is a variant of this proposal, we still relate the recovering of the
ephemeral keys in DSA with a lattice problem but we give rigorous results on the
performance of the resulting algorithm.

To give this new attack, we follow the presentation in [24]]. First, we define the
lattice . by the rows of the following matrix,

270 B, Bs ... B
0 g...00
I E (©)
0 0...q 0
0 0...0 ¢
and two vectors t, u,
t=(0,0627063,...706”)7
(7N

u= r(a2*5,y2,y3,...,yn),

where ¥ := aff; mod g fori =2,...,
Lattice . and t are known to the attacker and his goal is to recover u using this
information. It is straightforward that u € .2 and [ju —t|| < \/n2™~%) Thus u is a
vector in this lattice, which is close to t, and we hope that the solution of the closest
vector problem is u.
If we call h € & the solution to the closest vector problem then v = u — h verifies
ve.Z and||v] = u—hl < Ju—t]+[lt—h| < yu24-5+1,

n.



6 Domingo Gomez-Perez?, Guénagl Renault®<

The so-called Gaussian heuristic (see [27, page 27, Definition 8]) provides a way
of analyzing this method’s performance, describing those cases where h is expected
to be u. The shortest vector of lattice .Z is expected to have norm

1 1
nt vol(.Z) /" ~ ntl

171/n275/n
en en 4

SO, as soon as
q2—2/(n+1)2—6/n > (en.)22(M—5+1)

)

we hope to recover u.

Applying the Gaussian heuristic to the lattice defined in Equation (3)) is equivalent
to this situation because a short vector u € £ defines the short vector (0,u) which
is in the lattice defined in @ This argument is heuristic in nature, so an attacker
who finds the closest vector in % to t has no theoretical guarantee to rediscover a.
We extend this argument to a probabilistic-in-nature argument. This means, we can
measure the success probability of this attack.

Assumption and Statement of the Main Result. In order to state our main result, we
need that the hash function .#” used in DSA verifies a property (which is the case in
practice):

Assumption 1 Let M and M be two different messages. The probability of a colli-
sion

(M) = (M)

is supposed to be less than =%~ where d is some positive constant that will be
defined later.

Under this assumption, we can now state our main result.

Theorem 1 Under the notations used above and Assumption (1| there exists d > 0
such that the probability that u is the solution of the closest vector problem where t
is the target vector in % is greater than 1 — g(2~9+lognt1 4 g=dyn—1,

This is equivalent to say that when M < (n — 1)min{Jd — logn — 1,dM}, then the
attack has non negligible probability of being successful.

We remark that this assumption is not a big restriction because the expected prob-
ability of collision on a good hash function is of order g !.

Also, although d is difficult to be evaluated exactly, if g > p® for some positive
0 < € < 1/2, then d > 2'%-82/¢ _1oglog p/logq when p is sufficiently big. This
gives a lower bound for the success probability of the algorithm.

Moreover, we conjecture that the value of d is close to 0.5, so if § ge 1og]/ 2(M )
and n > M/log~'/>(M), the probability of success is greater than 1 —1/n.

This theorem can be generalized in the case where each ephemeral key is taken
with £ blocks of bits fixed sharing a total of § bits. This case was also considered in
[9] with a heuristic approach. Again, in order to obtain a probability of success of the
attack, the hash function has to verify Assumption
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Theorem 2 Under the notation used above, and generalizing the attack above for
ki,...,ky, having £ blocks of bits sharing a total of & bits, there exists d > 0 and a
probabilistic algorithm to recover a in polynomial time in the size of the input such
that the success probability is greater than 1 — g(2~9+102n+1 4 g=d(Jog )0 )1,

For practical purposes, the most interesting case is £ = 1, so we focus on this case,
the proof of the general case follows the same ideas with more technicalities.

3 Short vectors and Discrepancy measures

Coming back at our original problem, we remark that we want to prove that the
solution of the CVP is, in some way unique and this is related with the norm of the
shortest vector in the lattice .. This lattice has a vector of norm at most 2¥~% if and
only if there exists b € Fy, such that

bPi =h; mod g, where |h| < M=8 =2 .. .n.

If B; were taken randomly and independently in Iy, then the probability of this event
is approximately ¢g2~%("~1). More precisely, we have the following result from [24].

Lemma 1 ([24]) Let a € F, be different from zero. Choose integers [, ..., B, uni-
formly and independently at random in IF,. Then with probability P > 1 — g2~ %=1
all vectors v € & such that ||V||« < 2M~% are of the form

v=(62"%0,...,0),
where b =0 mod g and ||V||« is the maximum of the absolutes values of vector v.

Notice that this requires that 3; are realizations of random independent variables in IF,,
and, unfortunately, as it is mentioned in [24], this is not necessary the case. However,
if B; are sufficiently well-distributed, then the situation remains the same.

In order to keep the paper self-contained, we recall a way to measure well-
distribution through the concept of discrepancy.

Definition 1 Let I" be a multiset of N points contained in the real interval [0, 1), then
the discrepancy of the set is defined as

TF(%) 7|(93‘

Dy(T) = sup |-

BC[0,1)

i

where Tr-(4) is the number of points of I" inside the interval
B =B, %% C0,1)
of volume |%| = %8 — 28" and the supremum is taken over all such boxes.

From the definition, it is easy to see that the discrepancy is a number between 0 and
1. The closer the value is to 0, more uniformly is distributed in the unit interval. For
more information about discrepancy, see [8]]. We also need to introduce the following
definition.
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Definition 2 A set .7 of integers is A-homogeneously distributed modulo ¢ if for
any integer b coprime with g the discrepancy of the set,

bt d
{n;o c| | teﬂ}

is at most A.
We now state the following lemma. from [24].

Lemma 2 ([24]) Let a € F, be different from zero. Choose integers f,,..., B, uni-
formly and independently at random from 7, which is A—homogeneously dis-
tributed modulo q. Then with probability P > 1 —q(27% + A)*~ all vectors v € £
such that ||v|| < 2M=% are of the form

v=(b27%0,...,0),
where b =0 mod g and ||V||« is the maximum of the absolutes values of vector v.

To show the limits of the attack, it is necessary to show that f3,,..., B, defined in
Equation (d)) are taken from a set A—homogeneously distributed. For this reason, we
improve [24, lemma 10], which could be of independent interest and show that the
following set,

I'={s'mmodq | wheres, m are defined in Equation (I)},

is g~“-homogeneously distributed.

Lemma 3 Fixed a real number 1/2 > € > 0, then for any sufficiently big p, there
exists d > 0 such that for any g € F,, of multiplicative order q > p¥, the set I is g -
homogeneously distributed provided that the hash function verifies Assumption[l]

The proof of this lemma will be given in Section[d] By lemma[2] a discrepancy bound
for the set

—1
Fe { bs~'m mod ¢
q
for any b coprime with g gives a bound for the probability of . having a sufficiently
short vector. Lemmaf[3]alone is not sufficient to measure the limits of the attack. Also,
it is important to note that to find the closest vector in a lattice to a given target is
an NP-complete problem if the dimension of the lattice is a parameter. The attacker
relies on algorithms that provide only approximations for the closest vector in a lattice
when the dimension is large. In particular, he can use a combination of Schnorr’s

modification [31] of the LLL algorithm with the result of Kannan to approximate the
CVP [20]. We thus have the following result.

| where s, m are defined in Equation @)} ,

Lemma 4 There exists a polynomial time algorithm which, given an n-dimensional
Sull rank lattice £ and a vector v, finds a a vector v € £ satisfying the inequality,

[ — || < 20(nlog?log(n)/log(m) i ||r —h|| | h e £},

where the implied constants are absolute.
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This lemma shows that we must also consider the cases where the vector found is not
so short, and this is the reason that proving results for § small is difficult.

There is also an added difficulty, coming from §. Not all the bits of the ephemeral
key k; are taken randomly and independently, indeed only N — § are taken at random
and the rest are fixed. The case of many blocks of shared bits is difficult because
there are several blocks of bits which are fixed. However, in this case, one can prove
a bound for the discrepancy of the set I". We cite the following lemma without proof
because its independent interest and mention that this follows the same lines as the
previous result.

Lemma 5 Fixed a real number 1/2 > € > 0, then for any sufficiently big p, there
exists d > 0 such that for any g € F, of multiplicative order g > pt, T is a g~ (log q)'-
homogeneously distributed when k is taken with € blocks of bits fixed provided that
the hash function verifies Assumption[]

As explained above, we focus on the case ¢ = 1 and thus we will prove this lemma in
the next section for the case where £ = 1.

This result gives useful information whenever the discrepancy of the set I is
smaller than 2~ V124, We see that if £ is fixed and q and J are big enough, then the
attack has a high probability of success.

4 Main results
4.1 Exponential Sums and Discrepancy

In this section, we study the discrepancy of the set I" (see the definition on page 8)) in
the unit interval, Typically the bounds on the discrepancy of a sequence are derived
from bounds of exponential sums with elements of this set. The relation is made
explicit in the celebrated Koksma—Sziisz inequality which we present in the following
form.

Lemma 6 (Corollary 3.11, [28]) Let = be a set of N points in the range [—q /2, ...,q/2]
such that there exits a real number B with the property

Y exp <2ﬂ:iux)
xXeE q

for any integer u with u # 0 and —q/2 < u < q/2. Then, the discrepancy Dy(Z)

<B,

where,
— X —
E= { —|lxek },

q
satisfies
Blogg
Dy(Z) K )
v(E) N

where the implied constant is absolute.

! We notice that f3; are elements of the set I plus sl’lml and then reduced modulo g. But this does not
change the value of the discrepancy.
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For a positive integer » we denote
e.(z) = exp(2miz/r), where z is an integer.

Notice that for a prime r = ¢, the function e,(z) is an additive character of IF,.
Exponential sums are well studied and used extensively in number theory, uniform
distribution theory and many other areas because of their applications. In the follow-
ing lemmas, we outline several known properties.

Lemma 7 (Exercise 11.a,Chapter 3, [33]) Then, for any set X C F, and k € F,,
the formula

Y ) eq(u(k—k’)):{o ifk g A,

ueFy K et q otherwise,

holds.

Lemma 8 (Exercise 11.c,Chapter 3, [33]) Forany 1 <h < qandu € F, u#0, the
following inequality,

h
Z e, (uxy)

y=1

ly

4q x€lFy,

< logg,

holds, where the implicit constant is absolute.

We will need the following version of the Weil bound.

Lemma 9 ([23]) Let F/G be a non-constant univariate rational function over F,
and let v be the number of distinct roots of the polynomial G in the algebraic closure

of F,. Then
£ (5)

xelFy,

< (max(degF,degG) +v* —2) ¢'/> +p,

where X* indicates that the poles of F /G are excluded from the summation, v = v
and p =1 ifdegF < degG, otherwise vi =v+1 and p = 0.

In order to prove the main result of this paper, we will need to study the number of
solutions of the left part of Eq. when k has some fixed bits. Nguyen and Shpar-
linski [24) lemma 8] proved a similar result but we prove a stronger bound using the
following result.

Lemma 10 (Theorem 4.1, [14]) Letr 3 < m < 1.44loglogp be a positive integer,
and ¢ > 0 an arbitrary fixed constant. Suppose that X1, ...,X,, are subsets of IF, not
containing 0 and satisfying the condition

1X1]- X - (1X5] - X)) /BT > e
Then,

Yo X epln )| < K Xalp 04

X1€X) XmEXm
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The following result is a particular case of the one given in [14, Corollary 4.1], but
we prove here an explicit version for this case.

Lemma 11 Fixed a real number 1/2 > & > 0, then for any sufficiently big p and
g € F, of multiplicative order g > p?, the following bound,

q

Z ep(cgk)

k=1

1—n145-82/¢
)

max

<
ged(c,p)=1 =1

holds.

Proof The proof is just the application of lemma Fix the value of ¢ to 1/81, and
select an integer m satisfying,

PSS ST (1 160) > 82,

where the inequality on the right has been obtained by substituting ¢ = p? and taking
logarithms in the equality on the right.

Now, considering X; =Xp =--- =X, 1 ={g- mod p | k=1,...,q}, Xp = {cx1 | x; €
X1} and lemma(I0] gives

m

9 —m el _—m
Z ep(cgk) < qmp72 /180 — Zep(cgk) <gp 2 /(lSOm).
k=1 k=1

Now, select m the minimum integer satisfying (m + 160)e > 82. If p satisfies m <
1.441oglogp, i. e. it is sufficiently big, substituting the minimum value of m and
q > p® give the result.

The next result is a generalization of a result by Shparlinski and Nguyen [24] lemma
8]. In this result, we prove an asymptotic bound for the discrepancy for the elements
of the multiplicative group generated by g for sufficiently big p.

Lemma 12 Fixed a real number 1/2 > € > 0, then for any sufficiently big p and g €
IF, of multiplicative order q = p¥, the number of solutions of the following equation,

¢¢ mod p modg=p, pecl,

where 1 <k <gqis 0(q1_2145782/£ log p), where the implied constant is absolute.

Proof Defining L = [p/q]|, it is only necessary to bound the number of solutions of
(8F—qx) modp=p, 0<x<L,

and where p € IF,, is fixed. By lemma the number of solutions is bounded by

p L gq 1 14 q L
Y Y Zep<c<g"qxp>>‘ = ‘p Zlepecmkz e(cg’) Y ep(—gex)|.
c= =1

x=0
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Now, we bound this sum using lemmas [8|and [IT]so
q

L
LY o) ¥ el ¥ e

IR

145-82
< q172 /e logp

Y ep(—qex)

x=0

<2

1
p
This finishes the proof.

Now, we will give an upper bound of the following exponential

Z Z e (c )+ uk),

me (M) keF,
where f(k,m) is defined as,
B(k,m):=2"(s"'r) mod ¢,

and s, r are defined in (I)). The symbol X* indicates that the poles are excluded from
summation.

Lemma 13 Fixed a real number 1/2 > € > 0, then for any sufficiently big p and any
g € F), of multiplicative order q = p¥, the bound

max W1/2q3/272145782/8 10g2 D,

ged(e,q)=1

Z ey(c ) +uk)| <

me (M )keF,

holds, where the constant is absolute.

Proof Taking any integer ¢ coprime with g and calling ¢ the value of the exponential
sum, we have

O =

Z e,(c )+ uk)| <

meA (M) kEF,

)

meA (M)

Z e,(c ) Fuk)|.

kelF,

For A € F, we denote by H(A) the number of m € J(.#) with m = A. We also
define the integer ¢o := 27'c mod q. Then,

o= Y H(A Zeq(coli(k)( )—i—uk) ,

A€l kel

where a is the private key, the symbol X* indicates that the poles are excluded from
summation and r(k) := g€ mod p mod ¢
Now, we apply the Cauchy inequality,

Y e, (com + uk)

keR,

2

P<(Y HAOY Y

A€l A€l

®)
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‘We remark that,
Y HAP=w. ©)

Aely

We can operate with the other term in the right side of Equation (8).

Py (o Fartiy +¢) |
L oo (2t i) ) =

AEF, ki kP,
* kir(ki) kyr(kz) ) )
€q | Co - +ulk; —kp) ).
ki ko €T, )L;Fq ! ( (7L +ar(ki) A+ar(k) ( )

)

A€l

<

We write the inner sum in the following way:

L (o (T4 7 i) T 4) = B R4

AcF, AcF,

o= (o0 oty ~ X fantly) 1 =4)).

where

Notice that Fy, t, (X) is a rational function in X when k; and k; are fixed. The function
is not constant if r(k;) # r(k») because then Fi, x, has two different poles. If r(k;) =
r(ka), the sum is constant only in two cases: either k| = k» or r(k;) = r(ka) = 0. By
lemma . we see that the number of such pairs is O(q2’2146782/8 log? p+q). In other
case, it is easy to see that F, 4, (X) is not a constant function so it is possible to apply

lemma 9] This gives,

2
146—82,
< (q372 e log2 p) .

)}

Aely

Z e (co k)(k) +uk>

keF,

Substituting this estimate in Equation (8) with Equation (9), we get the result.

4.2 Proof of lemmal[3lfor ¢ = 1

lemma [6]shows the relationship between bounds on exponential sums and bounds on
the discrepancy. So, our goal is to find bounds of the following exponential sum:

Z Zeqcﬁkm

me S (M)keX

Z Z eq(cBlhk,m)) Y, Y e,(u(k—K))

kely me%(.///) uclkyk'e

where % is the set of integers defined by Equation (3).
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Notice that if k does not meet the requisites, i. e. it does not has the correct bits
fixed, the inner sum is equal to zero. Otherwise, the inner sum is equal to one. Doing
the following transformations,

)3 <l Y X eq(u(k’k))> Y, eq(cB(k,m))

keFy \ 4 uek k'er meA (M)
1
LT (T ew) T aem-w <
ququkqu kKex me (M)
1
- Z Z Z e, (cB(k,m) — uk) Z e, (uk'))].
que]Fq k€Fgme A (M) Kex

By lemma T3] we have that

14582,
< W1/2q3/2_2 e log2 p-

max ‘e (cB(k,m) — uk)
ged(c,q)=1 me(M) kEZ]F’q !
Recalling lemmalg]

Y Y e(cBlkm))

ket mest (M)

<

1 q
72 Z Z e, (cB(k,m)— uk) Z e, (uk))| <
9 u=1 k=1 me 2 () Kex
W1/2q1/272145*32/6 log? p Z Z e (uk')| < W1/2q3/272145782/8 log’ p.
uclky ket

The above bound for the exponential sum and lemma EI show that T is a 2-10¢"*a.

homogeneously distributed modulo g provided that

-]
W= |_146-82/¢

q log® p

4.3 Proof of theorem[I]and some comments

Now, we are ready to prove the main result.
Suppose that the attacker has obtained the following messages with their corre-
sponding signatures,
(m15s17r1)7"' I (mnasmrn)-

Using this information, the attacker builds lattice £ using the rows of the matrix
defined in (6) and also vector t defined in (7). The attacker can find a closest vector
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in £ to t and suppose that the second component of this vector is 7. Let h € .Z be
the solution found to the closest vector problem, so the norm of h — t satisfies,

||ll—h|| < ||ll—tH—|—||t—hH < \/ﬁ2M75+1 :2M75+logn+l. (10)

The attack success if any vector in the lattice with norm less than 2¥—9+ogn+1 haq 5
zero in the second coordinate. By lemma 2] the probability of success is greater than
1 —g(2-3Floen+l 1 Ay=1if I" is a A-homogeneously distributed. Lemmal3implies
that it is possible to take A = ¢g~¢ and this finish the proof.

We want to mention that if the dimension is greater than 100, only approximation
algorithms are practical. In those cases, it is necessary to multiply in the right hand
side of equation (I0) by the factor appearing in lemmafd] This gives a lower bound in
the probability of 1 — q(2_5+0(’“°g21"g">/l°g” +A) L

5 Experimental results

We have empirically tested the performance of the attack.

In the first parameters set, the bit size of p is 1024 and the bit size of g is 160.
In the second set, the bit size of p is 4096 and the bit size of g is 250. For the hash
function, we have chosen SHA1, because it was widely used in DSA.

We note that the experimental results are better than what we expect from Theo-
rem[2

The reason is that the lower bound, d > 214582/ _ loglog p/logg, is very pes-
simistic. Indeed, for d =~ 0.5, we have made the following calculations in Table E}
The calculation for the theoretical value of n is finding the minimum value such that,

1— q(2—5+logn+1 +q—d(10gq)5)n—l > 0.
From the empirical results, we make the following conjecture.

Conjecture 1 Assuming that § > log'/? M, then given n messages with n > M /log~'/?(M),
the probability of success is greater than 1 — 1 /n.

Figure [I|show M — & in the abscissa against the minimum number of signatures
required to recover the ephemeral keys. For each experiment, we have selected ran-
domly the value k', k¥’ and k; for i = 1,...,n and repeated each experiment 10 times.
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Known bits | Mean value of n in simulations | Value of n by Theorem
30 7.0 7
28 7.4 8
26 8.0 8
24 8.5 9
22 9.0 10
20 9.8 11
18 11.0 12
16 12.5 14
14 14.3 17
12 17.1 21
10 20.7 30
8 27.3 54
6 50 -

Table 1 Comparation of theoretical values and mean of computer simulations when employing p of 1024
bits and ¢ of 160 bits. The mean value of messages needed has been simulated adding another message
until the attack is successful.

References

11.

12.
13.

14.

. Leonard M. Adleman and Jonathan DeMarrais. A Subexponential Algorithm for Discrete Logarithms

over All Finite Fields. In Advances in Cryptology - CRYPTO 93, 13th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, Lecture Notes in
Computer Science, pages 147-158, 1993.

. National Security Agency. Cryptography today.
. Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic quasi-

polynomial algorithm for discrete logarithm in finite fields of small characteristic. In Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
1-16, 2014.

. Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange, Kim Nguyen, and Fred-

erik Vercauteren. Handbook of elliptic and hyperelliptic curve cryptography. CRC press, 2005.

. Elke De Mulder, Michael Hutter, Mark E Marson, and Peter Pearson. Using Bleichenbacher s solution

to the Hidden Number Problem to attack nonce leaks in 384-bit ECDSA. In Cryptographic Hardware
and Embedded Systems-CHES 2013, pages 435-452. Springer, 2013.

. Elke De Mulder, Michael Hutter, Mark E Marson, and Peter Pearson. Using Bleichenbachers solution

to the hidden number problem to attack nonce leaks in 384-bit ecdsa: extended version. Journal of
Cryptographic Engineering, 4(1):33-45, 2014.

. Claus Diem. On the discrete logarithm problem in elliptic curves II. Algebra and Number Theory,

7(6):1281-1323, 2013.

Michael Drmota and Robert F. Tichy. Sequences, discrepancies, and applications. Lecture notes in
mathematics. Springer, 1997.

Jean-Charles Faugere, Christopher Goyet, and Guénaél Renault. Attacking (EC)DSA given only an
implicit hint. In Selected Areas in Cryptography, 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers, pages 252-274, 2012.

. Jean-Charles Faugere, Raphaél Marinier, and Guénaél Renault. Implicit Factoring with Shared Most

Significant and Middle Bits. In Public Key Cryptography, volume 6056 of Lecture Notes in Computer
Science, pages 70-87. Springer, 2010.

FIPS. Digital Signature Standard (DSS). National Institute of Standards and Technology (NIST),
1994.

FIPS. Digital Signature Standard (DSS). pub-NIST, pub-NIST:adr, 2013.

Steven D. Galbraith and Pierrick Gaudry. Recent progress on the elliptic curve discrete logarithm
problem. Cryptology ePrint Archive, Report 2015/1022, 2015.

Mubaris Z. Garaev. Sums and products of sets and estimates of rational trigonometric sums in fields
of prime order. Russian Mathematical Surveys, 65(4):599, 2010.



A Probabilistic Analysis on a Lattice Attack against DSA 17

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth acoustic crypt-
analysis. In International Cryptology Conference, pages 444—461. Springer, 2014.

Faruk Gologlu, Robert Granger, Gary McGuire, and Jens Zumbrigel. On the function field sieve and
the impact of higher splitting probabilities - application to discrete logarithms in and. In Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part 11, pages 109-128, 2013.

Faruk Gologlu, Robert Granger, Gary McGuire, and Jens Zumbrégel. Solving a 6120 -bit DLP on a
desktop computer. In Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 136—152, 2013.

Nick Howgrave-Graham and Nigel P. Smart. Lattice Attacks on Digital Signature Schemes. Des.
Codes Cryptography, 23(3):283-290, 2001.

Antoine Joux. Faster index calculus for the medium prime case application to 1175-bit and 1425-bit
finite fields. In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, pages 177-193, 2013.

Ravindran Kannan. Algorithmic geometry of numbers. Annual Review of Computer Science,
2(1):231-267, 1987.

Arjen Lenstra, Hendrik Lenstra, and Laszl6 Lovasz. Factoring polynomials with rational coefficients.
In Mathematische Annalen, volume 261, no 4, pages 515-534, 1982.

Alexander May and Maike Ritzenhofen. Implicit factoring: On polynomial time factoring given only
an implicit hint. In Public Key Cryptography, volume 5443 of Lecture Notes in Computer Science,
pages 1-14. Springer, 2009.

Carlos Moreno and Oscar Moreno. Exponential sums and Goppa codes. Proceedings of the American
Mathematical Monthly, 111:523-531, 1991.

Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature algorithm with partially
known nonces. Journal of Cryptology, 15(3):151-176, 2002.

Phong Q. Nguyen and Igor Shparlinski. The Insecurity of the Digital Signature Algorithm with
Partially Known Nonces. Journal of Cryptology, 15:151-176, 2002.

Phong Q. Nguyen and Igor Shparlinski. The Insecurity of the Elliptic Curve Digital Signature Algo-
rithm with Partially Known Nonces. Designs, Codes and Cryptography, 30(2):201-217, 2003.
Phong Q. Nguyen and Brigitte Vallée. The LLL Algorithm. Springer, 2010.

Harald Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics,
1987.

Ronald Linn Rivest and Adi Shamir. Efficient factoring based on partial information. In Proc. of
a workshop on the theory and application of cryptographic techniques on Advances in cryptology—
EUROCRYPT ’85, pages 31-34, New York, NY, USA, 1986. Springer-Verlag New York, Inc.
Santanu Sarkar and Subhamoy Maitra. Further Results on Implicit Factoring in Polynomial Time.
Advances in Mathematics of Communications, 3(2):205-217, 2009.

Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards. In Proceedings of the
9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’89, pages
239-252. Springer-Verlag, 1990.

Andrew Sutherland. Structure computation and discrete logarithms in finite abelian p-groups. Math-
ematics of Computation, 80(273):477-500, 2011.

Ivan M. Vinogradov. Elements of Number Theory. Dover Phoenix Editions. Dover, 2003.



18 Domingo Gomez-Perez?, Guénagl Renault®<

80 T T T T T

Number of messages to recover k

130 132 134 136 138 140 142 144 146 148 150 152 154
Value of M-3

40 T T T T T T T T T T T T T

35+ 1

30+ 1

Number of messages to recover k

5 . . . . | . | . | . . L 1
216 218 220 222 224 226 228 230 232 234 236 238 240 242 244
Value of M-s

Fig. 1 Experimental results of the algorithm. The first plot employs the smaller parameter set, with p of
1024 bits and ¢ of 160 bits while the second plot employs the parameter set with p of 4096 bits and g of
250 bits. The red dots represent the average of the number of message signatures needed to recover the
ephemeral keys. The grey areas contain the 90 percentile of the number of message signatures needed
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