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Abstract. In 2018, Pott, at al. have studied in [IEEE Transactions on Information
Theory. Volume: 64, Issue: 1, 2018] the maximum number of bent components of
vectorial function. They have presented serval nice results and suggested several open
problems in this context. This paper is in the continuation of their study in which
we solve two open problems raised by Pott et al. and partially solve an open problem
raised by the same authors. Firstly, we prove that for a vectorial function, the property
of having the maximum number of bent components is invariant under the so-called
CCZ equivalence. Secondly, we prove the non-existence of APN plateaued having the
maximum number of bent components. In particular, quadratic APN functions cannot
have the maximum number of bent components. Finally, we present some sufficient
conditions that the vectorial function defined from F22k to F22k by its univariate
representation:
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has the maximum number of components bent functions, where ρ ≤ k. Further, we

show that the differential spectrum of the function x2i(x + x2k + x2t1 + x2t1+k
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) (where i, t1, t2 satisfy some conditions) is different from the binomial

function F i(x) = x2i(x+ x2k ) presented in the article of Pott et al.

Finally, we provide sufficient and necessary conditions so that the functions
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are bent.
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1 Introduction

Vectorial (multi-output) Boolean functions, that is, functions from the vector space
F
n
2 (of all binary vectors of length n) to the vector space F

m
2 , for given positive

integers n andm. These functions are called (n,m)-functions and include the (single-
output) Boolean functions (which correspond to the case m = 1). In symmetric
cryptography, multi-output functions are called S-boxes. They are fundamental parts
of block ciphers. Being the only source of nonlinearity in these ciphers, S-boxes play
a central role in their robustness, by providing confusion (a requirement already
mentioned by C. Shannon), which is necessary to withstand known (and hopefully
future) attacks. When they are used as S-boxes in block ciphers, their number m of
output bits equals or approximately equals the number n of input bits. They can
also be used in stream ciphers, with m significantly smaller than n, in the place of
Boolean functions to speed up the ciphers.

We shall identify F
n
2 with the Galois field F2n of order 2n but we shall always use

F
n
2 when the field structure will not really be used. The component functions of F are

the Boolean functions v ·F , that is, x ∈ F2n 7→ Trm1 (vF (x)), where “·” stands for an
inner product in F2m (for instance: u·v := Trm1 (uv),∀u ∈ F2m , v ∈ F2m where ”Trm1 ”
denotes the absolute trace over F2m). In order to classify vectorial Boolean functions
that satisfy desirable nonlinearity conditions, or to determine whether, once found,
they are essentially new (that is, inequivalent in some sense to any of the functions
already found) we use some concepts of equivalence. For vectorial Boolean functions,
there exist essentially two kinds concepts of equivalence: the extended affine EA-
equivalence and the CCZ-equivalence (Carlet-Charpin-Zinoviev equivalence). Two
(n, r)-functions F and F ′ are said to be EA-equivalent if there exist affine automor-
phisms L from F2n to F2n and L′ from F2r to F2r and an affine function L′′ from
F2n to F2r such that F ′ = L′ ◦ F ◦ L + L′′. EA-equivalence is a particular case of
CCZ-equivalence [4]. Two (n, r)-functions F and F ′ are said to be CCZ-equivalent
if their graphs GF := {(x, F (x)), x ∈ F2n} and G′

F := {(x, F ′(x)), x ∈ F2n} are
affine equivalent, that is, if there exists an affine permutation L of F2n × F2m such
that L(GF ) = G′

F .
A standard notion of nonlinearity of an (n,m)-function F is defined as

N (F ) = min
v∈F⋆

2m

nl(v · F ), (1)

where v ·F denotes the usual inner product on F2m and nl(·) denotes the nonlinearity
of Boolean functions (see definition in Section 2). From the covering radius bound, it
is known that N (F ) 6 2n−1− 2n/2−1. The functions achieving this bound are called
(n,m)-bent functions. Equivalently, a vectorial Boolean function F : F2n → F2m is
said to be a vectorial bent function if all nonzero component functions of F are bent
(Boolean) functions. Bent Boolean functions have maximum Hamming distance to
the set of affine Boolean functions. The notion of bent function was introduced by
Rothaus [9] and attracted a lot of research of more than four decades. Such functions
are extremal combinatorial objects with several areas of application, such as coding
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theory, maximum length sequences, cryptography. A survey on bent function can
be found in [6] as well as the book [15].

In [16], it is shown that (n,m)-bent functions exist only if n is even andm 6 n/2.
The notion of nonlinearity in (1) (denoted by N ), was first introduced by Nyberg
in [16], which is closely related to Matsui’s linear attack [13] on block ciphers. It has
been further studied by Chabaud and Vaudenay [7]. The nonlinearity is invariant un-
der CCZ equivalence (and hence under extended affine equivalence). Budaghyan and
Carlet have proved in [1] that for bent vectorial Boolean functions, CCZ-equivalence
coincides with EA-equivalence.

The problem of construction vectorial bent functions has been considered in the
literature. Nyberg [16] investigated the constructions of vectorial bent functions; she
presented two constructions based on Maiorana-McFarland bent functions and PS
bent functions, respectively. In [17], Satoh, Iwata, and Kurosawa have improved the
first method of construction given in [16] so that the resulting functions achieve the
largest degree. Further, serval constructions of bent vectorial functions have been
investigated in some papers [5,10,11,14,18]. A complete state of the art can be found
in [15] (Chapter 12).

Very recently, Pott et al.[8] considered functions F2n → F2n of the form F i(x) =

x2
i
(x+ x2

k
), where n = 2k, i = 0, 1, · · · , n− 1. They showed that the upper bound

of number of bent component functions of a vectorial function F : F2n → F2n is
2n−2n/2 (n even). In addition, they showed that the binomials F i(x) = x2

i
(x+x2

k
)

have such a large number of bent components, and these binomials are inequivalent
to the monomials x2

k+1 if 0 < i < k. Further, the properties (such as differential
properties and complete Walsh spectrum) of the functions F i were investigated.

In this paper, we will consider three open problems raised by Pott et al [8].
In the first part, we prove that CCZ equivalence is preserved for vectorial functions
having the maximum number of bent components. Next, we consider APN plateaued
functions and investigate if they can have the maximum number of bent components.
We shall give a negative answer to this question. Finally, we consider the bentness
property of functions F22k → F22k of the form

G(x) = αx2
i



x+ x2
k

+

ρ
∑

j=1

γ(j)x2
tj
+

ρ
∑

j=1

γ(j)x2
tj+k



 , (2)

where m ≤ k, γ(j) ∈ F2k and 0 ≤ tj ≤ k be a nonnegative integer. In particular, we

show the functions x2
t2
(

x+ x2
k

+ x2
t1 + x2

t1+k

+ x2
t2 + x2

t2+k
)

are inequivalent to

x2
t2 (x + x2

k
), where t1 = 1 and gcd(t2, k) 6= 1 . Here we use the concept of CCZ-

equivalence when we speak about the equivalence of functions. The rest of the paper
is organized as follows. Some preliminaries are given in Section 2. In Section 3, we
prove our result on the stability under CCZ equivalence of a function having the
maximum number of bent components which solve Problem 4 in [8]. Next, in Section
4, we prove that APN plateaued functions cannot have the maximum number of
bent components, which partially solves Problem 8 in [8]. Finally, in Section 5 we
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investigate Problem 2 in [8]. To this end, we provide several functions defined as
G(x) = xL(x) on F22k (where L(x) is a linear function on F22k) such that the number
of bent components Tr2k1 (αF (x)) is maximal.

2 Preliminaries and notation

Throughout this article, ‖E‖ denotes the cardinality of a finite set E, the binary field
is denoted by F2 and the finite field of order 2n is denoted by F2n . The multiplicative
group F

∗
2n is a cyclic group consisting of 2n − 1 elements. The set of all Boolean

functions mapping from F2n (or Fn
2 ) to F2 is denoted by Bn.

Recall that for any positive integers k, and r dividing k, the trace function from
F2k to F2r , denoted by Trkr , is the mapping defined as:

Trkr (x) :=

k
r
−1
∑

i=0

x2
ir

= x+ x2
r

+ x2
2r
+ · · ·+ x2

k−r

.

In particular, the absolute trace over F2 of an element x ∈ F2n equals Trn1 (x) =
∑n−1

i=0 x2
i
.

There exist several kinds of possible univariate representations (also called trace,
or polynomial, representations) of Boolean functions which are not all unique and
use the identification between the vector-space F

n
2 and the field F2n . Any Boolean

function over Fn
2 can be represented in a unique way as a polynomial in one variable

x ∈ F2n of the form f(x) =
∑2n−1

j=0 ajx
j, where a0, a2n−1 ∈ F2, aj ’s are elements of

F2n for 1 ≤ j < 2n − 1 such that aj
2 = a2i mod (2n−1). The binary expansion of j is

j = j0+j12+· · · jn−12
n−1 and we denote j̄ = (j0, j1, · · · , jn−1). The algebraic degree

of f equals max{wt(̄i) | aj 6= 0, 0 ≤ j < 2n} where wt(̄i) = j0 + j1 + · · · + jn−1.
Affine functions (whose set is denoted by An) are those of algebraic degree at most
1. The Walsh transform of f ∈ Bn at λ ∈ F2n is defined as

Wf (λ) =
∑

x∈F2n

(−1)f(x)+Trn1 (λx).

The nonlinearity of f ∈ Bn is defined as the minimum Hamming distance to the
set of all n-variable affine functions, i.e.,

nl(f) = ming∈An d(f, g).

where d(f, g) is the Hamming distance between f and g. Following is the relationship
between nonlinearity and Walsh spectrum of f ∈ Bn

nl(f) = 2n−1 −
1

2
max
λ∈F2n

|Wf (λ)|.

By Parseval’s identity
∑

λ∈F2n
Wf (λ)

2 = 22n, it can be shown that max{|Wf (λ)| :

λ ∈ F2n} ≥ 2
n
2 which implies that nl(f) ≤ 2n−1 − 2

n
2
−1. If n is an even integer a
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function f ∈ Bn is said to be bent if Wf (λ) ∈ {2
n
2 ,−2

n
2 }, for all λ ∈ F2n . Moreover,

a function f ∈ Bn is said to be t-plateaued if Wf (λ) ∈ {0,±2
n+t
2 }, for all λ ∈ F2n .

The integer t (0 ≤ t ≤ n) is called the amplitude of f . Note that a bent function is
a 0-plateaued function. In the following, “ <,> ” denotes the standard inner (dot)
product of two vectors, that is, < λ, x >= λ1x1+ . . .+λnxn, where λ, x ∈ Fn

2 . If we
identify the vector space Fn

2 with the finite field F2n , we use the trace bilinear form
Trn1 (λx) instead of the dot product, that is, < λ, x >= Trn1 (λx), where λ, x ∈ F2n .

For vectorial functions F : Fn
2 → F

m
2 , the extended Walsh-Hadamard transform

defined as,

WF (u, v) =
∑

x∈Fn
2

(−1)<v,F (x)>+<u,x>,

where F (x) = (f1(x), f2(x), · · · , fm(x)), u ∈ F
n
2 , v ∈ F

m
2 .

Let F be a vectorial function from F2n into F2m . The linear combinaison of the
coordinates of F are the Boolean functions fλ : x 7→ Trm1 (λF (x)), λ ∈ F2m , where
f0 is the null function. The functions fλ (λ 6= 0) are called the components of F .
A vectorial function is said to be bent (resp. t-plateaued) if all its components are
bent (resp. t-plateaued). A vectorial function F is called vectorial plateaued if all its
components are plateaued with possibly different amplitudes.

Let F : Fn
2 → F

n
2 be an (n, n)-function. For any a ∈ F

n
2 , b ∈ F

n
2 , we denote

∆F (a, b) = {x|x ∈ F
n
2 , F (x⊕ a)⊕ F (x) = b},

δF (a, b) = ‖∆F (a, b)‖,

Then, we have δ(F ) := maxa6=0,b∈Fn
2
δF (a, b) ≥ 2 and the functions for which equality

holds are said to be almost perfect nonlinear(APN).

A nice survey on Boolean and vectorial Boolean functions for cryptography can
be found in [2] and [3], respectively.

3 The stability of a function having the maximum number of bent

components under CCZ equivalence

In [8], Pott et al. have shown that the maximum number of bent components of a
vectorial (n, n)-function F is 2n − 2k where k := n

2 (n even). They left open the
problem whether the property of a function having the maximum number of bent
components is invariant under CCZ equivalence or not. In this section we solve this
problem by giving a positive answer in the following theorem.

Theorem 1. Let n = 2k and F,F ′′ : Fn
2 → F

n
2 be CCZ-equivalent functions. Then

F has 2n − 2k bent components if and only if F ′′ has 2n − 2k bent components.

Proof. Let F be a function with 2n − 2k bent components. Define

S = {v ∈ F
n
2 : x →< v,F (x) > is not bent}.
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By Theorem 3 of [8], S is a linear subspace of dimension k. Then, let U be any
k-dimensional subspace of Fn

2 such that U ∩ S = {0}. Let v1, · · · , vk be a basis of S
and u1, · · · , uk be a basis of U . Define a new function F ′ : Fn

2 → F
n
2 as

F ′(x) = (H(x), I(x))

where H(x) = (< v1, F (x) >, · · · , < vk, F (x) >) and I(x) = (< u1, F (x) >, · · · , <
uk, F (x) >). Then, F ′ is EA-equivalent to F . Recall that the property of a function
having the maximum number of bent components is invariant under EA equivalence.
Thus, F ′ has 2n−2k bent components. Since F and F ′′ are CCZ-equivalent functions,
F ′′ is CCZ-equivalent to F ′, which has 2n − 2k bent components. Let L(x, y, z) =
(L1(x, y, z), L2(x, y, z), L3(x, y, z)), (with L1 : Fn

2 × F k
2 × F k

2 → F
n
2 , L2 : Fn

2 × F k
2 ×

F k
2 → F

k
2 and L3 : F

n
2×F k

2 ×F k
2 → F

k
2) be an affine permutation of Fn

2×F k
2 ×F k

2 which
maps the graph of F ′ to the graph of F ′′. Then, the graph GF ′′ = {L(x,H(x), I(x)) :
x ∈ F

n
2}. Thus L1(x,H(x), I(x)) is a permutation and for some affine function

L′
1 : Fn

2 × F k
2 → F

n
2 and linear function L′′

1 : Fk
2 → F

n
2 we can write L1(x, y, z) =

L′
1(x, y) + L′′

1(z). For any element v of Fn
2 we have

< v,L1(x,H(x), I(x)) >= < v,L′
1(x,H(x)) > + < v,L′′

1(I(x)) >

= < v,L′
1(x,H(x)) > + < L′′∗

1 (v), I(x) >

= < L′′∗
1 (v), I(x) > + < v′,H(x) > + < v′′, x > +a, (3)

where a ∈ F2, v
′ ∈ F

k
2, v

′′ ∈ F
n
2 and L′′∗

1 is the adjoint operator of L′′
1, in fact,

L′′∗
1 is the linear permutation whose matrix is transposed of that of L′′

1. Since
L1(x,H(x), I(x)) is a permutation, then any function < v,L1(x,H(x), I(x)) > is
balanced (recall that this property is a necessary and sufficient condition) and, hence,
cannot be bent. From the construction of F ′, < L′′∗

1 (v), I(x) > + < v′,H(x) > + <
v′′, x > +a is not bent if and only if L′′∗

1 (v) = 0. Therefore, L′′∗
1 (v) = 0 for any v ∈ F

n
2 .

This means that L′′
1 is null, that is, L1(x,H(x), I(x)) = L′

1(x,H(x)). We can also
write Li(x, y, z) = L′

i(x, y) +L′′
i (z) for i ∈ {2, 3} where L′

i : F
n
2 ×F k

2 → F
k
2 are affine

functions and L′′
i : F k

2 → F
k
2 are linear functions. Set F ′′

1 (x) = L1(x,H(x), I(x)) =
L′
1(x,H(x)) and F ′′

2 (x) = (L′
2(x,H(x)) + L′′

2(I(x)), L
′
3(x,H(x)) + L′′

3(I(x))). Then,
F ′′(x) = F ′′

2 ◦ F ′′−1
1 (x). For any v ∈ F

n
2 and u = (u′, u′′) ∈ F

k
2 × F

k
2,

WF ′′(v, u) =
∑

x∈Fn
2

(−1)<u,F ′′(x)>+<v,x>

=
∑

x∈Fn
2

(−1)<u,F ′′◦F ′′

1 (x)>+<v,F ′′

1 (x)>

=
∑

x∈Fn
2

(−1)<u,F ′′

2 (x)>+<v,F ′′

1 (x)>

=
∑

x∈Fn
2

(−1)<u,(L′′

2 (I(x)),L
′′

3 (I(x)))>+<u,(L′

2(x,H(x)),L′

3(x,H(x)))>+<v,L′

3(x,H(x))>

=
∑

x∈Fn
2

(−1)<L′′∗

2 (u′)+L′′∗

3 (u′′),I(x)>+<v′,H(x)>+<v′′,x>+a.
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By the construction of I(x), if L′′∗
2 (u′) + L′′∗

3 (u′′) 6= 0, < L′′∗
2 (u′) + L′′∗

3 (u′′), I(x) >
+ < v′,H(x) > is bent. Thus, < u,F ′′(x) > is bent when L′′∗

2 (u′) + L′′∗
3 (u′′) 6= 0,

where u = (u′, u′′) ∈ F
k
2×F

k
2. For i = 2, 3, let Ai be the matrices of size k×k defined

as

L′′
i (z) = zAi,

where z = (z1, · · · , zk) ∈ F
k
2. Then,

L′′∗
2 (u′) + L′′∗

3 (u′′) =u′AT
2 + u′′AT

3

=(u′, u′′)

[

AT
2

AT
3

]

. (4)

Recall that L is a affine permutation. Hence, the rank of the linear function (L′′
1(z), L

′′
2(z), L

′′
3(z))

= (0, L′′
2(z), L

′′
3(z)) from F

k
2 to F

n
2 × F k

2 × F k
2 is k. By (L′′

1(z), L
′′
2(z), L

′′
3(z)) =

z
[

0|A2|A3

]

, the rank of the matrix
[

A2|A3

]

is k. Thus, the rank of the matrix
[

AT
2

AT
3

]

=
[

A2|A3

]T
is also k. Set

S′ ={(u′, u′′) ∈ F
k
2 × F

k
2 : L′′∗

2 (u′) + L′′∗
3 (u′′) = 0}

={(u′, u′′) ∈ F
k
2 × F

k
2 : (u′, u′′)

[

AT
2

AT
3

]

= 0}.

Then, S′ is a linear subspace of dimension k. By the previous discussion, if u =
(u′, u′′) ∈ F

n
2 \S

′, the component function < u,F ′′(x) > is bent. Thus, F ′′(x) has at
least 2n − 2k bent components. From Theorem 3 in [8], F ′′(x) has exactly 2n − 2k

bent components, which completes the proof.

⊓⊔

4 The non-existence of APN plateaued functions having the

maximum number of bent components

In [8], the authors asked if APN functions could have the maximum number of bent
components or not. In this section we investigate the case of all APN plateaued
functions. The result is given the following theorem.

Theorem 2. Let F be a plateaued APN function defined on F
n
2 (where n ≥ 4 is an

even positive integer). Then F cannot have the maximum number of bent compo-
nents.

Proof. Let F be a plateaued APN function on F
n
2 . Denote

Nt = {v ∈ F
n
2 : WF (u, v) = ±2

n+t
2 },
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where WF (u, v) =
∑

x∈Fn
2
(−1)v·F (x)+u·x and t is a positive integer (0 ≤ t ≤ n). We

have

∑

u,v∈Fn
2

W 4
F (u, v) =

∑

v∈Fn
2

(2
n+tv

2 )2
∑

u∈Fn
2

W 2
F (u, v)

=2n
∑

v∈Fn
2

2tv
∑

u∈Fn
2

W 2
F (u, v)

=23n
∑

v∈Fn
2

2tv

=23n(N0 +N22
2 + · · ·+Nn2

n). (5)

Since F is APN, we have

∑

u,v∈Fn
2

W 4
F (u, v) = 23n(3 · 2n − 2). (6)

From Equations (5) and (6), we have

N0 +N22
2 + · · ·+Nn2

n = 3 · 2n − 2.

Therefore, we have N0 ≡ 2 mod 4. Since n ≥ 4, 2n − 2
n
2 ≡ 0 mod 4. Hence,

N0 6= 2n − 2
n
2 .

Thus, F does not have the maximum number of bent components. In particular,
quadratic APN functions cannot have the maximum number of bent components.

⊓⊔

5 New constructions of bent component functions of vectorial

functions

In this section we provide several functions defined as G(x) = xL(x) on F22k such
that the number of bent components Tr2k1 (αF (x)) equals 22k − 2k, where L(x) is
a linear function on F22k . We first recall two lemmas which will be useful in our
context.

Lemma 1. [8] Let V = F22k and let <,> be a nondegenerate symmetric bilinear
form on V . If L : V → V is linear, we denote the adjoint operator by L∗, i.e.,
< x,L(y) >=< L∗(x), y > for all x, y ∈ V . The function f : V → F2, defined by
x 7→< x,L(x) >, is bent if and only if L+ L∗ is invertible.

Lemma 2. [8] Let V = F22k and < x, y >= Trn1 (xy) be the trace bilinear form. If

L : V → V is defined by L(x) = αx2
i

, α ∈ V and for any i = 0, 1, · · · , n − 1, then
L∗(x) = α2n−i

x2
n−i

.
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In [8], the authors presented a construction of bent functions through adjoint oper-
ators. We start by providing a simplified proof of [8, Theorem 4] (which is the main
result of their article).

Theorem 3. [8, Theorem 4] Let V = F22k and i be a nonnegative integer. Then,
the mapping Fi

α defined by

Fi
α(x) = Tr2k1

(

αx2
i

(x+ x2
k

)
)

is bent if and only if α /∈ F2k .

Proof. From the proof of [8, Theorem 4], we know

L(x) + L∗(x) = Tr2kk (αx2
i

) + α22k−i
(

Tr2kk (x)
)2k−i

.

From Lemma 1, we need to show that L(x) + L∗(x) = 0 if and only if x = 0.
Let ∇a = {x|Tr2kk (x) = a, a ∈ F2k}. We all know Tr2kk (x) is a surjection from

F22k to F2k and ‖∇a‖ = 22k−k for any a ∈ F2k . We also know ∇0 = F2k .
If α /∈ F2k , then L(x) + L∗(x) = 0 if and only if

{

Tr2kk (αx2
i

) = 0,
T r2kk (x) = 0,

(7)

i.e., x = 0. If for any x 6= 0, we always have L(x)+L∗(x) 6= 0, then α /∈ F2k . In fact,
if α ∈ F2k , then

L(x) + L∗(x) = αTr2kk (x2
i

) +
(

αTr2kk (x)
)2k−i

= αTr2kk (x) +
(

αTr2kk (x)
)2k−i

.

Further, L(x) +L∗(x) = 0 for any x ∈ F2k . Thus, we have Fi
α(x) is bent if and only

if α /∈ F2k . ⊓⊔

Now, we are going to present a first new family of bent functions through adjoint
operators.

Theorem 4. Let V = F22k and i be a nonnegative integer. Let t1, t2 be two positive

integers such that 0 ≤ t1, t2 ≤ k and both z2
k−t1−1 + z2

k−t2−1 + 1 = 0 and z2
t1−1 +

z2
t2−1 + 1 = 0 have no solutions on F2k . Then, the function Fi

α defined on V by

Fi
α(x) = Tr2k1

(

αx2
i

(x+ x2
k

+ x2
t1
+ x2

t1+k

+ x2
t2
+ x2

t2+k

)
)

(8)

is bent if and only if α /∈ F2k .

Proof. We have

Fi
α(x) = Tr2k1

(

αx2
i
(x+ x2

k
+ x2

t1 + x2
t1+k

+ x2
t2 + x2

t2+k
)
)

= Tr2k1 (xαx2
i
) + Tr2k1 (xα2kx2

i+k
) + Tr2k1 (xα22k−t1x2

i+2k−t1 )

+Tr2k1 (xα2k−t1x2
i+k−t1 ) + Tr2k1 (xα22k−t2x2

i+2k−t2 ) + Tr2k1 (xα2k−t2x2
i+k−t2 )

= Tr2k1 (xL(x)),
(9)
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where

L(x) = αx2
i
+ α2kx2

i+k
+ α22k−t1x2

i+2k−t1 + α2k−t1x2
i+k−t1

+α22k−t2x2
i+2k−t2 + α2k−t2x2

i+k−t2

= αx2
i

+ (αx2
i

)2
k

+ α2k−t1x2
i+k−t1 + (α2k−t1x2

i+k−t1 )2
k

+α2k−t2x2
i+k−t2 + (α2k−t2x2

i+k−t2 )2
k

=
(

αx2
i

+ (αx2
i

)2
k
)

+
(

αx2
i

+ (αx2
i

)2
k
)2k−t1

+
(

αx2
i

+ (αx2
i

)2
k
)2k−t2

According to Lemma 2, the adjoint operator L∗(x) is

L∗(x) = α22k−i
x2

2k−i
+ α22k−i

x2
k−i

+ α22k−i
x2

t1−i

+α22k−i
x2

k+t1−i
+ α22k−i

x2
t2−i

+ α22k−i
x2

k+t2−i

= α22k−i
(

x2
2k−i

+ x2
k−i

+ x2
t1−i

+ x2
k+t1−i

+ x2
t2−i

+ x2
k+t2−i

)

= α22k−i
(

x2
k−i

+ (x2
k−i

)2
k
+ x2

t1−i
+ (x2

t1−i
)2

k
+ x2

t2−i
+ (x2

t2−i
)2

k
)

= α22k−i
(

(x+ x2
k

)2
k−i

+ (x+ x2
k

)2
t1−i

+ (x+ x2
k

)2
t2−i
)

= α22k−i
(

(x+ x2
k

)2
k−i

+ (x+ x2
k

)2
t1+k−i

+ (x+ x2
k

)2
t2+k−i

)

(10)

Thus, we have

L(x) + L∗(x) =
(

αx2
i
+ (αx2

i
)2

k
)

+
(

αx2
i
+ (αx2

i
)2

k
)2k−t1

+
(

αx2
i
+ (αx2

i
)2

k
)2k−t2

+α22k−i
(

(x+ x2
k

)2
k−i

+ (x+ x2
k

)2
t1+k−i

+ (x+ x2
k

)2
t2+k−i

)

.

Note that we have L(x) ∈ F2k and (x+x2
k
)2

k−i
+(x+x2

k
)2

t1+k−i
+(x+x2

k
)2

t2+k−i
∈

F2k for any x ∈ F22k . From Lemma 1, it is sufficient to show that L(x) + L∗(x) is
invertible. That is, we need to show that L(x) + L∗(x) = 0 if and only if x = 0.

Since both z2
k−t1−1 + z2

k−t2−1 + 1 = 0 and z2
t1−1 + z2

t2−1 + 1 = 0 have

no solution in F2k , we have both
(

αx2
i
+ (αx2

i
)2

k
)

+
(

αx2
i
+ (αx2

i
)2

k
)2k−t1

+
(

αx2
i
+ (αx2

i
)2

k
)2k−t2

= 0 and (x+x2
k
)2

k−i
+(x+x2

k
)2

t1+k−i
+(x+x2

k
)2

t2+k−i
= 0

if and only if
{

αx2
i

+ (αx2
i

)2
k

= 0,

x+ x2
k

= 0.
(11)

From the proof of Theorem 3, when both z2
k−t1−1+z2

k−t2−1+1 = 0 and z2
t1−1+

z2
t2−1 +1 = 0 have no solution in F2k , we have Fi

α(x) is bent if and only if α /∈ F2k .
⊓⊔

We immediately have the following statement by setting t2 = k− t1 in the previous
theorem.
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Corollary 1. Let V = F22k and i be a nonnegative integer. Let t1, t2 be two positive
integers such that t1 + t2 = k and z2

t1−1 + z2
t2−1 + 1 = 0 has no solution in F2k .

Then, the mapping Fi
α defined on V by

Fi
α(x) = Tr2k1 (αG(x))

is bent if and only if α /∈ F2k , where G(x) = x2
i
(

x+ x2
k

+ x2
t1 + x2

t1+k

+ x2
t2 + x2

t2+k
)

.

The previous construction given by Theorem 4 can be generalized as follows.

Theorem 5. Let V = F22k and i be a nonnegative integer. Let t1, t2 be two positive

integers such that 0 ≤ t1, t2 ≤ k and both (γ(1))2
k−t1z2

k−t1−1 + (γ(2))2
k−t2z2

k−t2−1 +

1 = 0 and (γ(1))2
k−i

z2
t1−1 + (γ(2))2

k−i

z2
t2−1 + 1 = 0 have no solution in F2k , where

γ(1), γ(2) ∈ F2k . Then, the mapping Fi
α defined by

Fi
α(x) = Tr2k1

(

αx2
i
(

x+ x2
k

+ γ(1)(x2
t1
+ x2

t1+k

) + γ(2)(x2
t2
+ x2

t2+k

)
))

(12)

is bent if and only if α /∈ F2k .

Proof. We have

Fi
α(x) = Tr2k1 (xL(x)), (13)

where

L(x) = αx2
i

+ α2kx2
i+k

+ (γ(1))2
k−t1

(

α22k−t1x2
i+2k−t1 + α2k−t1x2

i+k−t1
)

+ (γ(2))2
k−t2

(

α22k−t2x2
i+2k−t2 + α2k−t2x2

i+k−t2
)

=
(

αx2
i

+ (αx2
i

)2
k
)

+ (γ(1))2
k−t1

(

αx2
i

+ (αx2
i

)2
k
)2k−t1

+ (γ(2))2
k−t2

(

αx2
i
+ (αx2

i
)2

k
)2k−t2

The adjoint operator L∗(x) is

L∗(x) = α22k−i

x2
2k−i

+ α22k−i

x2
k−i

+ (γ(1))2
k−i
(

α22k−i

x2
t1−i

+α22k−i
x2

k+t1−i
)

+ (γ(2))2
k−i
(

α22k−i
x2

t2−i
+ α22k−i

x2
k+t2−i

)

= α22k−i
(

(x+ x2
k
)2

k−i
+ (γ(1))2

k−i
(x+ x2

k
)2

t1−i
+ (γ(2))2

k−i
(x+ x2

k
)2

t2−i
)

= α22k−i
(

(x+ x2
k

)2
k−i

+ (γ(1))2
k−i

(x+ x2
k

)2
t1+k−i

+ (γ(2))2
k−i

(x+ x2
k

)2
t2+k−i

)

(14)

Note that we have L(x) ∈ F2k and (x + x2
k
)2

k−i
+ (γ(1))2

k−i
(x + x2

k
)2

t1+k−i
+

(γ(2))2
k−i

(x+x2
k
)2

t2+k−i
∈ F2k for any x ∈ F22k . In order to show that L(x)+L∗(x)

is invertible, we need to show that L(x) + L∗(x) = 0 if and only if x = 0.

Since both (γ(1))2
k−t1z2

k−t1−1+(γ(2))2
k−t2z2

k−t2−1+1 = 0 and (γ(1))2
k−i

z2
t1−1+

(γ(2))2
k−i

z2
t2−1 + 1 = 0 have no solutions on F2k , we have both L(x) = 0 and

11



(x+ x2
k

)2
k−i

+ (γ(1))2
k−i

(x+ x2
k

)2
t1+k−i

+ (γ(2))2
k−i

(x+ x2
k

)2
t2+k−i

= 0 if and only
if

{

αx2
i
+ (αx2

i
)2

k
= 0,

x+ x2
k
= 0.

(15)

By using the proof of Theorem 3, we have Fi
α(x) is bent if and only if α /∈ F2k .

⊓⊔

By the same process used to prove Theorem 5, one can get the following result.

Theorem 6. Let V = F22k and i, ρ be two nonnegative integers such that ρ ≤ k. Let
γ(j) ∈ F2k and 0 ≤ tj ≤ k be a nonnegative integer, where j = 1, 2, · · · , ρ. Assume

that both equations
ρ
∑

j=1
(γ(j))2

k−tj
z2

k−tj−1 + 1 = 0 and
ρ
∑

j=1
(γ(j))2

k−i

z2
tj−1 + 1 = 0

have no solution in F2k . Then, the mapping Fi
α defined on V by

Fi
α(x) = Tr2k1 (αG(x)) (16)

is bent if and only if α /∈ F2k , where G(x) = x2
i

(

Tr2kk (x) +
ρ
∑

j=1
γ(j)(Tr2kk (x))2

tj

)

.

Lemma 3. [8] Let Fα(x) = Tr2k1 (αG(x)), be a Boolean bent function for any α ∈
F
2k
2 \Fk

2, where G : F2k
2 → F

2k
2 . Then, F : F2k

2 → F
k
2, defined as F (x) = Tr2kk (αG(x))

is a vectorial bent function for any α ∈ F
2k
2 \ Fk

2.

According to Theorem 6 and Lemma 3, we immediately get the following theorem.

Theorem 7. Let G(x) be defined as in Theorem 6. Then, the mapping Fα defined
by

Fα(x) = Tr2kk (αG(x)) (17)

is a vectorial bent function for any α ∈ F22k \ F2k .

In [8], the authors presented the differential spectrum of the functions G : F22k →

F22k defined by G(x) = x2
i

(x+ x2
k

). Their result is given below.

Lemma 4. [8] Let i be a nonnegative integer such that i < k. The differential

spectrum of the functions G(x) = x2
i
(x+ x2

k
), G : F22k → F22k , is given by,

δG(a, b) ∈

{

{0, 2k} if a ∈ F
∗
2k
,

{0, 2gcd(i,k)} if a ∈ F22k \ F2k .
(18)

In particular, δG(a, b) = 2k only for a ∈ F
∗
2k

and b ∈ F2k .

Now we are going to show that the differential spectrum of the functions x2
i
(x+x2

k
+

x2
t1+x2

t1+k

+x2
t2+x2

t2+k

) is different from the one of the functions x 7→ x2
i

(x+x2
k

).
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Theorem 8. Let Fi
α(x) = Tr2k1 (αG(x)) be defined as Theorem 4, where G(x) =

x2
i
(x+ x2

k
+ x2

t1 + x2
t1+k

+ x2
t2 + x2

t2+k
). If there exists t1 = 1 and gcd(t2, k) 6= 1

such that both z2
k−t1−1 + z2

k−t2−1 + 1 = 0 and z2
t1−1 + z2

t2−1 + 1 = 0 have no
solutions on F2k , then for i = t2, there exist elements a ∈ F22k \ F2k such that the
number δG(a, b) is equal to 2 for any b ∈ F22k , which is neither 2gcd(i,k) nor 2k.

Proof. Let a ∈ F22k \F2k such that τ2
t1 = τ , where τ = a+ a2

k
6= 0 (since t1|k). We

have

G(x) +G(x+ a) = a2
i
(

x+ x2
k
+ (x+ x2

k
)2

t1 + (x+ x2
k
)2

t2
)

+(x+ a)2
i
(

a+ a2
k
+ (a+ a2

k
)2

t1 + (a+ a2
k
)2

t2
)

.
(19)

Thus, for any x′ ∈ F22k , there must be one element b ∈ F22k such that G(x′)+G(x′+
a) = b.

Let x′, x′′ are the solutions of G(x) +G(x+ a) = b. Hence

G(x′) +G(x′ + a) +G(x′′) +G(x′′ + a)

= a2
i
(

x′ + x′2
k

+ (x′ + x′2
k

)2
t1 + (x′ + x′2

k

)2
t2 + x′′ + x′′2

k

+(x′′ + x′′2
k
)2

t1 + (x′′ + x′′2
k
)2

t2
)

+(x′ + x′′)2
i
(

a+ a2
k
+ (a+ a2

k
)2

t1 + (a+ a2
k
)2

t2
)

= 0.

(20)

Since x+x2
k
∈ F2k for any x ∈ F22k , (20) implies that (x′+x′′)2

i
(

a+ a2
k
+ (a+ a2

k
)2

t1

+(a+ a2
k
)2

t2
)

belongs to the multiplicative coset a2
i
F
∗
2k
. Thus, we necessarily have

x′ + x′′ = aν, where ν ∈ F
∗
2k
. Further, x′ + x′′ + (x′ + x′′)2

k

= aν + a2
k

ν. Since t1|t2,
from (20), we have

(

τ + τ2
t1 + τ2

t2
)

ν2
i

+ τν + τ2
t1ν2

t1 + τ2
t2ν2

t2

= τ
(

ν2
i
+ ν + ν2

t1 + ν2
t2
)

= 0.
(21)

If we set i = t2, then from (21) we have δG(a, b) = 2 6= 2gcd(i,k) since gcd(i, k) =
gcd(t2, k) 6= 1.

For one element b ∈ F22k , if for any x′ ∈ F22k , we always have G(x′)+G(x′+a) 6=
b, then δG(a, b) = 0.

⊓⊔

Theorem 9. Let i, ρ be two nonnegative integers such that ρ ≤ k. Let 0 ≤ tj ≤ k be

a nonnegative integer, where j = 1, 2, · · · , ρ. Assume that both
ρ
∑

j=1
z2

k−tj−1 + 1 = 0

and
ρ
∑

j=1
z2

tj−1 + 1 = 0 have no solution in F2k . Then, the mapping Fi
α defined by

Fi
α(x) = Tr2k1 (αG(x)) (22)
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where G(x) = x2
i

(

Tr2kk (x) +
ρ
∑

j=1
(Tr2kk (x))2

tj

)

is bent if and only if α /∈ F2k . Fur-

ther, if the number of the solutions of
ρ
∑

j=1
z2

tj
+ z + z2

i
= 0 on F2k is not equal to

2gcd(i,k), then there exist elements a ∈ F22k \ F2k such that the number δG(a, b) does
not equal 2gcd(i,k) for any b ∈ F22k .

Proof. From Theorem 6, we know Fi
α(x) is bent if and only if α /∈ F2k . We have

G(x) +G(x+ a) = a2
i

(

Tr2kk (x) +
ρ
∑

j=1
(Tr2kk (x))2

tj

)

+(x+ a)2
i

(

Tr2kk (a) +
ρ
∑

j=1
(Tr2kk (a))2

tj

)

= b.

(23)

Let a ∈ F22k \F2k such that a+a2
k
= 1. We need to show the number of solutions

of G(x) +G(x + a) = b is not equal to 2gcd(i,k) for any b ∈ F22k . Let ρ = gcd(i, k).
We suppose δG(a, b) = 2ρ and let x′, x′′ are the solutions of (23) for some b. Hence

G(x′) +G(x′ + a) +G(x′′) +G(x′′ + a)

= a2
i

(

Tr2kk (x′ + x′′) +
ρ
∑

j=1
(Tr2kk (x′ + x′′))2

tj

)

+ (x′ + x′′)2
i
= 0

(24)

since
ρ
∑

j=1
z2

tj−1+1 = 0 have no solution in F2k , that is,

(

Tr2kk (a) +
ρ
∑

j=1
(Tr2kk (a))2

tj

)

=

1. For any x ∈ F22k , (24) implies that (x′ + x′′)2
i
belongs to the multiplicative

coset a2
i
F
∗
2k
. Thus, we necessarily have x′ + x′′ = aν, where ν ∈ F

∗
2k
. Further,

Tr2kk (x′ + x′′) = x′ + x′′ + (x′ + x′′)2
k

= aν + a2
k

ν. From (24), we have

ν2
i

+ ν +

ρ
∑

j=1

ν2
tj
= 0. (25)

We also know that the number of the solutions of
ρ
∑

j=1
z2

tj
+ z + z2

i

= 0 on F2k is

not equal to 2gcd(i,k), thus, if a ∈ {x|Tr2kk (x) = 1, x ∈ F22k}, the number δG(a, b) is
not equals 2gcd(i,k) for any b ∈ F22k ⊓⊔

Theorem 10. Let n = 2k, e be two positive integers. Let V = F22k and i be a non-
negative integer. Let E = {x|x ∈ F22k , T r

2k
k (x) ∈ F2e} and O = {x ∈ F22k , T r

2k
k (x) ∈

M}, where M = {y + Trke (y)|y ∈ F2k}. Let F
i
α be the function defined on V by

Fi
α(x) = Tr2k1

(

αx2
i

Tr2ke (x)
)

. (26)

If k
e is even, then Fi

α is bent if and only if α /∈ E. If k
e is odd, then Fi

α is bent if and
only if α /∈ O. Further, if k is odd and e = 2, then Fi

α is bent if and only if α /∈ O.
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Proof. We have

Fi
α(x) = Tr2k1

(

αx2
i
(x+ x2

e
+ x2

2e
+ · · ·+ x2

2k−e
)
)

= Tr2k1 (xαx2
i
) + Tr2k1 (xα22k−e

x2
i+2k−e

) + Tr2k1 (xα22k−2e
x2

i+2k−2e
)

+ · · ·+ Tr2k1 (xα2ex2
i+e

)
= Tr2k1 (xL(x)),

(27)

where

L(x) = αx2
i
+ α22k−e

x2
i+2k−e

+ α22k−2e
x2

i+2k−2e
+ · · ·+ α2ex2

i+e

= αx2
i
+ (αx2

i
)2

2k−e
+ (αx2

i
)2

2k−2e
+ · · ·+ (αx2

i
)2

e

= Tr2ke (αx2
i
).

According to Lemma 2, the adjoint operator L∗(x) is

L∗(x) = α22k−i

x2
2k−i

+ α22k−i

x2
e−i

+ α22k−i

x2
2e−i

+ · · ·+ α22k−i

x2
2k−e−i

= α22k−i
(

x2
2k−i

+ x2
e−i

+ x2
2e−i

+ · · ·+ x2
2k−e−i

)

= α22k−i
(

x+ x2
e
+ x2

2e
+ · · ·+ x2

2k−e
)22k−i

= α22k−i (

Tr2ke (x)
)22k−i

.

(28)

Thus, we have

L(x) + L∗(x) = Tr2ke (αx2
i
) + α22k−i (

Tr2ke (x)
)22k−i

.

From Lemma 1, it is sufficient to show that L(x) + L∗(x) is invertible. That is, we
need to show that L(x) + L∗(x) = 0 if and only if x = 0.

For k
e being even, we have Tr2ke (x) = 0 if and only if x ∈ E. If α /∈ E, then

L(x) + L∗(x) = 0 is only if
{

Tr2ke (αx2
i

) = Trke

(

Tr2kk (αx2
i

)
)

= 0,

T r2ke (x) = 0,
(29)

i.e., x = 0. If for any x 6= 0, we have L(x) + L∗(x) 6= 0, then α /∈ E. In fact, if
suppose α ∈ E, then

L(x) + L∗(x) = Tr2ke (αx2
i
) + α22k−i (

Tr2ke (x)
)22k−i

= Tr2kk (α)Trke

(

Tr2kk (x2
i

)
)

+ α22k−i (

Tr2ke (x)
)22k−i

= 0

for any x ∈ E. Hence, Fi
α(x) is bent if and only if α /∈ E.

Similarly, for k
e odd, we have Tr2ke (x) = 0 if and only if x ∈ O. We can prove

Fi
α(x) is bent if and only if α /∈ O.
Similarly, for k odd and e = 2, we have Tr2k2 (x) = 0 if and only if x ∈ O. We

can prove Fi
α(x) is bent if and only if α /∈ O. ⊓⊔
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Remark 1. Note that Theorem 3 is special case of Theorem 10. It corresponds to
the case where e = k.

Similary to Theorem 6, we have the following statement.

Theorem 11. Let i, ρ be two nonnegative integers such that ρ ≤ k. Let γ(j) ∈
F2k and 0 ≤ tj ≤ k be a nonnegative integer, where j = 1, 2, · · · , ρ. Let both
ρ
∑

j=1
(γ(j))2

k−tj
z2

k−tj−1 + 1 = 0 and
ρ
∑

j=1
(γ(j))2

k−i
z2

tj−1 + 1 = 0 have no solution

in F2k . Let E and O be defined as Theorem 10. Let the function Fi
α be defined by

Fi
α(x) = Tr2k1



αx2
i



Tr2ke (x) +

ρ
∑

j=1

γ(j)(Tr2ke (x))2
tj







 . (30)

If k
e is even, then Fi

α is bent if and only if α /∈ E. If k
e is odd, then Fi

α is bent if and
only if α /∈ O. Further, if k is odd and e = 2, then Fi

α is bent if and only if α /∈ O.

6 Conclusions

This paper is in the line of a very recent paper published in the IEEE-transactions
Information Theory by Pott et al [8] in which several open problems have been raised.
In the present paper, we have established that the property of a function having the
maximal number of bent components is invariant under CCZ-equivalence which
gives an answer to an open problem in [8]. Next, we have proved the non-existence
of APN plateaued functions having the maximal number of bent components which
gives a partial answer to an open problem in [8]. Furthermore, we have exhibited
several bent functions F i

α for any α ∈ F22k \F2k provided that some conditions hold.
In other words, the set of those α for which F i

α is bent is of maximal cardinality
22k − 2k. This provide an answer to another open problem in [8]. In addition, we
have studied the differential spectrum of certain functions and showed that it is not
equal to those studied in [8].
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