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A New Piggybacking Design for Systematic MDS
Storage Codes
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Abstract

Distributed storage codes have important applications in the design of modern storage systems. In a distributed storage system,
every storage node has a probability to fail and once an individual storage node fails, it must be reconstructed using data stored in
the surviving nodes. Computation load and network bandwidth are two important issues we need to concern when repairing afailed
node. The traditional maximal distance separable (MDS) storage codes have low repair complexity but high repair bandwidth. On
the contrary, minimal storage regenerating (MSR) codes have low repair bandwidth but high repair complexity. Fortunately, the
newly introduced piggyback codes combine the advantages ofboth ones.

In this paper, by introducing a novel piggybacking design framework for systematic MDS codes, we construct a storage code
whose average repair bandwidth rate, i.e., the ratio of average repair bandwidth and the amount of the original data, canbe as
low as

√

2r−1
r

, which significantly improves the ratior−1
2r−1

of the previous result. In the meanwhile, every failed systematic node
of the new code can be reconstructed quickly using the decoding algorithm of an MDS code, only with some additional additions
over the underlying finite field. This is very fast compared with the complex matrix multiplications needed in the repair of a failed
node of an MSR code.

Index Terms

Distributed storage system, systematic MDS code, piggyback code

I. I NTRODUCTION

Due to their reliability and efficiency in data storage, distributed storage systems have attracted a lot of attentions in the
last decades. In a distributed storage system, the whole data is stored in a collection of storage nodes. These nodes are
physically independent and connected by a network. Since every single node has a probability to fail, redundancy is introduced
to ensure the reliability of the system. In the literature, there are two strategies to guarantee redundancy: replication and erasure
coding. Intuitively, replication is simple but inefficient. On the contrary, erasure coding provides much better storage efficiency.
Therefore, in order to handle massive amount of information, erasure coding techniques have been employed by many modern
distributed storage systems, for example, Google Colossus[1], HDFS Raid [2], Total Recall [3], Microsoft Azure [5] and
OceanStore [6].

Once an individual storage node fails, it must be reconstructed using data stored in the surviving nodes. There are four
parameters we need to concern when repairing a failed node, such as computation load, network bandwidth, disk I/O and the
number of accessed disks. In the literature, most of the existing storage codes are optimal for only one of these four parameters,
for example, MDS codes for computation load, regenerating codes for network bandwidth [4] and local repairable codes for
the number of accessed disks [8], [12]. The primary concern of this paper is to optimize the first two parameters. We define
the average repair bandwidth rate,γ, to be the ratio of average repair bandwidth and the amount ofthe original data. In what
follows, we will briefly review the repair complexity and repair bandwidth of three classes of storage codes, namely, MDS
storage codes, MSR codes and piggyback codes.

The MDS code is a widely-used class of erasure codes for data storage, see for example, [13], [14]. It is optimal in terms of
the redundancy-reliability tradeoff. A(k + r, k) MDS storage code consists ofk+ r storage nodes, with the property that the
original message can be recovered from anyk of the k + r nodes. It can tolerate the failure of anyr nodes. This property is
termed the MDS property. A node is called systematic if it stores parts of the original message without coding. A systematic
MDS code is an MDS code such that the original message is stored in k nodes in the uncoded form. The remainingr nodes,
which are called parity nodes, store the parity data of thek systematic nodes. From a practical standpoint, it is preferred to have
the systematic feature, since in normal cases, data can be read directly from the systematic nodes without performing decoding.
Many practical considerations also require the storage codes to be high-rate, i.e.,r ≪ k. Therefore, the repair efficiency of a
failed systematic node is of great importance in the design of a distributed storage system.

In the case of MDS storage codes, the repair of a failed storage node only involves addition and multiplication in finite
fields, which leads to a reasonable computation load in the repair process. However, to repair a single failed node, an MDS
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storage code needs to download the whole of its original data. In other words, the average repair bandwidth rate of MDS
storage codes,γMDS , equals 1.

In 2010, Dimakis et al. [4] introduced the notion of regenerating codes to reduce the repair bandwidth of distributed storage
systems, where the failed systematic node is repaired by downloading a same amount of data from each of the surviving
nodes.The MSR code is one of the two most important regenerating codes. It maintains the MDS property and has an average
repair bandwidth rateγMSR = k+r−1

rk
, which givesγMSR ≈ 1

r
when r ≪ k. γMSR becomes much smaller thanγMDS

as r grows larger. However, a drawback of the MSR code is that its repair algorithm of a failed systematic node involves
multiplications of matrices, whose computational complexity may be too high for existing storage systems.

It is of great interest to construct storage codes with the following features: the MDS property, low repair complexity and
low repair bandwidth. Motivated by these expectations, theseminal papers [10], [11] presented a piggybacking framework
to combine the advantages of MDS codes and MSR codes. The ideaof piggybacking is to take multiple instances of some
existing code and adds carefully designed functions of datafrom one instance onto the other. As a result, the piggyback codes
described in [10] (see, Section 4 of [10]) not only preserve the low computational complexity of MDS codes but also have
an average repair bandwidth rateγRSR = r−1

2r−3 ≈ 1
2 < γMDS . Since then, this new idea has been applied successfully by

several researchers. In 2013, it was adopted in the design ofnew storage systems for Facebook [9]. In 2015, Yang et al. [15]
employed the piggybacking strategy to design new MSR codes with almost optimal repair bandwidth for parity nodes. Kumar
et al. [7] also used this technique to construct codes with low repair bandwidth and low repair complexity, at the cost of lower
fault tolerance.

It is not hard to see that the performance of piggyback codes lies between that of MDS codes and that of MSR codes. The
main purpose of this paper is to design a new piggybacking framework to further reduce the repair bandwidth of the systematic
nodes of a storage code. Our design can produce a new systematic MDS storage code with average repair bandwidth rate as
low asγNEW =

√
2r−1
r

. Obviously, our result significantly improvesγRSR for almost all choices ofr. Furthermore, compared
with the relatively high computational complexity of MSR codes, the repair of a failed storage node of the new code only
involves addition and multiplication in some finite field.

The rest of this paper is organised as follows. In Section II,we briefly review the piggybacking framework introduced in
[10]. Our new piggybacking design is presented in Section III. In Section IV, we compare our new storage code with some
existing ones. We pose two open problems in Section V for further research.

II. T HE PIGGYBACKING FRAMEWORK

We will introduce some terminology defined in [10]. Denote byF := Fq the underlying finite field, whereq is a power
of some prime number. The piggybacking framework operates on an arbitrary existing code, which is termed the base code.
Without loss of generality, we can assume that the base code is associated withn encoding functions{fi}ni=1 and stored inn
storage nodes. Considerm instances of the base code, then the initial encoded system is as follows:

Node 1 f1(a1) f1(a2) · · · f1(am)
...

...
...

. . . · · ·
Noden fn(a1) fn(a2) · · · fn(am)

wherea1, . . . , am denote the messages encoded under them instances. For every1 ≤ i ≤ n and2 ≤ j ≤ m, one can add an
arbitrary valuegi,j(a1, . . . , aj−1) to fi(aj). Here the functionsgi,j : Fk −→ F, 1 ≤ i ≤ n, 2 ≤ j ≤ m are termed piggyback
functions, which can be chosen arbitrarily. The values to beadded are termed piggybacks. Therefore, the symbol stored in the
i-th node (row) andj-th instance (column) isfi(aj) + gi,j(a1, . . . , aj−1). The resulting piggyback code is depicted in Table
I. The first instance contains no piggybacks since such arrangement allowsa1 to be recovered directly using the decoding
algorithm of the base code.

TABLE I: The piggyback code
Node 1 f1(a1) f1(a2) + g1,2(a1) · · · f1(am) + g1,m(a1, . . . , am−1)

...
...

...
. . . · · ·

Noden fn(a1) fn(a2) + gn,2(a1) · · · fn(am) + gn,m(a1, . . . , am−1)

In this paper, we take the base code to be a systematic(k + r, k) MDS code, whose structure is described in Table II,
where we also takem instances of the base code and denoteai = (a1,i, a2,i, . . . , ak,i)

T for every1 ≤ i ≤ m. The functions
{fi : 1 ≤ i ≤ r} are called parity functions, which are chosen to ensure the MDS property of the code. The original data
{a1, a2, . . . , am} is stored in thek systematic nodes in the uncoded form. We can assume that every symbol in the array stores
a unit amount of data. According to the piggybacking framework introduced in Table I, the systematic MDS code of Table II
has the piggybacked form described in Table III.
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TABLE II: The systematic(k + r, k) MDS code
Node 1 a1,1 a1,2 · · · a1,m

...
...

...
. . .

. . .
Nodek ak,1 ak,2 · · · ak,m

Nodek + 1 f1(a1) f1(a2) · · · f1(am)
...

...
...

. . .
...

Nodek + r fr(a1) fr(a2) · · · fr(am)

TABLE III: The piggybacked systematic(k + r, k) MDS code
Node 1 a1,1 a1,2 · · · a1,m

...
...

...
. . .

. . .
Nodek ak,1 ak,2 · · · ak,m

Nodek + 1 f1(a1) f1(a2) + g1,2(a1) · · · f1(am) + g1,m(a1, . . . , am−1)
...

...
...

. . .
...

Nodek + r fr(a1) fr(a2) + gr,2(a1) · · · fr(am) + gr,m(a1, . . . , am−1)

A crucial point in the addition of the piggybacks is that the functionsgi,j can only operate on the message symbols of
previous instances, namely{a1, . . . , aj−1}. In the sequel we will call this constraint “the piggybacking condition”. It has been
shown that such condition maintains the MDS property of an MDS code (see Theorem 1 and Corollary 2 of [10] for the
details). In [10], the authors presented several code constructions. The second one is the most efficient one in terms of repair
bandwidth, whose minimal average repair bandwidth rate isγRSR ≥ r−1

2r−3 and the equality holds whenr − 1 | k. In their
construction, they tookm := 2r − 3 instances of the base code. The functionfi was defined to befi(x) =< pi, x > for
1 ≤ i ≤ r, wherepi ∈ F

k and< ·, · > denotes the conventional inner product overF. Table IV briefly describes the symbols
stored in the parity nodek + i, i ∈ {2, . . . , r}. The variablesvi, qi,j , i ∈ {2, . . . , r − 2}, j ∈ {1, . . . , r − 1}, involved in the
computation of the piggybacks all belong toFk. Explicit expressions are not given here for the sake of saving space. At the
first sight, it is likely to find this construction a bit complex and not easy to understand. In the next section, we will present
a new piggybacking design which looks much cleaner and has anaverage repair rate as low asγNEW =

√
2r−1
r

.
Another family of piggyback codes was introduced in [7]. It was based on two classes of parity symbol such that the first

class is used for good fault tolerance and the second class isused for reducing repair bandwidth and complexity. However,
such construction does not maintain the MDS property. In Section IV, we will compare our construction with these codes.

TABLE IV: The RSR piggyback code
pTi a1 · · · pTi ar−2 qTi,i−1ar−1 −

∑2r−3
j=r pTi aj pTi ar + qTi,1vi · · · pTi ar+i−3 + qTi,i−2vi pTi ar + qTi,ivi · · · pTi a2r−3 + qTi,r−1vi

III. T HE NEW PIGGYBACKING DESIGN

In this section, we will present our new piggybacking designand the corresponding repair algorithm. Our main contribution
is on the reduction of the repair bandwidth for systematic nodes, which is the primary concern of many existing storage codes.
Our design is based on an elaborative selection and placement of the piggybacking functions. We first begin with an example
to illustrate our idea.

A. The piggybacked (11,6) MDS code

In this subsection, we describe in detail the piggybacking design and repair algorithm for an (11,6) systematic MDS code.
Keep in mind the structure of a systematic MDS code describedin Table III. We will take 5 instances (we typically choose
the number of instances equal tor) of the base code. The construction is described in Table V.

One can observe that all systematic nodes are partitioned into three subsetsS1 = {1, 2}, S2 = {3, 4} andS3 = {5, 6}. Parts
of symbols ofS1, S2, S3 are piggybacked in instances 5, 4 and 3, respectively. To be more precise, the symbols of the first
four instances ofS1 are piggybacked in instance 5, the symbols of the first three instances ofS2 are piggybacked in instance
4 and the symbols of the first two instances ofS3 are piggybacked in instance 3. Consequently, nodes in different Si have
different repair algorithms, we take one node of eachSi as examples:

(a) Consider the repair of node 1. First{ai,5 : 2 ≤ i ≤ 6} and f1(a5) are downloaded and the entire vectora5 is decoded
using the MDS property. Then{fj+1(a5)+a1,j+a2,j : 1 ≤ j ≤ 4} and{a2,j : 1 ≤ j ≤ 4} are downloaded from instance
(column) 5 and node 2, respectively. Sincea5 is completely known, one can compute{fj+1(a5) : 1 ≤ j ≤ 4}. Thus for
1 ≤ j ≤ 4, a1,j can be recovered by subtractinga2,j andfj+1(a5) from fj+1(a5) + a1,j + a2,j . The total downloaded
data in the repair of node 1 is6 + 4× 2 = 14. The repair strategy of node 2 is similar.
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TABLE V: The piggybacked (11,6) MDS code
a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5
a4,1 a4,2 a4,3 a4,4 a4,5
a5,1 a5,2 a5,3 a5,4 a5,5
a6,1 a6,2 a6,3 a6,4 a6,5

f1(a1) f1(a2) f1(a3) f1(a4) f1(a5)
f2(a1) f2(a2) f2(a3) + a5,1 + a6,1 f2(a4) + a3,1 + a4,1 f2(a5) + a1,1 + a2,1
f3(a1) f3(a2) f3(a3) + a5,2 + a6,2 f3(a4) + a3,2 + a4,2 f3(a5) + a1,2 + a2,2
f4(a1) f4(a2) f4(a3) f4(a4) + a3,3 + a4,3 f4(a5) + a1,3 + a2,3
f5(a1) f5(a2) f5(a3) f5(a4) f5(a5) + a1,4 + a2,4

(b) Consider the repair of node 3. Firsta3,5 is recovered by downloading{ai,5 : 1 ≤ i ≤ 6, i 6= 3} and f1(a5) (using the
MDS property). Thena3,4 is recovered by downloading{ai,4 : 1 ≤ i ≤ 6, i 6= 3} and f1(a4). It remains to recover
{a3,j : 1 ≤ j ≤ 3}. We will use the piggybacks added in instance (column) 4.{fj+1(a4) + a3,j + a4,j : 1 ≤ j ≤ 3}
and {a4,j : 1 ≤ j ≤ 3} are downloaded from instance 4 and node 4, respectively. Since a4 is completely known, one
can compute{fj+1(a4) : 1 ≤ j ≤ 3}. Thus for1 ≤ j ≤ 3, a3,j can be recovered by subtractinga4,j andfj+1(a4) from
fj+1(a4) + a3,j + a4,j. The total downloaded data in the repair of node 3 is6 × 2 + 3× 2 = 18. The repair strategy of
node 4 is similar.

(c) Consider the repair of node 5. First{a5,j : 3 ≤ j ≤ 5} is recovered by downloading{ai,j : 1 ≤ i ≤ 6, i 6= 5, 3 ≤ j ≤ 5}
and {f1(aj) : 3 ≤ j ≤ 5} (using the MDS property). It remains to recovera5,1 and a5,2, which can be done using
the piggybacks added tof2(a3) andf3(a3). One can compute that the total downloaded data in the repairof node 5 is
6× 3 + 2× 2 = 22. The repair strategy of node 6 is similar.

It is easy to see that the proposed code has an average repair bandwidth 14+18+22
3 = 18 and an average repair bandwidth

rateγ = 18
30 = 3

5 . The amount of data required for the repair of nodes from different subsets lies in different hierarchies. The
reason is that due to the piggybacking condition introducedin Section II, the symbols stored in the latter instances cannot be
added as piggybacks onto the parity symbols of the former instances. Therefore, more information, which can only be obtained
by the MDS property rather than piggybacking, will be neededwhen recovering symbols stored in the latter instances. For
example, during the repair of node 1, we use the MDS property for only one time (to recovera5), but in order to recover node
3 we have to use the MDS property twice (one time to recovera4 and another time to recovera5, since the information ofa5
can only be got from instance 5 using the MDS property). This observation indeed reveals the key idea of our construction:
divide the systematic nodes into several subsets and piggyback symbols in the same subset onto same instance.

B. The general piggybacking framework

We will introduce our general piggybacking framework for the repair of the systematic nodes of an MDS code. Take an
arbitrary systematic(k + r, k) MDS code as the base code. Generally speaking, to form the piggyback codeC, we will take
r instances of the base code. LetS = {si : 1 ≤ i ≤ t} be a set oft positive integers such that

∑t

i=1 si = k. As shown in
the above example, thek systematic nodes ofC are partitioned intot groups,S1, . . . ,St, such that|Si| = si for 1 ≤ i ≤ t.
Without lose of generality, we can assume thatS1 = {1, 2, . . . , s1} andSi = {∑i−1

j=1 sj + 1, . . . ,
∑i

j=1 sj} for 2 ≤ i ≤ t. For
a vectorΛ = (λ1, . . . , λk) of lengthk overF, thet piggyback functions{gi : 1 ≤ i ≤ t} are defined to begi(Λ) =

∑
j∈Si

λj .
Our general piggybacking framework is presented as follows:

TABLE VI: The general piggybacking framework
Node 1 a1,1 · · · a1,r−t a1,r−t+1 · · · a1,r−1 a1,r

...
...

. . .
...

...
. . .

...
...

Nodek ak,1 · · · ak,r−t ak,r−t+1 · · · ak,r−1 ak,r
Nodek + 1 f1(a1) · · · f1(ar−t) f1(ar−t+1) · · · f1(ar−1) f1(ar)

Nodek + 2
...

. . .
... f2(ar−t+1) + gt(a1) · · · f2(ar−1) + g2(a1) f2(ar) + g1(a1)

...
...

. . .
...

...
. . .

...
...

Nodek + r − t+ 1
...

. . .
... fr−t+1(ar−t+1) + gt(ar−t)

. . .
...

...
...

...
. . .

...
...

. . .
...

...

Nodek + r − 1
...

. . .
...

...
. . . fr−1(ar−1) + g2(ar−2)

...
Nodek + r fr(a1) · · · fr(ar−t) fr(ar−t+1) · · · fr(ar−1) fr(ar) + g1(ar−1)

Note that in the above table, the firstk + 1 nodes remain unchanged. Our construction can be summarizedas follows:
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(a) None of the symbols ofar are piggybacked.
(b) For r − t+ 1 ≤ j ≤ r − 1, the symbols ofaj belonging to∪r−j

l=1Sl are piggybacked. More precisely, for1 ≤ l ≤ r − j,
the symbols ofaj restricted toSl are piggybacked in the(j + 1)-th parity node of instancer − l + 1.

(c) For 1 ≤ j ≤ r − t, all symbols ofaj are piggybacked. More precisely, for1 ≤ l ≤ t, the symbols ofaj restricted toSl

are piggybacked in the(j + 1)-th parity node of instancer − l + 1.
Consequently, the amount of data required for the repair of nodes from different subsets also lies in different hierarchies.

For example, assume that we want to recover some failed nodei of Sl, say, the symbols{ai,j : 1 ≤ j ≤ r}. Note that for
1 ≤ j ≤ r − l, the symbolai,j is piggybacked in the formfj+1(ar−l+1) + gl(aj) in the (j + 1)-th parity node of instance
r − l + 1. One can recall thei-th row and the(r − l + 1)-th column of Table VI for a better understanding:

...
ai,1 · · · ai,r−l ai,r−l+1 ai,r−l+2 · · · ai,r

f1(ar−l+1)
f2(ar−l+1) + gl(a1)

...
fr−l+1(ar−l+1) + gl(ar−l)

fr−l+2(ar−l+1)
...

fr(ar−l+1)

To recover{ai,j : 1 ≤ j ≤ r}, firstly, eachai,j , r − l + 1 ≤ j ≤ r can only be reconstructed using the MDS property, hence
the amount of data needed to be downloaded iskl. Secondly, eachai,j , 1 ≤ j ≤ r − l can be reconstructed by downloading
fj+1(ar−l+1) + gl(aj) and{ai′,j : i′ ∈ Sl, i′ 6= i}, hence the amount of data needed to be downloaded is(r − l)|Sl|. Since
fj+1(ar−l+1) is known afterar−l+1 is recovered,ai,j can be reconstructed by subtractingfj+1(ar−l+1) and

∑
i′:i′∈Sl,i′ 6=i ai′,j

from fj+1(ar−l+1)+gl(aj). Therefore, the amount of data needed to be downloaded in therepair of nodei ∈ Sl is kl+(r−l)sl.
We can conclude that the total amount of data needed to be downloaded in the repair of all systematic nodes is

t∑

l=1

(kl + (r − l)sl)sl.

Now it remains to find the minimal value of (1):

min
t∑

l=1

(kl + (r − l)sl)sl,

s.t.

t∑

l=1

sl = k and s1, . . . , st, t ∈ Z
+.

(1)

Unfortunately, we are not able to compute the minimum value of (1) exactly. One may apply the Lagrange multiplier method
to get a minimal value of (1) for every appropriate choice oft and end up with a function oft, then compute the minimum
of this function. We have tried along this line but found the computation to be too involved. Nevertheless, we can always let
si be some special values such that the target function is smallenough. For instance, we can sets1 = · · · = st =

k
t
, which

leads to an average repair bandwidth rate

γ =
1

rk2

t∑

l=1

k

t
(kl + (r − l)

k

t
)

=
1

2
(
t

r
+

1

t
(2− 1

r
)).

(2)

By the mean value inequality, (2) attains its minimumγ =
√
2r−1
r

when t =
√
2r − 1.

We denote the code with above parameters byCNEW . If we repair every failed parity node simply by downloadingthe
whole original data, then providedr ≪ k, the average repair bandwidth rate for all storage nodes will be

γNEW =

√
2r−1
r

k + r

k + r
≈

√
2r − 1

r
= O(

1√
r
).

In the remaining of this section we will present a slight improvement of the above construction. Note that in Table VI, for
r − t + 1 ≤ j ≤ r, the number of symbols added to the parity nodes of instancej is (j − 1)sr−j+1. One can see that these
symbols are piggybacked inj− 1 parity symbols of instancej and there are stillr− j parity symbols leaving unused (the first
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parity symbol is used to ensure the MDS repair ofaj). Indeed, adding the(j − 1)sr−j+1 symbols as evenly as possible to all
r− 1 available parity nodes will lead to a better repair bandwidth. As an example, we reformulate the piggybacked pattern of
Table V into the following one:

f2(a3) + a5,1 f2(a4) + a3,1 f2(a5) + a1,1 + a2,1
f3(a3) + a5,2 f3(a4) + a3,2 + a4,2 f3(a5) + a1,2 + a2,2
f4(a3) + a6,1 f4(a4) + a3,3 + a4,3 f4(a5) + a1,3 + a2,3
f5(a3) + a6,2 f5(a4) + a4,1 f5(a5) + a1,4 + a2,4

Compared with the previously described construction, the recover of each symbol of{a5,1, a5,2, a6,1, a6,2, a3,1, a4,1} requires
less information (2 instead of 3). In general, similar improvements can be made for everyr − t+ 1 ≤ j ≤ r − 1. As in the
piggybacking design of [10], for instancej, one may divide all symbols piggybacked in that instance into r − 1 groups. Let
tf = ⌊ (j−1)sr−j+1

r−1 ⌋, tc = ⌈ (j−1)sr−j+1

r−1 ⌉, t = (j − 1)sr−j+1 − (r − 1)tf . The firstt groups are chosen of sizetc each and the
remainingr−1−t groups have sizetf each. Then the systematic symbols involved in the sumgr−j+1(a1)+· · ·+gr−j+1(aj−1)
are added “evenly” to theser − 1 parity nodes. This new placement of symbols will sightly reduce the repair bandwidth. We
will not carry out an explicit computation here since such reduction only affects the constant coefficient before1√

r
.

We would like to comment that in the practical setting, when the valuesk andr are given, one may do better than
√
2r−1
r

by either carrying out a more careful optimization of (1) or applying the trick on the placement of the piggybacks discussed
above.

IV. COMPARISON OF SOME EXISTING CODES

In this section, we compare the performance of some storage codes, namely, MDS code, the old piggyback codes introduced
in [7], [10] and the one newly constructed in Section III. In order to evaluate the repair complexity and encoding complexity
of these codes, we first consider the complexity of elementary arithmetic operations of elements in the underlying finitefield,
which is denoted byFq. Denotee = ⌈log2 q⌉, then an addition requirese and a multiplication requirese2 times of elementary
binary additions, respectively. For1 ≤ i ≤ r, we define the parity functionsfi to be fi(a) =< pi, a > for carefully chosen
vectorspi ∈ F

k
q . Then the repair complexity of a single node of an MDS code (with only one instance) iske2 + (k − 1)e.

We setx := ke2 + (k − 1)e for convenience. Consider the new piggyback code, for1 ≤ l ≤ t, the repair complexity of a
systematic nodei ∈ Sl is

lx+ (r − l)(x+ sle) = rx + (r − l)sle,

where the first part of the summation corresponds to the computation cost of repairing the lastl symbols in nodei, and the
second part of the summation corresponds to the computationcost of repairing the firstr − l symbols in nodei. The total
computation cost of repairing all systematic nodes is

∑t
l=1 sl(rx + (r − l)sle). On the other hand, the computation cost of

repairing allr parity nodes isr2x+
∑t

l=1(r − l)sle. Thus the average repair complexity of allk + r nodes of the new code
is at most ∑t

l=1 sl(rx + (r − l)sle) + r2x+
∑t

l=1(r − l)sle

k + r
= rx +

∑t

l=1(r − l)sl(sl + 1)e

k + r
.

One can also compute the encoding complexity of an MDS code (with only one instance) and the new code, which isrx
and r2x +

∑t
l=1 sl(r − l)e, respectively. It is easy to check that the repair complexity and encoding complexity of the new

code are very close to those of an MDS code withr instances, which arerx and r2x, respectively. One can also determine
the corresponding parameters of the piggyback codes constructed in [7], [10]. We can summarize the computation resultsas
follows:

TABLE VII: Comparison of some(k + r, k) piggyback codes
Number of Instances Fault Tolerance Average Repair Bandwidth Rate Average Repair Complexity Encoding Complexity

MDS 1 r 1 x rx

RSR [10] 2r − 3 r r−1
2r−3

O((2r − 3)x) ≤ (2r − 3)rx+ kre2 + kre

KAAB [7] k ≥ nA − k − τ + 1 <
k+τ+(k−τ−1)2

k2

CR
k

CE

New code r r ≈
√

2r−1
r

≤ rx+
√
rx ≤ r2x+ kre

wherenA ≤ min{k + r, 2k}, τ ≥ 1, CR, CE are defined in [7] and we take the new code to beCNEW .
Taking the number of instances into account, we can find that the fault tolerance, average repair complexity and encoding

complexity of MSR, RSR and the new code are very close. For theaverage repair bandwidth rate, it holds thatγNEW ≪
γRSR < γMDS . For the KAAB code, by [7], its average repair complexity andencoding complexity can even be lower than
the MDS code. However, if we setγKAAB = Θ( 1√

r
), then we haveτ = Θ(k(1 − 1

r1/4
), which leads to a dramatic loss on

the fault tolerance. Another nice feature of our construction is that, the number of instances is less than that of RSR code and
much less than that of KAAB code providedr ≪ k.
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As discussed in [10], practical data centers require the storage codes to be MDS, high-rate, have a small number of instances,
and of course, have low repair bandwidth and low repair complexity. It is not hard to find that the newly constructed code fits
these requirements much better than the other ones.

V. CONCLUSION

The main purpose of this paper is to optimize the repair bandwidth and repair complexity in the repair of a failed node
in the distributed storage systems. Unfortunately, in our view it seems very hard to construct a code satisfying the following
three properties:

(a) the MDS property,
(b) the repair complexity is close to that of an MDS code,
(c) the average repair bandwidth rate is close to that of an MSR code, which can be as low asc/r for some constantc.

The new code introduced in this paper only satisfies the first two requirements, and has an average repair bandwidth rate
γNEW = Θ( 1√

r
). Therefore, we would like to pose two open problems for further research:

Open Problem 1. Establish an equality or an inequality such that the tradeoff between repair complexity and repair bandwidth
can be written down mathematically.

Open Problem 2. Under conditions (a) and (b), determine the minimal averagerepair bandwidth rate for the repair of a
failed node.
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