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Abstract

The ℓ-Galois hull hℓ(C) of an [n, k] linear code C over a finite field Fq is the
intersection of C and C⊥ℓ , where C⊥ℓ denotes the ℓ-Galois dual of C which intro-
duced by Fan and Zhang (2017). The ℓ- Galois LCD code is a linear code C with
hℓ(C) = 0. In this paper, we show that the dimension of the ℓ-Galois hull of a
linear code is invariant under permutation equivalence and we provide a method to
calculate the dimension of the ℓ-Galois hull by the generator matrix of the code.
Moreover, we obtain that the dimension of the ℓ-Galois hulls of ternary codes are
also invariant under monomial equivalence. We show that every [n, k] linear code
over Fq is monomial equivalent to an ℓ-Galois LCD code for any q > 4. We conclude
that if there exists an [n, k] linear code over Fq for any q > 4, then there exists an
ℓ-Galois LCD code with the same parameters for any 0 ≤ ℓ ≤ e − 1, where q = pe

for some prime p. As an application, we characterize the ℓ-Galois hull of matrix
product codes over finite fields.

Keywords: ℓ-Galois hull of a linear code, monomial equivalence, ℓ-Galois LCD
code, matrix product code.
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1 Introduction

Let Fq be a finite field of order q, where q = pe and p is a prime. Recently, Fan and
Zhang [12] generalize the Euclidean inner product and the Hermitian inner product to
the so-called ℓ-Galois form (or ℓ-Galois inner product), where 0 ≤ ℓ ≤ e−1. The ℓ-Galois
dual codes, and the ℓ-Galois self-dual constacyclic codes over finite fields are studied. In
particular, necessary and sufficient conditions for the existence of ℓ-Galois self-dual and
isometrically Galois self-dual constacyclic codes are obtained. As consequences, some
results on self-dual, iso-dual and Hermitian self-dual constacyclic codes are derived.

∗E-Mail addresses: hwliu@mail.ccnu.edu.cn (H. Liu), panxu@mails.ccnu.edu.cn (X. Pan)
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Linear complementary-dual (LCD for short) codes are linear codes that intersect with
their duals trivially. They were first studied by Massey [23] who showed that these codes
are optimal for the two-user binary adder channel (BAC) and that they are asymptotically
good. Sendrier [29] showed that these codes meet the Gilbert-Varshamov bound. In
([28],[29],[30],[32], [31]), the authors also studied the hulls of linear codes, and tried to
find permutations between two equivalent codes, which has an application to code-based
public key cryptosystems. Carlet and Guilley gave some applications of LCD codes in
side-channel attacks and fault non-invasive attacks ([4],[6],[7]). LCD codes also can be
used for constructions of lattices [17]. Optimal and MDS codes that are LCD are studied
in many papers (see [2],[8],[10],[12],[16],[20],[22],[23],[27],[19]).

Motivated by the previous work, we study the Galois hulls of linear codes over finite
fields. The ℓ-Galois hull of a linear code C over a finite field Fq is defined by hℓ(C) =
C
⋂

C⊥ℓ, where q = pe, p is a prime, and 0 ≤ ℓ ≤ e−1. The classical LCD code is a linear
code with h0(C) = 0, and the Hermitian LCD code is a code with h e

2
(C) = 0, where e is

even.

Construction of codes is an interesting research field in coding theory. The matrix
product code [C1, · · · , CM ] · A is a new code constructed from the codes C1, · · · , CM of
same length n and an M × N matrix A over a finite field Fq. These codes were first
proposed and studied in [5]. There are many papers focusing on its algebraic structure,
different distance structures, and decoding algorithm (see [14],[15],[24],[1],[11]).

This paper is organized as follows. Section 2 gives some preliminaries. In Section 3,
a characterization of the dimension of the ℓ-Galois hull of a linear code is provided. As a
corollary, we obtain a necessary and sufficient condition for a linear code to be an ℓ-Galois
LCD code. In Section 4, we first show that the dimension of any ℓ-Galois hull of a linear
code is invariant under permutation equivalence for 0 ≤ ℓ ≤ e − 1. For ternary codes,
the dimension of the ℓ-Galois hull is also invariant under monomial equivalence. Then
we show that every linear code over Fq is monomial equivalent to an ℓ-Galois LCD code
in the case of q > 4. We conclude that if there exists an [n, k] linear code over Fq with
q > 4, then there exists an ℓ-Galois LCD code with the same parameters. In Section 5,
we study the structure and the dimension of ℓ-Galois hull of matrix product codes.

2 Preliminaries

Throughout this paper, Fq denotes a finite field of order q = pe, where p is a prime,
e is a positive integer. By F

∗

q we denote the multiplicative group of Fq. Let F
n
q =

{(x1, · · · , xn) | xj ∈ Fq, 1 ≤ j ≤ n} be the n dimensional vector space over Fq. Any
subspace C of Fn

q is called a linear code of length n over Fq. We assume that all codes are
linear in this paper.

Let Sn be the symmetric group on the set X = {1, 2, · · · , n}. For all ϕ ∈ Sn and
x = (x1, · · · , xn) ∈ F

n
q , Sn acts on F

n
q in the following way.

Sn × F
n
q → F

n
q , (ϕ,x) 7→ ϕ · x = ϕ(x) = (xϕ(1), · · · , xϕ(n)).
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In [12], Fan and Zhang introduced the following concept.

Definition 2.1. Assume the notations given above. For each integer ℓ with 0 ≤ ℓ ≤ e−1,
let

〈x,y〉ℓ = x1y
pℓ

1 + · · ·+ xny
pℓ

n , ∀x,y ∈ F
n
q .

Then the form 〈−,−〉ℓ is called the ℓ-Galois form on F
n
q , or ℓ-Galois inner product.

It is easy to see that 〈−,−〉0 is just the usual Euclidean inner product. And, 〈−,−〉 e
2

is the Hermitian inner product if e is even. For any code C over Fq, the following code

C⊥ℓ = {x ∈ F
n
q | 〈c,x〉ℓ = 0, ∀c ∈ C}

is called the ℓ-Galois dual code of C. If C ⊆ C⊥ℓ , then C is said to be ℓ-Galois self-
orthogonal. Moreover, C is said to be ℓ-Galois self-dual if C = C⊥ℓ .

Note that C⊥ℓ is linear whenever C is linear or not. In particular, C⊥0 (C⊥ for short)

is just the Euclidean dual code of C, and C
⊥ e

2 (C⊥H for short) is just the Hermitian dual
code of C if e is even.

Let σ : Fq → Fq, a 7→ ap, be the Frobenius automorphism of Fq. For any x =
(x1, · · · , xn) ∈ F

n
q , and any matrix G = (aij)k×l over Fq , set σ(x) := (σ(x1), · · · , σ(xn))

and σ(G) := (σ(aij))k×l.

The following proposition is easily obtained.

Proposition 2.2. Assume the notations given above. Then for any 0 ≤ ℓ ≤ e− 1,

(1) C⊥ℓ = (σe−ℓ(C))⊥0 = σe−ℓ(C⊥0).

(2) (C⊥ℓ)⊥f = σ2e−ℓ−f(C), for any 0 ≤ ℓ, f ≤ e− 1. In particular, (C⊥0)⊥0 = C, and

(C
⊥ e

2 )
⊥ e

2 = C if e is even.

Proof. The two statements follow immediately from the identity 〈c,x〉ℓ = 〈c, σℓ(x)〉0=
σℓ(〈σe−ℓ(c),x〉0).

Definition 2.3. Let C be a linear code over Fq. The ℓ-Galois hull of C is defined by
hℓ(C) = C

⋂

C⊥ℓ. If hℓ(C) = 0, then C is called a linear code with ℓ-Galois comple-
mentary dual or an ℓ-Galois LCD code. If hℓ(C) = C, then C is called an ℓ-Galois
self-orthogonal linear code.

Remark 2.4. Note that when ℓ = 0 and C
⋂

C⊥0 = 0, the code C is the classical LCD

code. When e is even and C
⋂

C
⊥ e

2 = 0, the code C is the Hermitian LCD code.

A monomial matrix is a square matrix such that in every row (and in every column)
there is exactly one nonzero element. It is easy to see that any monomial matrix is
a product of a permutation matrix and an invertible diagonal matrix. In particular, a
permutation matrix is a special monomial matrix. Two linear codes C1 and C2 of length
n over Fq are monomial equivalent, if there is an monomial matrix M of size n such that
C2 = C1M = {y | y = xM, for x ∈ C1}. If M is a permutation matrix, then C1 and C2

are called permutation equivalent.
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3 The ℓ-Galois hull of linear codes

In this section, we give a characterization for the ℓ-Galois hull of any linear code over Fq.
We have the following theorem.

Theorem 3.1. Let C be an [n, k] linear code over Fq with a generator matrix G. Let h
be the dimension of the ℓ-Galois hull hℓ(C) = C

⋂

C⊥ℓ of C, and let r = k − h. Then
there exists a generator matrix G0 of C such that

G0σ
ℓ(GT

0 ) =

(

Oh×h Hh×r

Or×h Pr×r

)

,

where Oh×h and Or×h are respectively zero matrices of sizes h×h and r×h, and the rank

r(Q) of Q =

(

Hh×r

Pr×r

)

is r. Furthermore, the rank r(Gσℓ(GT )) of Gσℓ(GT ) is r for any

generator matrix G of C.

Proof. Let {α1, · · · , αh} be a basis of hℓ(C). We can extend {α1, · · · , αh} to a basis
{α1, · · · , αh, · · · , αk} of C. Let G0 be the k × n matrix such that its ith row is αi, where
1 ≤ i ≤ k. Then G0 is a generator matrix of C and G0σ

ℓ(GT
0 ) is a k × k matrix. The

element at the (i, j)-entry of G0σ
ℓ(GT

0 ) is αiσ
ℓ(αT

j ) = 〈αi, αj〉ℓ. Note that 〈αi, αj〉ℓ = 0 if
1 ≤ j ≤ h, since αi ∈ C for all 1 ≤ i ≤ k and αj ∈ C⊥ℓ for all 1 ≤ j ≤ h. Therefore,
G0σ

ℓ(GT
0 ) has the form as stated in the theorem.

Now we show that r(Q) = r. Obviously, r(Q) ≤ r. Suppose r(Q) < r. Then
there exists a non-zero vector x̃ = (xh+1, · · · , xk) ∈ F

k−h
q such that Q(x̃)T = 0. Let

x = (0, x̃) ∈ F
k
q , where 0 is the zero vector of length h. Then we have

G0σ
ℓ(GT

0 )x
T = (0, Q)

(

0

x̃T

)

= 0.

Since the map σℓ : Fq → Fq, σ
ℓ(a) = ap

ℓ

, ∀a ∈ Fq is an automorphism of Fq, there
exists a vector y = (0, · · · , 0, yh+1, · · · , yk) ∈ F

k
q such that σℓ(y) = x. Therefore,

0 = G0σ
ℓ(GT

0 )x
T = G0σ

ℓ(GT
0 )σ

ℓ(y)T = G0σ
ℓ(GT

0 )σ
ℓ(yT ) = G0σ

ℓ(GT
0 y

T ) = G0σ
ℓ(yG0)

T .

This gives that yG0 ∈ C⊥ℓ , which implies yG0 ∈ hℓ(C) = 〈α1, · · · , αh〉. We also have

yG0 = yh+1αh+1 + yh+2αh+2 + · · ·+ ykαk ∈ 〈αh+1, αh+2, · · · , αk〉.

Hence y = 0 since α1, α2, · · · , αk are linear independent. This is a contradiction. Hence,
r(Q) = r.

Let G be an arbitrary generator matrix of C, then there exists an invertible k × k

matrix N such that G = NG0. We have

Gσℓ(GT ) = NG0σ
ℓ(GT

0N
T ) = NG0σ

ℓ(GT
0 )σ

ℓ(NT ).

Then r(Gσℓ(GT )) = r(G0σ
ℓ(GT

0 )), since the matrix N and σℓ(NT ) are invertible. We are
done.
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The following corollary can be obtained immediately.

Corollary 3.2. ([25]) Let C be an [n, k] linear code over Fq with a generator matrix G.
Let h be the dimension of h0(C) and r = k − h. Then the code C has a generator matrix
G0 such that

G0G
T
0 =

(

Oh×h Oh×r

Or×h Pr×r

)

,

where Oh×h, Oh×r, Or×h are all zero matrices, and P is an invertible r × r matrix. Fur-
thermore, the rank of GGT is r for every generator matrix G of C.

Proof. Take ℓ = 0 in Theorem 3.1, we get G0G
T
0 = G0σ

0(GT
0 ) =

(

Oh×h Hh×r

Or×h Pr×r

)

. Note

that G0G
T
0 is a symmetric matrix, this implies that Hh×r = Oh×r. By Theorem 3.1 again,

the rank of

(

Hh×r

Pr×r

)

is r, we have P is an invertible r × r matrix. Also the rank of

GGT = Gσ0(GT ) is r for every generator matrix G of C by Theorem 3.1.

Corollary 3.3. Let C be an [n, k] linear code over Fq with a generator matrix G, where
q = pe, and e is even. Let h be the dimension of h e

2
(C) and r = k − h. Then C has a

generator matrix G0 such that

G0σ
e
2 (GT

0 ) =

(

Oh×h Oh×r

Or×h Pr×r

)

,

where Oh×h, Oh×r, Or×h are all zero matrices, and P is an invertible r × r matrix. Fur-
thermore, the rank of Gσ

e
2 (GT ) is r for every generator matrix G of C.

Proof. Take ℓ = e
2
in Theorem 3.1, and note that (G0σ

e
2 (GT

0 ))
T = σ

e
2 (G0)G

T
0 . It is easy

to verify that 〈x,y〉 e
2
= σ

e
2 (〈y,x〉 e

2
) for any x,y ∈ F

n
q . Hence 〈x,y〉 e

2
= 0 if and only if

〈y,x〉 e
2
= 0. The result then follows immediately.

Remark 3.4. The following example shows that if ℓ 6= 0, or ℓ 6= e
2
, where e is even, then

the matrix Hh×r may not be 0. For example, let F8 = F2[w](w
3+w+1 = 0) and C ≤ F

4
8 be

a [4, 2] linear code of length 4 with a generator matrix G =

(

1 1 w + 1 w + 1
0 w2 + 1 1 0

)

.

Then Gσ(GT ) =

(

0 w2

0 w2 + w + 1

)

.

When hl(C) = 0 or hl(C) = C for a linear code C, then the following two corollaries
are straightforward.

Corollary 3.5. ([21]) Let C be an [n, k] linear code over Fq with a generator matrix G.
Then C is ℓ-Galois LCD code if and only if Gσℓ(GT ) is nonsingular.

Corollary 3.6. Let C be an [n, k] linear code over Fq with a generator matrix G. Then C

is an ℓ-Galois self-orthogonal code if and only if Gσℓ(GT ) = 0.
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In particular, we have

Corollary 3.7. Let C be an [n, k] linear code over Fq with a generator matrix G and a
parity check matrix H. Then C is an ℓ-Galois self-dual code if and only if both Gσℓ(GT )
and Hσe−ℓ(HT ) are 0.

Proof. Since H is a parity check matrix of C, σe−ℓ(H) is a generator matrix of C⊥ℓ . Note
that C ⊆ C⊥ℓ if and only if Gσℓ(GT ) = 0, and C⊥ℓ ⊆ C = (C⊥ℓ)⊥e−ℓ if and only if
σe−ℓ(H)σe−ℓ(σe−ℓ(H))T = 0 if and only if Hσe−ℓ(HT ) = 0. This finishes the proof.

4 The existence of ℓ-Galois LCD codes

LCD codes over finite fields are an important class of linear codes. They have many ap-
plications in coding theory and cryptography, especially in designing decoding algorithm.
In this section, we focus on the equivalence of l-Galois LCD codes.

Lemma 4.1. Let C be an [n, k] linear code of length n over Fq, ϕ ∈ Sn be a permutation,
and 0 ≤ l ≤ e− 1. Then

(1) 〈ϕ(x), ϕ(y)〉ℓ = 〈x,y〉ℓ, for any x,y ∈ F
n
q .

(2) ϕ(C⊥ℓ) = ϕ(C)⊥ℓ.

Proof. (1) Let x = (x1, · · · , xn),y = (y1, · · · , yn) ∈ F
n
q , then ϕ(x) = (xϕ(1), · · · , xϕ(n))

and ϕ(y) = (yϕ(1), · · · , yϕ(n)). Hence

〈ϕ(x), ϕ(y)〉ℓ = xϕ(1)y
pℓ

ϕ(1) + · · ·+ xϕ(n)y
pℓ

ϕ(n) = x1y
pℓ

1 + · · ·+ xny
pℓ

n = 〈x,y〉ℓ.

(2) Let v ∈ C⊥ℓ , then ϕ(v) ∈ ϕ(C⊥ℓ). For any u ∈ ϕ(C), there exists a codeword
c ∈ C such that ϕ(c) = u. We have

〈u, ϕ(v)〉ℓ = 〈ϕ(c), ϕ(v)〉ℓ = 〈c,v〉ℓ = 0.

This implies that ϕ(v) ∈ ϕ(C)⊥ℓ and hence ϕ(C⊥ℓ) ⊆ ϕ(C)⊥ℓ . Since

dim(ϕ(C⊥ℓ)) = dim(C⊥ℓ) = n− dim(C) = n− dim(ϕ(C)) = dim(ϕ(C)⊥ℓ),

we get ϕ(C⊥ℓ) = ϕ(C)⊥ℓ.

Proposition 4.2. The dimension of the ℓ-Galois hull of a linear code is invariant under
permutation equivalence.

Proof. Let C be an [n, k] linear code of length n over Fq and ϕ ∈ Sn be an arbitrary
permutation. By Lemma 4.1, we have

ϕ(hℓ(C)) = ϕ(C ∩ C⊥ℓ) = ϕ(C) ∩ ϕ(C⊥ℓ) = ϕ(C) ∩ ϕ(C)⊥ℓ = hℓ(ϕ(C)).

Because dim(hℓ(ϕ(C)) = dim(ϕ(hℓ(C))) = dim(hℓ(C)), this finishes the proof.

6



Remark 4.3. If q = 3, the dimension of the ℓ-Galois hull of a linear code is invariant
under monomial equivalence. In fact, suppose that C2 = C1M , by Proposition 4.2, we
only need to prove the case when M is an invertible diagonal matrix. Let G1 and G2 be
the generator matrices of C1 and C2 respectively, then G2 = G1M . Since q = 3, we have
ℓ = 0 and MMT = I, the identity matrix. Hence we have

G2σ
ℓ(G2)

T = G1Mσℓ(G1M)T = G1Mσℓ(M)Tσℓ(G1)
T = G1MMTσℓ(G1)

T = G1σ
ℓ(G1)

T .

It follows that hℓ(C1) = hℓ(C2).

In order to prove the main result in this section, we need the following proposition.
This proposition is known (for example, see [25]), we provide an alternative proof here.

Proposition 4.4. Let f(X) be a nonzero polynomial of Fq[X1, · · · , Xn] such that the
degree of f(X) with respect to Xj is at most q− 1 for all j, where 1 ≤ j ≤ n. Then there
exists a vector x ∈ F

n
q such that f(x) 6= 0.

Proof. We prove this proposition by induction on n. If n = 1, then by assumption the
degree of f(X) is at most q − 1. Note that the number of roots of f(X) over the finite
field Fq is less or equal to the degree of f(X). Therefore, there exists a vector x ∈ F

1
q

such that f(x) 6= 0.

Now assume n ≥ 2. We can further assume that the degree degXn
(f) of f(X) with

respect to Xn is greater than or equal to 1. Otherwise f(X) ∈ Fq[X1, · · · , Xn−1] ⊆
Fq[X1, · · · , Xn], then there exists a vector x ∈ F

n−1
q such that f(x) 6= 0 by the inductive

hypothesis. Therefore we can assume that

f(X) = f(X1, · · · , Xn) =

k
∑

i=1

gi(X1, · · · , Xn−1)X
i
n,

where k = degXn
f(X1, · · · , Xn) and gk(X1, · · · , Xn−1) is a nonzero polynomial. Hence,

there exists x̄ = (x1, · · · , xn−1) ∈ F
n−1
q such that gk(x1, · · · , xn−1) 6= 0. Let F (Xn) =

f(x1, · · · , xn−1, Xn) and deg(F (Xn)) = k, then there is an element xn ∈ Fq such that
F (xn) 6= 0 by the result of the previous argument. Hence there exists x = (x1, · · · , xn)
such that f(x) 6= 0.

Proposition 4.5. Let f(X) and g(X) be two nonzero polynomials of Fq[X1, · · · , Xn]
such that the degree of f(X)g(X) with respect to Xj is at most q − 1 for all j. Let
Ω = {x ∈ F

n
q | g(x) = 0}. Then there exists a vector x ∈ F

n
q \Ω such that f(x) 6= 0.

Proof. By Proposition 4.4, there exists a vector x ∈ F
n
q such that f(x)g(x) 6= 0. Hence

there exists a vector x ∈ F
n
q \Ω such that f(x) 6= 0.

By the proposition above, we can easily get the following two corollaries.

Corollary 4.6. Let f(X) be a nonzero polynomial of Fq[X1, · · · , Xn] such that the degree
of f(X) with respect to Xj is at most q−2 for all j. Then there exists an x ∈ {F∗

q}
n such

that f(x) 6= 0.

7



Proof. Let g(X) =
∏n

i=1Xi and Ω = {x ∈ F
n
q | g(x) = 0}. Then F

n
q \Ω = {F∗

q}
n. We are

done.

Corollary 4.7. Let q = pe, 1 6 ℓ 6 e − 1 and ℓ|e. Let f(X) be a nonzero polynomial of
Fq[X1, · · · , Xn] such that the degree of f(X) with respect to Xj is at most q − 1 − pℓ for
all j. Then there exists a vector x ∈ {Fq \ Fpℓ}

n such that f(x) 6= 0.

Proof. Let g(X) =
∏n

i=1(X
pℓ

i −Xi) and Ω = {x ∈ F
n
q | g(x) = 0}. Then F

n
q \Ω = (Fq\Fpℓ)

n.
The result then follows immediately.

Theorem 4.8. Let C be an [n, k] linear code over Fq, where q > 4 and 0 6 ℓ 6 e − 1.
Then C is monomial equivalent to an ℓ-Galois LCD code.

Proof. Let C be an [n, k] linear code over Fq with q > 4. Without loss of generality,
we may assume that C has a generator matrix of the standard form G = (Ik | B). Let
X = (X1, · · · , Xk). Now we define a k-variable polynomial f(X) as follows:

f(X) = det(diag(X1+pℓ

1 , · · · , X1+pℓ

k ) +Bσpl(BT )).

It is easy to verify that f(X) is a nonzero polynomial with the variables X1, · · · , Xk

and the degree of f(X) with respect to Xj is 1 + pℓ for all j. In the following, we show
that 1 + pℓ ≤ q − 2. Note that q > 4, we have

If p = 2 and e ≥ 3, then 2e−1 ≥ 3, and 2e−1 + 2e−1 ≥ 3 + 2e−1. This implies that
2e ≥ 3 + 2e−1 ≥ 3 + 2l. Therefore, q − 2 = 2e − 2 ≥ 2ℓ + 1.

If p ≥ 3 and e ≥ 2, then pe ≥ 3pe−1 ≥ pe−1+3, hence q−2 = pe−2 ≥ pe−1+1 ≥ pℓ+1.

If p ≥ 5 and e = 1, then ℓ = 0, and we get q − 2 > 2 = 1 + pℓ. Hence, 1 + pℓ ≤ q − 2.

Therefore, by Corollary 4.6, there exists a vector x = (x1, · · · , xk) ∈ {F∗

q}
k such that

f(x) 6= 0.

Now let G
x
= GM be the k × n matrix, where M is an n × n diagonal matrix with

the form M = diag(x1, · · · , xk, 1, · · · , 1). Let C
x
= CM be the code with the generator

matrix G
x
. Then C

x
is monomial equivalent to C. And we have

det(G
x
σl(G

x
)T ) = det(diag(x1+pℓ

1 , · · · , x1+pℓ

k ) +Bσpℓ(BT )) = f(x) 6= 0.

Therefore, C
x
is an ℓ-Galois LCD code by Corollary 3.5.

When ℓ = 0, we have the following corollary.

Corollary 4.9. ([9], [25]) Let C be a linear code over Fq with q > 4. Then C is monomial
equivalent to an LCD code.

In fact, this corollary is also true when q = 4 (see [9]). When e is even, and ℓ = e
2
, we

get the following corollary.

Corollary 4.10. ([9], [25]) Let C be a linear code over Fq with q > 4 and q a square.
Then C is monomial equivalent to an Hermitian LCD code.
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Remark 4.11. When q = 4, the corollary above is not right in general. In fact, if
we let F4 = {0, 1, w, w̄} be the finite field of order 4, where w̄ = w2 = w + 1. Let
C = 〈(1, 1)〉 = {(1, 1), (0, 0), (w,w), (w̄, w̄)}, and let G = (1, 1) be a generator matrix
of C. Then GḠT = 0 and so C is not an Hermitian LCD code. For any (a, b) ∈ F

∗

q
2, let

G(a,b) = G

(

a 0
0 b

)

be a generater matrix of the code C(a,b). Then

G(a,b)Ḡ
T
(a,b) = aā+ bb̄ = aā(1 + a−1b ¯a−1b̄) = aā(1 + cc̄)(let c = a−1b).

Then for all c = 1, w, w̄, we have G(a,b)Ḡ
T
(a,b) = 0. Hence any code that is monomial

equivalent with C is not an Hermitian LCD code.

Theorem 4.12. Let C be a linear code over Fq, where q = pe, 0 6 ℓ 6 e − 1, 1 6 m 6

e− 1, m|e and pe − pℓ − pm ≥ 2. Then there exists a x = (x1, · · · , xk) ∈ {Fq\Fpm}
k such

that C
x
is an ℓ-Galois LCD code.

Proof. Let C be an [n, k] linear code over Fq. Without loss of generality, we may assume
that C has a generator matrix of the formG = (Ik | B). Let x = (x1, · · · , xk) ∈ {Fq\Fpm}

k

and G
x
be the the generator matrix of the code C

x
, where C

x
is defined in Theorem 4.8.

Let X = (X1, · · · , Xk). Now we define f(X) = det(diag(X1+pℓ

1 , · · · , X1+pℓ

k ) + Bσ(B)T ).
Hence f(X) is a polynomial with the variables X1, · · · , Xk and the degree of f(X) with
respect to Xi is 1+pℓ for all i. We know that 2 ≤ pe−pℓ−pm and 1+pℓ ≤ pe−pm−1. The

leading term of f(X) with respect to the total degree of lex order is X
1+pℓ

1 , · · · , X1+pℓ

k .
So f(X) is a nonzero polynomial. Therefore f(x) 6= 0 for some x ∈ {Fq\Fpℓ}

k by Corol-
lary 4.7. Hence C

x
is an ℓ-Galois LCD code by this choice of x, and Corollary 3.5 because

det(G
x
σpℓ(G

x
)T ) = f(x) 6= 0.

Remark 4.13. Sometimes we want to find x = (x1, · · · , xk) ∈ F
k
q and C

x
for a linear

code C such that C
x
is an ℓ-Galois LCD code. It is easy to find x = (x1, · · · , xk) by using

Theorem 4.12 rather than Theorem 4.8, because the set Fq\Fpm is smaller than the set
Fq\{0}.

5 An application to matrix product codes

In this section, we apply the results obtained in Section 4 to study the hull of matrix
product codes over finite fields.

Let A be an M × N matrix, B be an R × S matrix. The tensor product of the two

matrices is defined by A⊗B =







a11B · · · a1NB
...

. . .
...

aM1B · · · aMNB






. The following properties of the

tensor product of matrices are well-known.

Lemma 5.1. Let A ∈ F
M×N
q , B ∈ F

R×S
q , C ∈ F

N×T
q and D ∈ F

S×U
q . Then

(1) (A⊗B)T = AT ⊗ BT .

(2) (A⊗B)(C ⊗D) = (AC)⊗ (BD).

9



Definition 5.2. Let A = (aij) be an M ×N matrix over Fq, and let C1, · · · , CM be codes
of length n over Fq. The matrix product code [C1, · · · , CM ] · A is the set of all matrix

products
[

c1, · · · , cM
]

· A =
[
∑M

i=1 ciai1, · · · ,
∑M

i=1 ciaiN
]

, where ci ∈ Ci is a 1 × n row
vector for i = 1, · · · ,M .

By using the tensor product of matrices, a matrix product code can be written as
[c1, · · · , cM ] · A = [c1, · · · , cM ](A ⊗ I), the usual matrix product, where I is the n × n

identity matrix.

Remark 5.3. In the original paper (see [5]), the authors defined the matrix product code
by writing each codeword cj ∈ Cj as a column vector. Here we write each codeword
cj ∈ Cj as a row vector in the above definition, which is different from the original paper.
However, by using the alternative definition, we can easily obtain the generator matrix of
the matrix product code and calculate its hull.

Recall that a right inverse of an M × N matrix A is an N ×M matrix B such that
AB = IM . In this case we say that A is right non-singular. Throughout if A is right
non-singular then A−1 denotes a right inverse of A. The following proposition on matrix
product codes is well-known.

Proposition 5.4. ([5]) Let C1, · · · , CM be M codes of length n over Fq. If the matrix A

is right non-singular then
∣

∣[C1, · · · , CM ] ·A
∣

∣ = |C1| · · · |CM |. Furthermore, if C1, · · · , CM

are linear codes, then dim([C1, · · · , CM ] ·A) =
∑M

i=1 dim(Ci).

The following result is well-known (see [5]). We give an another proof.

Proposition 5.5. Let C1, · · · , CM be linear codes of length n over Fq and the matrix A

be right non-singular. Let C = [C1, · · · , CM ] · A with generator matrix G, and let Gi be

the generator matrix of Ci for all 1 ≤ i ≤ M . Then G =







a11G1 · · · a1NG1
...

. . .
...

aM1GM · · · aMNGM






.

Proof. Let Gi =







αi1
...

αiki






, αij ∈ F

n
q and ki be the dimension of Ci for all 1 ≤ i ≤ M . For

any c = [c1, · · · , cM ] · A ∈ C, ci = [λi1 · · ·λiki]Gi. We have

c = [c1, · · · , cM ](A⊗ I) = [λ11, · · · , λ1k1 , · · · , λM1, · · · , λMkM ]











G1 0 · · · 0

0 G2 · · ·
...

...
...

. . . 0
0 · · · 0 GM











(A⊗ I)

= [λ11, · · · , λ1k1 , · · · , λM1, · · · , λMkM ]







a11G1 · · · a1NG1
...

. . .
...

aM1GM · · · aMNGM






.
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Since the matrix A is non-singular, the number of rows of G is
∑M

i=1 ki = dim(C) by
Proposition 5.4. Hence G is a generator matrix of C.

We have the following theorem.

Theorem 5.6. Let C1, · · · , CM be [n, ki] linear codes of length n over Fq, where 1 ≤ i ≤
M , and let C = [C1, · · · , CM ] · A be the matrix product code. For 0 ≤ ℓ ≤ e− 1, suppose
Aσℓ(AT ) = diag(λ1, · · · , λM), then the ℓ-Galois hull of C is

hℓ(C) = [B1, · · · , BM ] ·A,

where for all 1≤ i ≤ M , Bi =

{

Ci, if λi = 0;
hℓ(Ci), if λi 6= 0.

Proof. Suppose that v = [v1, · · · ,vM ]·A ∈ [B1, · · · , BM ]·A, then v ∈ C = [C1, · · · , CM ]·A,
because Bi ⊆ Ci for all 1 ≤ i ≤ M . Let u = [u1, · · · ,uM ] · A ∈ C, we have

〈u,v〉ℓ = uσℓ(vT ) = [u1, · · · ,uM ](A⊗ I)σℓ(([v1, · · · ,vM ](A⊗ I))T )

= [u1 · · ·uM ](A⊗ I)σℓ((AT ⊗ I)







vT
1
...

vT
M






)

= [u1, · · · ,uM ](A⊗ I)(σℓ(AT )⊗ I)







σℓ(vT
1 )

...
σℓ(vT

M)






= [u1, · · · ,uM ](Aσℓ(AT )⊗ I)







σℓ(vT
1 )

...
σℓ(vT

M)







= [u1, · · · ,uM ](











λ1I 0 · · · 0

0 λ2I · · ·
...

...
...

. . . 0
0 · · · 0 λMI











)







σℓ(vT
1 )

...
σℓ(vT

M







= [λ1u1, · · · , λMuM ]







σℓ(vT
1 )

...
σℓ(vT

M)






=

M
∑

i=1

λiuiσ
ℓ(vT

i ).

If λi 6= 0, then vi ∈ Bi = hℓ(Ci) and uiσ
ℓ(vT

i ) = 0 for all 1 ≤ i ≤ M . Hence v ∈ hℓ(C)
and [B1, · · · , BM ] · A ⊆ hℓ(C).

Now suppose v = [v1, · · · ,vM ] · A ∈ hℓ(C). Assume λi = 0, then vi ∈ Bi = Ci. If
λi 6= 0. For any ui ∈ Ci, let ui = [0, · · · , 0, ui, 0, · · · , 0] and the number of location of ui

be i. Since ui ∈ C, we know that 0 = 〈ui,v〉ℓ = λiuiσ
ℓ(vT

i ). Hence uiσ
ℓ(vT

i ) = 0 and
vi ∈ hℓ(Ci) = Bi. Thus, v ∈ [B1, · · · , BM ] · A and hℓ(C) ⊆ [B1, · · · , BM ] ·A.

Corollary 5.7. Let C1, · · · , CM be [n, ki] linear codes of length n over Fq, where 1 ≤ i ≤
M , and let C = [C1, · · · , CM ] · A be the matrix product code. For 0 ≤ ℓ ≤ e− 1, suppose
Aσℓ(AT ) = diag(λ1, · · · , λM), where λi 6= 0 for all i. Then the ℓ-Galois hull of C is

hℓ(C) = [hℓ(C1), · · · , hℓ(CM)] · A.

11



Denote C⊥0 by C⊥ and h0(C) by h(C). Then

Corollary 5.8. Let C1, · · · , CM be linear codes of length n over Fq, and C = [C1, · · · , CM ]· A.
If the matrix A satisfies AAT = diag(λ1, · · · , λM) and λi 6= 0 for all 1 ≤ i ≤ M , then the
hull h(C) of C is h(C) = [h(C1), · · · , h(CM)] · A.

Proof. Take ℓ = 0 in Corollary 5.7, the result then follows.

Example 5.9. Take q = 3 and l = 0. Let C1 and C2 be linear codes of length 4 over

F3 with generator matrices G1 =

(

1 0 1 1
0 1 1 −1

)

and G2 =
(

1 1 1 1
)

respectively.

Then h0(C1) = 0 and h0(C2) = C2. Let A =

(

1 1
−1 1

)

and C = [C1, C2] ·A, it is easy to

verify that the generator matrix G of C is G =





1 0 1 1 1 0 1 1
0 1 1 −1 0 1 1 −1
−1 −1 −1 −1 1 1 1 1



 and

GGT =





0 0 0
0 0 0
0 0 −1



. Hence the generator matrix of h0(C) is

(

1 0 1 1 1 0 1 1
0 1 1 −1 0 1 1 −1

)

by Theorem 3.1. Since h0(C1) = 0, h0(C2) = C2, and AAT =

(

−1 0
0 −1

)

, we know that

the generator matrix of h0(C) = [h0(C1), h0(C2)]·A also is

(

1 0 1 1 1 0 1 1
0 1 1 −1 0 1 1 −1

)

by Corollary 5.7.

A matrix A = (aij) ∈ F
s×s
q is called upper triangular if aij = 0 whenever i > j. A

matrix A ∈ F
s×s
q is called block upper triangular if as a block matrix A is partitioned into

the submatrices Aij ∈ F
si×sj
q , so that A = (Aij)t×t ,

∑t

i=1 si = s and Aij = 0 for all i > j ,
1 ≤ i ≤ s and 1 ≤ j ≤ s. Consider the Aij block as the entries of A, A is upper triangular.

Thus, A =











A11 A12 · · · A1t

0 A22 · · ·
...

...
. . .

0 · · · 0 Att











, where each Aij is a si × sj matrix and
∑p

i=1 si = s.

The following lemma is easy to prove.

Lemma 5.10. Suppose A =











A11 A12 · · · A1t

0 A22 · · ·
...

...
. . .

0 · · · 0 Att











∈ F
s×s
q is a block upper triangular,

where each Aij is a si×sj matrix and
∑t

i=1 si = s. Then r(A) ≥
∑t

i=1 r(Aii). The similar
result of block lower triangular is also right.

Theorem 5.11. Let C1, · · · , CM be linear codes of length n over Fq and C = [C1, · · · , CM ]· A,
let Gi be a generator matrix of Ci for all 1 ≤ i ≤ M , and G be a generator matrix of C.
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Let ki be the dimension of Ci for all 1 ≤ i ≤ M , and k be the dimension of C. Suppose
Aσℓ(AT ) = B = (bij)M×M and B is upper triangular or lower triangular. Then

(1) If bii 6= 0 for all 1 ≤ i ≤ M and A is right non-singular, then

M
∑

i=1

r(Giσ
ℓ(Gi)

T ) ≤ r(Gσℓ(G)T ) ≤

M
∑

i=1

ki.

(2) If r(Giσ
ℓ(Gi)

T ) = ki, Aσℓ(AT ) =











λ1 0 · · · 0

0 λ2 · · ·
...

...
...

. . . 0
0 · · · 0 λM











and λi 6= 0 for all

1 ≤ i ≤ M . Then
∑M

i=1 r(Giσ
ℓ(Gi)

T ) = r(Gσℓ(G)T ) =
∑M

i=1 ki.

Proof. (1) We just prove the case where B is block upper triangular. Since A = (aij) is

non-singular, we know that G =







G1a11 · · · G1a1N
...

. . .
...

GMaM1 · · · GMaMN






. Then we have

Gσℓ(G)T =







G1a11 · · · G1a1N
...

. . .
...

GMaM1 · · · GMaMN













σℓ(G1)
Tσℓ(a11) · · · σℓ(GM)Tσℓ(aM1)
...

. . .
...

σℓ(G1)
Tσℓ(a1N ) · · · σℓ(GM)Tσℓ(aMN)







=







b11G1σ
ℓ(G1)

T · · · b1MG1σ
ℓ(GM)T

...
. . .

...
bM1GMσℓ(G1)

T · · · bMMGMσℓ(GM)T






=







b11G1σ
ℓ(G1)

T · · · b1MG1σ
ℓ(GM)T

...
. . .

...
0 · · · bMMGMσℓ(GM)T






.

By the above lemma, we know that
∑M

i=1 r(Giσ
ℓ(Gi)

T ) ≤ r(Gσℓ(G)T ). Since Gσℓ(G)T

is
∑M

i=1 ki ×
∑M

i=1 ki, r(Gσℓ(G)T ) ≤
∑M

i=1 ki. All in all,

M
∑

i=1

r(Giσ
ℓ(Gi)

T ) ≤ r(Gσℓ(G)T ) ≤
M
∑

i=1

ki.

(2) The proof of the second statement can be obtained from the proof of Statement (1).

Corollary 5.12. Let C1, · · · , CM be linear codes of length n over Fq and C = [C1, · · · , CM ]·
A. Then

(1) If A is right non-singular and Aσℓ(AT ) is block upper triangular or block lower
triangular, then 0 ≤ dim(hℓ(C)) ≤

∑M

i=1 dim(hℓ(Ci)).

(2) If Aσℓ(AT ) = diag(λ1, · · · , λM), where λi 6= 0 for all 1 ≤ i ≤ M . Then
dim(hℓ(C)) =

∑M

i=1 dim(hℓ(Ci)).
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Proof. (1) Let Gi be a generator matrix of Ci for all 1 ≤ i ≤ M , G be a generator matrix
of C. Let ki be the dimension of Ci for all 1 ≤ i ≤ M , and k be the dimension of C. By
the above theorem, we know that

M
∑

i=1

r(Giσ
ℓ(Gi)

T ) ≤ r(Gσℓ(G)) ≤

M
∑

i=1

ki.

By Theorem 2.1, we know that k = r(Gσℓ(G)) + dim(hℓ(C)) and ki = r(Giσ
ℓ(Gi)) +

dim(hℓ(Ci)) for all 1 ≤ i ≤ M . By Proposition 5.4, we know that k =
∑M

i=1 ki. In

summary, we have 0 ≤ dim(hℓ(C)) ≤
∑M

i=1 dim(hℓ(Ci)).

(2) The poof of the second statement can be obtained from the proof of Statement (1).
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