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Abstract

For a subspace W of a vector space V of dimension n, the Schur-product space
W 〈k〉 for k ∈ N is defined to be the span of all vectors formed by the component-
wise multiplication of k vectors in W . It is well known that repeated applications
of the Schur product to the subspace W creates subspaces W,W 〈2〉,W 〈3〉, . . . whose
dimensions are monotonically non-decreasing. However, quantifying the structure
and growth of such spaces remains an important open problem with applications
to cryptography and coding theory. This paper characterizes how increasing pow-
ers of constacyclic codes grow under the Schur product and gives necessary and
sufficient criteria for when powers of the code and or dimension of the code are
invariant under the Schur product.
Keywords Constacyclic, Schur Product, Codes

1 Introduction
This paper explores properties of constacyclic codes under the Schur-product
(component-wise multiplication) operation. For any code linear code, C, (i.e., a lin-
ear subspace of Fn) the Schur-product operation gives a natural way of constructing a
new code

C〈2〉 def
= span{(c1d1, . . . ,cndn) | (c1, . . . ,cn),(d1, . . . ,dn) ∈C)}

The behavior of codes C under the Schur-product operation has many applications in
coding theory and cryptography (See [1, 2, 3] for a surveys of known results). The two
main questions are how the dimension of the code grows, and how the minimum dis-
tance of the code shrinks under repeated applications of the Schur-product operation.
Recently, in [4], Cascudo explores these two questions in the setting of cyclic codes
under a single application of the Schur product. Moreover, Cascudo focuses on (1)
determining how to represent the square of a cyclic code in a manner conducive to de-
termining a tight minimum distance lower bound and (2) leveraging this representation
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to obtain families of cyclic codes whose squares have large dimension and minimum
distance.

In this work, we focus on constacyclic codes, a widespread and important class of
codes that includes cyclic codes, and negacyclic codes, both of which are widely used
in coding theory and cryptography.

Cyclic error-correcting codes are codes (linear subspaces of Fn) that are closed
under the cyclic shift operation

(c1,c2, . . . ,cn) 7→ (cn,c1,c2, . . . ,cn−1)

A cyclic code of length n over a field F corresponds to an ideal in the ring F[x]/(xn−1),
where polynomials are identified as a vector of their coefficients. A constacyclic code
is a code that is closed under the constant-shift map

(c1,c2, . . . ,cn) 7→ (acn,c1,c2, . . . ,cn−1)

for some a ∈ F. When the length of the code, n, is co-prime to the characteristic of F,
then constacyclic codes correspond to ideals in the ring F[x]/(xn−a). See [5, 6] for a
review of some of the basic properties of constacyclic codes. The two most important
types of constacyclic codes, are cyclic codes and negacyclic codes (corresponding to
a =−1, i.e., ideals in the ring F[x]/(xn +1)).

The Schur-product operation arises naturally in many contexts throughout cryp-
tography, including cryptanalyzing the McEliece Cryptosystem [7] and constructing
“multiplication-friendly” secret-sharing schemes [8].

The McEliece Cryptosystem has attracted significant interest from the crypto-
graphic community since its introduction 40 years ago, and it is currently an active topic
of research due to its perceived resistance to quantum attacks. Over the years, many
modifications have been proposed to the McEliece Cryptosystem, mostly with the aim
of improving efficiency. The original McEliece cryptosystem used binary Goppa codes,
but many variants have been proposed using different codes that allow for smaller keys
or more efficient encoding and decoding algorithms [9, 10, 11, 12, 13, 14, 15]. Al-
though the original McEliece Cryptosystem remains secure, most of these variants
have been successfully cryptanalyzed [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. One
of the key features in most of the successful cryptanalysis efforts has been that the
proposed codes have small Schur-product dimension which leads to key-recovery or
indistinguishability attacks. In particular, this lends credence to the idea that codes
with small Schur-product dimension appear to be unsuitable for use in the McEliece
framework.

In addition to the McEliece Cryptosystem, cryptosystems based on the problem of
Learning With Errors over Rings (Ring-LWE) have attracted much attention based on
their resistance to quantum attacks and homomorphic properties [26, 27]. The security
of modern Ring-LWE cryptosystems is closely related to the hardness of decoding cer-
tain types of negacyclic codes, and thus a better characterization of the Schur-product
dimension of negacyclic codes will provide a better understanding of the security of
certain Ring-LWE based cryptosystems.

Although using codes with small Schur-product dimension appears to weaken the
security of code-based cryptosystems like the McEliece Cryptosystem, these codes
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have many benefits that allow them to be used constructively in other areas of cryptog-
raphy. One of the most important constructive applications of codes with small Schur-
product dimension is in the construction of “multiplication-friendly” secret-sharing
protocols [8], which are the building blocks of efficient, secure multiparty computation
(MPC) protocols [28, 29]. Thus, identifying classes of codes with small Schur-product
dimension immediately yields new candidates for efficient secret-sharing schemes and
MPC protocols.

This paper focuses on identifying how the dimension of a constacyclic code grows
under repeated applications of the Schur product. In particular, we will give efficient
algorithms that, using the generator polynomial of a constacyclic code, can efficiently
compute the following:

1. The maximum dimension the code will grow to under repeated applications of
the Schur-product operation

2. The generators for powers of the code after reaching the equilibrium dimension

3. The minimum distance of the code after reaching the equilibrium dimension

4. The criteria under which the code or powers of the code is invariant under powers
of the Schur product

In doing so, it will supplement the existing framework for the design and analysis of
related cryptosystems.

2 Preliminaries
This section will highlight key definitions which will be used throughout the paper.
These definitions are closely related to key properties that the theorems will prove, as
well as standard building blocks that the proofs will use to do so. They are necessary
to follow the proofs, underlying motivations, and consequences of the results.

Definition 2.1 (Linear Code). For any finite field, F, and positive integer, n, a vector-
subspace C of Fn is called a (linear) code of block-length n. Vectors in C are called
codewords.

Definition 2.2 (Schur Product of Vectors). Let C be a code in Fn and let c,d ∈C. The
Schur product of vectors c and d, denoted c ∗ d, is the component-wise product of the
codes

c∗d def
= (c1 ·d1, . . . ,cn ·dn)

For i ≥ 1, we denote taking the Schur product of c ∈C with itself i times as c〈i〉. We
denote taking the Schur product of all vectors v in a set V as Πv∈V v.

This work will focus on the powers of codes under the Schur-product operation.
The Schur-power code (usually referred to simply as the power of the code) is the
smallest code that contains the Schur-powers of all its elements.
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Definition 2.3 (Powers of Codes). For a code, C ∈ Fn, we denote the Schur-power
code as

C〈1〉 =C

and
C〈i〉 = span

({
c∗d

∣∣∣ c ∈C,d ∈C〈i−1〉
})

for i≥ 2

Throughout this work, we will identify polynomials of degree (at most) n− 1 by
their coefficient vectors.

Definition 2.4 (Polynomial Embeddings). Let f (x) = xn − a and p(x) ∈ F[x]/ f (x).
Then p has a unique representation as

p(x) =
n−1

∑
i=0

cixi

We define
coeff(p(x)) def

= (c0, . . . ,cn−1)

For any subset C ⊆ Fn, we define

poly(C)
def
= {r(x) | coeff(r(x)) ∈C} .

Similarly, for any vector c = (c0, . . . ,cn−1) ∈ Fn, we define

poly(c) = c0 + c1x+ · · ·+ cn−1xn−1

We define the Schur power of a polynomial to be the Schur power of its coefficient
vector.

Definition 2.5 (Schur-powers of polynomials). If h ∈ F[x]/ f (x), and i≥ 0, then

h〈i〉 def
= (coeff(h(x)))〈i〉 ∈ Fn

Thus hi corresponds to polynomial multiplication in the ring F[x]/ f (x), whereas
h〈i〉 corresponds to coordinate-wise powers of the coefficients of h.

Definition 2.6 (Ideal Codes). Let F be a finite field, and f (x) ∈ F[x] a polynomial with
deg( f ) = n. Then for any divisor g(x) of f (x), define the ideal code generated by g as

C = {coeff(g(x) ·h(x) mod f (x)) | h(x) ∈ F[x]/ f (x)} ⊂ Fn

This work will focus on a specific class of ideal codes known as constacyclic codes.

Definition 2.7 (Constacyclic Codes). Let F be a finite field, and C an ideal code over
F with modulus f (x).

• When f (x) = xn− a, for some a ∈ F, ideal codes over the ring F[x]/ f (x) are
called constacyclic codes. Constacyclic codes are a subset of linear codes. Let `
denote the minimum natural number such that a` = 1.
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• When f (x) = xn−1, ideals in F[x]/ f (x) correspond to cyclic codes.

• When f (x) = xn +1, ideals in F[x]/ f (x) correspond to negacyclic codes.

Definition 2.8 (Support of a vector). For a vector c∈Fn, its support is the set of indices
of its nonzero entries

supp(c) = {i | ci 6= 0}
Definition 2.9 (Hamming weight). For a vector c ∈ Fn, define

wt(c) = |supp(c)|

Definition 2.10 (Minimum distance, minimum weight). Let C be a linear code over
Fn. Then the minimum distance of C is defined

dmin(C)
def
= min

c6=d∈C
wt(c−d).

For linear codes, the minimum distance is equivalent to the minimum weight of a code-
word in C

dmin(C) = min
c6=0

wt(c).

Definition 2.11 (Generator Matrix (G)). Let F be a field and C be a constacyclic code
generated by polynomial g(x) of degree n− k which divides xn− a. The generator
matrix for C is defined as the k×n matrix where the ith row is equal to coeff(xi−1 ·g(x)).
Denote this matrix G. G is upper triangular because deg(g(x)) = n− k. Thus if g(x) =
c0 + c1x+ · · ·+ cn−kxn−k,

G =


c0 c1 c2 · · · cn−k 0 0 · · · 0
0 c0 c1 · · · cn−k−1 cn−k 0 · · · 0
0 0 c0 · · · cn−k−2 cn−k−1 cn−k · · · 0
...

. . . . . . . . . . . . . . . . . . . . .
0 · · · 0 0 c0 · · · cn−k−2 cn−k−1 cn−k


Definition 2.12 (Standard Form Generator Matrix (G′)). Let F be a field and C be a
constacyclic code generated by polynomial g(x) of degree n− k which divides xn−a.
The standard form generator matrix for C is defined as the reduced row echelon form
of the Generator Matrix G. The reduced Generator Matrix is a k× n matrix whose
leftmost k× k sub-matrix is Ik. Denote this matrix G′. Denote its ith row as gi. Note
that gk = coeff(xk−1 ·g(x)) because G is upper triangular and Gaussian elimination on
an upper triangular matrix doesn’t change the final row.

Definition 2.13 (Shift). Let F be a finite field, and C a constacyclic code over F gen-
erated by g(x). Let c = coeff(p(x) ·g(x)) ∈C for some polynomial p(x). Then s(i)c is
defined to be

s(i)c def
= coeff(xi · p(x)g(x))

i.e., if c = (c1, . . . ,cn) then

sc = (a · cn,c1,c2, . . . ,cn−1)
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3 Prior Work
There have been a number of recent results pertaining to properties of linear codes
under the Schur-product operation [1, 2, 3]. In this section, we highlight some of the
relevant results.

If C is a linear code, then the sequence of codes C〈1〉,C〈2〉, . . . has dimensions that
are non-decreasing, and minimum distances that are non-increasing.

Lemma 1 ([2]). For any linear code C ⊆ Fn and z≥ 1,

dim
(

C〈z+1〉
)
≥ dim

(
C〈z〉

)
and

dmin

(
C〈z+1〉

)
≤ dmin

(
C〈z〉

)
Definition 3.1 (Hilbert Sequence [2]). Let C ⊆ Fn be a linear code. The sequence of
integers dim

(
C〈i〉
)
, for i≥ 0, is called the dimension sequence, or the Hilbert sequence,

of C. The sequence of integers, dmin
(
C〈i〉
)

for i ≥ 0 is called the distance sequence of
C.

Since the dimension sequence is non-decreasing, and dim
(
C〈i〉
)
≤ n there must

exist a point at which the dimensions stop growing.

Definition 3.2 (Castelnuovo-Mumford Regularity [2]). The Castelnuovo-Mumford
regularity of a nonzero linear code C ⊆ Fn is the smallest integer r = r(C) ≥ 0 such
that

dim
(

C〈r〉
)
= dim

(
C〈r+i〉

)
for all i≥ 0.

The dimension sequence of a code is strictly increasing until it stabilizes, after
which it never grows again.

Lemma 2 ([2]). Let C be a linear code, r(C) its Castelnuovo-Mumford Regularity, then
for z ∈ {1, . . . ,r(C)−1}

dim
(

C〈z+1〉
)
> dim

(
C〈z〉

)
The dimension sequence of a code no longer increases once the code is generated

by a basis with disjoint support.

Lemma 3 ([2]). For any linear code C ⊆ Fn,z≥ 0,z ∈ Z. Then z≥ r(C) if and only if

dim
(

C〈z〉
)
= dim

(
C〈z+1〉

)
which occurs if and only if C〈z〉 is generated by a basis of codewords with disjoint
supports.
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4 Basic known results about constacyclic codes
In this section, we review some basic and well-known results about constacyclic codes.

We begin with a Lemma that determines a necessary and sufficient condition to
show that a linear subspace is a constacyclic code.

Lemma 4 (Closure under shifts). A linear subspace C ⊂ Fn is a constacyclic code over
the ring F [x]/(xn−a) if and only if C is closed under the shift operator

s : Fn→ Fn

(c0, . . . ,cn−1) 7→ (acn−1,c0, · · · ,cn−2)

Lemma 5 shows how to convert a generating polynomial for a code into a basis.

Lemma 5 (Basis of a constacyclic code). For any constacyclic code C of dimension k
over modulus xn−a and field F, if C is generated by a polynomial of minimal degree
g(x) of degree n−k, then g(x)|xn−a and {coeff(xi ·g(x)) | 0≤ i < k} forms a basis for
C.

The following lemma will be useful to determine whether a vector is nonzero.

Lemma 6 (Consecutive zeros of a constacyclic code). Let C ⊂ Fn be a constacyclic
code of dimension k. Then c ∈C has k consecutive zeros if and only if c = 0n.

Proof. In the first direction, if c = 0n then clearly it contains n consecutive 0s hence k
consecutive zeroes.

In the second direction, suppose c has k consecutive zeroes starting in position i
when c is considered as a one-indexed array. Let c′ = s(n−i+1)c and note that c′ has the
same number of nonzero indices as c and begins with k consecutive zeroes.

Let G′ be the standard-form generator matrix for C, with g1, . . . ,gk the rows of G′.
Then C is generated by g1, . . . ,gk. The first k positions of c′ are zero, hence

c′ =
k

∑
j=1

a jg j =
k

∑
j=1

0 ·g j = 0n.

Since c′ is a shift of c, c must also equal 0n.

The next lemma provides a lower bound on the minimum weight of a constacyclic
code and the required support for a vector which achieves it.

Lemma 7 (Minimum weight of a constacyclic code). Any constacyclic code of length
n and dimension k has minimum distance ≥ n

k . Furthermore, if a code c has weight n
k

and first nonzero position p, then supp(c) = {p+ z · k,0≤ z < n
k}.

Proof. By linearity of C, the code’s minimum distance is the same as the minimum
weight of a nonzero codeword. Suppose towards contradiction that c 6= 0n ∈ C and
d = wt(c) < n

k . Let i be the first nonzero index of c and let c′ = s(n−i+1)c. Hence c′

starts with a nonzero index. Let i1 < i2 < .. . < id denote the indices of the nonzero
coordinates of c′. Since c′ can never contain more than k− 1 consecutive zeroes by
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Lemma 6, the largest position each nonzero coordinate can take is exactly k positions
more than the previous nonzero coordinate. Thus, i j ≤ 1+( j−1)k < n+1−k. Hence,
c′ ends in at least k consecutive zeroes, and so c′ = 0n = c by Lemma 6. Therefore, the
original assumption is false; no c 6= 0n ∈C can have wt(c)< n

k .
In the case that d = wt(c) = n

k , let c′, i1, . . . , id be defined similarly. Hence, id ≤
1+(d−1)k≤ n−k+1, where equality occurs if and only if each nonzero index occurs
exactly k positions after the previous nonzero index. As before, if id < n− k+1 there
is a contradiction, thus id must equal n−k+1. Hence, supp(c′) = {1+z ·k,0≤ z < n

k}.
A simple shift back from c′ to c completes the proof.

In the lemma below, we determine a sufficient condition for powers of a consta-
cyclic code to be constacyclic. We will later see in Remark 1 that a constacyclic code
raised to an arbitrary power is not always constacyclic.

Lemma 8 (Schur product of a constacyclic code). Let C be a constacyclic code of length
n, dimension k and generator g(x) over modulus xn− a and field F. Let ` denote the
minimum natural number such that a` = 1.

Then for any z ∈N, C〈z·`+1〉 is a constacyclic code of length n over modulus xn−a.

Proof. By definition C〈t〉 is a linear code, for any t ≥ 0, so to show that C〈z·`+1〉 corre-
sponds to a constacyclic code, it suffices to show that C〈z·`+1〉 is closed under the shift
operator, s. Since C〈z·`+1〉 is spanned by vectors of the form ∏

z·`+1
i=1 ~ci, and the shift

operator, s is linear, it suffices to show that s
(
∏

z·`+1
i=1 ~ci

)
∈C〈z·`+1〉 whenever {~ci} ⊂C.

Let~ci = (c1,i, . . . ,cn,i), then

s

(
z·`+1

∏
i=1

~ci

)
= s

(
z·`+1

∏
i=1

c1,i, . . . ,
z·`+1

∏
i=1

cn,i

)

=

(
a

z·`+1

∏
i=1

cn,i,
z·`+1

∏
i=1

c1,i, . . . ,
z·`+1

∏
i=1

cn−1,i

)

=

(
az·`+1

z·`+1

∏
i=1

cn,i,
z·`+1

∏
i=1

c1,i, . . . ,
z·`+1

∏
i=1

cn−1,i

)

=
z·`+1

∏
i=1

s~ci

Since C is a constacyclic code, each s~ci ∈C, and so ∏
z·`+1
i=1 s~ci ∈C〈z·`+1〉.

Remark 1. It is not hard to find constacyclic codes that are not closed under the Schur-
product operation, i.e., constacyclic codes C, such that C〈d〉 is not constacyclic. Note
that in these cases, by Lemma 8 it must be that d 6= 1 mod `. Concretely, if C is
the constacyclic code generated by g(x) = x3 + 4 over F7/(x6 + 2), then C〈2〉 is not
constacyclic.

As a result of Lemma 8 and Remark 1, the following modifications to Definitions
3.1 and 3.2 are needed to reflect that only certain powers of constacyclic codes are
constacyclic:
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Definition 4.1 (Constacyclic Castelnuovo-Mumford regularity). Let C be a consta-
cyclic code generated by some g(x) dividing modulus f (x) = xn−a over F with a` = 1.
Then the Constacyclic Castelnuovo-Mumford regularity, r′(C) = z, is the unique z ∈ Z
such that z`+1≥ r(C)> (z−1)`+1.

Definition 4.2 (Constacyclic Hilbert sequence). Let C ⊆ Fn be a constacyclic code
generated by some g(x) dividing modulus f (x) = xn − a over F with a` = 1. The
constacyclic Hilbert sequence of C is defined as dim(C〈i`+1〉), i≥ 0.

In Lemma 9, we note that the constacyclic Hilbert sequence of a code can be com-
puted efficiently, given only a basis for the code.

Lemma 9 (Generator computation). Given any constacyclic code C where dim(C) = k
and given at least k linearly independent code words c1, . . . ,c j for j≥ k, it is possible to
determine g(x), the generator of C in O(k2n) operations. Furthermore, given generator
g(x) of code C, it is possible to determine generator q(x) of C〈z`+1〉 in O(n4log(z · `))
operations.

Proof. We first determine how to obtain g(x) given c1, . . . ,ck. We begin with forming
G′ by applying Gaussian Elimination to the matrix with rows c1, . . . ,ck. The kth row
of G′, gk will be the final nonzero row and will be coeff(xk−1g(x)), thus completely
determining g(x). Gaussian Elimination of a k× n matrix of rank k can be completed
in O(k2n) operations.

Given a basis of C, it is possible to determine a basis of C〈z`+1〉 in O(n4log(z`))
operations. We first use the method of repeated squaring to determine the bases for
C,C〈2〉,C〈4〉, . . . ,C〈b〉 where b = 2blog2(z`+1)c. Then there is some I ⊆ {1,2,4, . . . ,b}
such that Πi∈IC〈i〉 =C〈z`+1〉. Since |I| = O(log(z`+1)), it suffices to show that given
bases for C〈a〉,C〈a′〉 it is possible to compute a basis for C〈a+a′〉 in O(n4) operations.

Let A,A′ be the matrices representing the bases for C〈a〉 and C〈a′〉 respectively.
Since A and A′ generate codes in Fn, the maximum rank these codes can have is n, thus
A and A′ have at most n rows (and they both have exactly n columns). Then C〈a+a′〉
is the span of the Schur product of rows of A with rows of A′. There are n2 such
rows, each of length n. Thus, a matrix M of all such rows can be computed in O(n3)

operations. Computing a basis for C〈a+a′〉 simply involves determining the reduced
row echelon form of M. When applying Gaussian Elimination to M, for each pivot
column it is possible to identify a row nonzero in that column in O(n2) operations.
Then row reduction using the chosen row can be done in O(n3) operations. Since there
are O(n) pivot columns, determining the first n rows of the reduced row echelon matrix
can be done in O(n4) time. Finally, since the rank is at most n, we can simply ignore
the remaining n2−n rows.

5 Extensions to quasi-twisted codes
Definition 1 (Quasi-twisted codes). Let m, t ≥ 1, and set n = mt ∈ Z. A code C ⊂ Fn

is called (t,a)-quasi-twisted, if there is an t ≥ 1, and a ∈ F, such that C is closed under
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the map

T `
a : Fn→ Fn

(c0, . . . ,cn−1) 7→ (acn−t , . . . ,acn−1,c0,c1, . . . ,cn−t−1)

Under this definition, constacyclic codes are (1,a)-quasi-twisted. Quasi-twisted
codes have been well-studied, [30, 31, 32, 33, 34, 35], and have even been further
generalized to multi-twisted codes [36] by allowing t different constants in the shift
operation.

It is not hard to check that for any non-trivial quasi-twisted code, it mus be that
t | n, thus we define m def

= n/t. With this definition, quasi-twisted codes correspond to
F[x]/(xm−a) submodules of (F[x]/(xm−a))t .

Quasi-twisted codes are closely related to constacyclic codes, and if we permute
the indices of a quasi-twisted code

(c0, . . . ,cn−1) 7→ ((c0,ct , . . . ,c(m−1)t),(c1,ct+1, . . . ,c(m−1)t+1), . . . ,(ct−1,c2t−1, . . . ,c(m−1)t+(t−1)))

then each block of m digits forms a constacyclic code. This motivates the following
definition of a projection

Pi : Fn→ Fm

(c0, . . . ,cn) 7→ (ci,ct+i,c2t+i, . . . ,c(m−1)t+i)

Then if C is a quasi-twisted code, Pi(C) is a constacyclic code for i = 0, . . . , t− 1.
Since addition and scalar multiplication commute with these project operations, the
Schur product also commutes with the projection. The shift operation is also compati-
ble with the projection, in particular

Pi

(
s(t)c

)
= s(Pi(c))

Thus, through an application of Lemma 4, one can inductively show that

Pi

(
C〈z`+1〉

)
= Pi(C)〈z`+1〉

We can therefore apply our results to each of the projected codes Pi(C〈z`+1〉) indi-
vidually, to analyze the structure of C〈z`+1〉 when C is a quasi-twisted code.

6 Results

6.1 Overview
This section will introduce the novel results of this paper. The results use a specific
component of a constacyclic code to determine key high level properties of the code’s
constacyclic Hilbert sequence. We denote this component the pattern polynomial and
define it as follows:
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Definition 6.1. Let C ⊂ Fn be a constacyclic code with modulus f (x) = xn−a, gener-
ator g(x)| f (x) with g(0) = 1. Let p(x) be the highest degree polynomial, with degree
n− v, v|n, and p(0) = 1, such that p(x)|g(x) and

{
coeff(xi p(x))

∣∣ 0≤ i < v
}

have dis-
joint support. Then p(x) is defined to be the pattern polynomial of g(x).

We observe that p(x) always exists, as p(x) = 1 satisfies all requirements of a pat-
tern polynomial except for when a higher degree pattern polynomial exists.

In Section 6.2 we present Theorem 1, in which we use the pattern polynomial
to qualify the structure of a code’s constacyclic Hilbert sequence. Specifically, we
show the pattern polynomials of a code’s constacyclic Hilbert sequence are simply the
corresponding powers of the underlying code’s pattern polynomial. Since the pattern
polynomial divides each element of the code, one can deduce important properties of
the codewords. For example, the support of every element of the code is closely related
to the support of the pattern polynomial. Moreover, all vectors in the code, including
the minimum weight vector, have weight which is divisible by the weight of the pattern
polynomial. Furthermore, through use of Theorem 2 and Lemma 12, the structure
of the pattern polynomial can be further specified. Consequently, knowledge of the
pattern polynomial uniquely determines a pair (v,d) where v|n,d is a unit, d−

n
v = a,

and every codeword c = (c1, . . . ,cn) has the property c j = dc j−v for all j > v.
Later, in Section 6.3 we use Theorem 2 to show that the generators of powers of a

code in its constacyclic Hilbert sequence are simply the pattern polynomial raised to the
corresponding powers for all terms at or after the constacyclic Castelnuovo-Mumford
regularity. Given that a generator completely determines a code, the pattern polyno-
mial for a base code is sufficient for understanding all such powers of the code in its
constacyclic Hilbert sequence. Moreover, the structure of the pattern polynomial in-
duces several additional key properties when it generates a code, including: (1) that the
generator has minimum weight, (2) the minimum weight vector has weight n

k where k
is the dimension of the code, and (3) the basis of shifts of the generator polynomial has
disjoint support. These properties are explored further in Section 6.3 through Lemma
12.

Next, in Section 6.4, we introduce Theorem 3 which qualifies when the powers of
a code are invariant under the Schur product for all terms in the constacyclic Hilbert
sequence occurring at or after the constacyclic Castelnuovo-Mumford regularity. Such
codes form perhaps the most intrinsically interesting class of codes studied in this work.
In addition to the other properties described with Theorem 1 and Theorem 2, Theorem
3 ensures that in the (v,d) pair described above also exhibits the property that d` = 1.

Furthermore, in Section 6.5 we include Theorem 4 where we describe an efficient
algorithm to determine the pattern polynomial for a code given its generator. This
is of practical importance, since, as previously described, the properties of the pattern
polynomial are helpful in understanding a constacyclic code’s behavior under the Schur
product. Thus, in order to understand such properties of a given code, it suffices to
compute the pattern polynomial.

Finally, in Section 6.6, we provide a few additional results.
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6.2 Pattern polynomials of a constacyclic Hilbert sequence
In Theorem 1 we show that the pattern polynomials for a constacyclic Hilbert sequence
are given by powers of the pattern polynomial of the base constacyclic code. Conse-
quently, identifying the pattern polynomial of the base constacyclic code is sufficient
to identify all pattern polynomials in the sequence.

Theorem 1 (Pattern polynomials of a constacyclic Hilbert sequence ). Let C ⊂ Fn be
a constacyclic code with modulus f (x) = xn− a, dimension k, generator g0(x), and
pattern polynomial p0(x). Consider the of the constacyclic Hilbert sequence C, . . .,
then for each C〈i`+1〉 the generator gi(x) has pattern polynomial pi(x) = p0(x)〈i`+1〉.

Proof. We proceed with a proof by induction that pi(x) = p0(x)〈i`+1〉. In the base case,
it is clear that p0(x) = p0(x)〈1〉 by definition. In the inductive hypothesis, we assume
that for 0≤ i < ζ that pi(x) = p0(x)〈i`+1〉. In the inductive step i = ζ , and we will show
that C〈i`+1〉 has pattern polynomial pi(x) = p0(x)〈i`+1〉.

By Lemma 10 (below) we have that p0(x)〈i`+1〉|gi(x). Thus all that remains is to
show that there is no higher degree polynomial p′(x) that satisfies all other requirements
for being a pattern polynomial of gi(x). Suppose towards contradiction that such a p′(x)
exists with deg(p′(x)) = n− v′ > n− v = deg(p0(x)). By Lemma 11, we know that

p0(x)〈(i`+1)(r′(C)`+1)〉 ∈C〈(i`+1)(r′(C)`+1)〉.

Then by Lemma 10 we also know that

p′(x)〈r′(C)`+1〉|p0(x)〈(i`+1)(r′(C)`+1)〉,

hence,

p0(x)〈(i`+1)(r′(C)`+1)〉 =
v′−1

∑
j=0

c jx j p′(x)〈r′(C)`+1〉.

This is a contradiction since∣∣∣supp
(

p0(x)〈(i`+1)(r′(C)`+1)〉)∣∣∣= n
v

while for some integer z∣∣∣∣∣supp

(
v′−1

∑
j=0

c jx j p′(x)〈r′(C)`+1〉
)∣∣∣∣∣= z

n
v′
.

We conclude that no such higher degree pattern polynomial p′(x) exists. Therefore,
p0(x)〈i`+1〉 is the pattern polynomial for C〈i`+1〉.

In Lemma 10, we show a relationship between the pattern polynomial of a base
code and the minimum weight generator of any code in its constacyclic Hilbert se-
quence. This property is used in the proof of Theorem 1.
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Lemma 10. Let C ⊂ Fn be a constacyclic code with modulus f (x) = xn− a, dimen-
sion k, generator g0(x), and pattern polynomial p0(x). Consider the constacyclic
Hilbert sequence C, . . . with smallest degree generators g0(x),g1(x), . . .. Then for each
i, p0(x)i`+1|gi(x) .

Proof. Let C〈i`+1〉= (gi(x)). We will show that p0(x)〈i`+1〉 divides gi(x). By definition,

gi(x) = ∑
j∈J

b jr j(x)

for units b j and r j(x) ∈C〈i`+1〉. Let r(x) ∈ {r j(x) | j ∈ J} arbitrarily. Then

r(x) = Π
i`+1
j=1 c j(x) (1)

where each c j(x) ∈ (g0(x)). We will show that p0(x)i`+1|r(x), and we then conclude
p0(x)i`+1|gi(x).

We note that p0(x)|g0(x) and g0(x)|c j(x), therefore, p0(x)|c j(x). Hence we can
rewrite

c j(x) =
n−1

∑
z=0

d j,zxz p0(x)

for constants d j,z ∈ F. We apply Lemma 13, and conclude without loss of generality
that

c j(x) =
v−1

∑
z=0

d j,zxz p0(x). (2)

We substitute Equation 2 into Equation 1 to obtain

r(x) = Π
i`+1
j=1

v−1

∑
z=0

d j,zxz p0(x).

Then by associativity and commutativity,

r(x) = ∑
(z1,...,zi`+1)∈[v−1]i`+1

Π
i`+1
j=1 d j,z j x

z j p0(x).

Finally, since (xa p0(x))∗ (xb p0(x)) = 0 unless a = b, we determine that

r(x) =
v−1

∑
i=0

eixi pi`+1
0 .

Thus, pi`+1
0 divides each term in the linear combination whose summation is gi(x), and

so pi`+1
0 |gi(x).
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6.3 Generators for codes of invariant dimension
Next, in Theorem 2, we determine the generator for all powers of a code in the consta-
cyclic Hilbert sequence of maximal achieved dimension. Thus, Theorem 2 determines
the behavior of a code under the Schur product once its dimension stops increasing.

Theorem 2 (Generators for codes of invariant dimension). Let C⊂ Fn be a constacyclic
code with modulus f (x) = xn− a, generator g(x), and pattern polynomial p(x). Then
for z≥ r′(C), the generator gz(x) for C〈z`+1〉 is given by p(x)〈z`+1〉.

Proof. We provide a proof by induction on z. In the base case, we let z = r′(C). We
then apply Theorem 1 to determine that p(x)〈r′(C)`+1〉 is the pattern polynomial for
C〈r′(C)`+1〉. Furthermore, by definition of r′(C) we note that

v = dim(C〈r′(C)`+1〉) = dim(C〈(r′(C)`+1)(`+1)〉).

We therefore apply Lemma 3 to determine that C〈r′(C)`+1〉 is generated by a basis of
disjoint support. We then use Lemma 12 to determine that for some unit u, v|n, and
d−

n
v = a, C〈r′(C)`+1〉 is generated

gr′(C)(x) = u ·
n
v−1

∑
i=0

dixv·i.

By definition, gr′(C)(x) is its own pattern polynomial, so gr′(C)(x) = u · p0(x)〈r
′(C)`+1〉.

For the inductive step, we consider any z > r′(C). We note that

p0(x)〈r
′(C)`+1〉 ∗g(x)〈(i−z)`〉 = u · p0(x)〈i`+1〉

for some unit u, hence,
p0(x)〈i`+1〉 ∈C〈i`+1〉.

Since z > r′(C), we know that v = dim(C〈z`+1〉) = n−deg(p0(x)), so

C〈z`+1〉 = (B) =
({

coeff
(

x j p0(x)〈z`+1〉
)
,0≤ j < v

})
.

Finally, an application of Lemma 12, specifically the proof for (5)→ (1), shows that
p0(x)〈z`+1〉 is a generator for C〈z`+1〉.

In Lemma 11, we show a relationship between the powers of a base code’s pattern
polynomial and powers of the code in the constacyclic Hilbert sequence for powers
greater than or equal to the constacyclic Castelnuovo-Mumford regularity. Lemma 11
is crucial part of the proof of Theorem 2.

Lemma 11. Let C ⊂ Fn be a constacyclic code with modulus f (x) = xn− a, dimen-
sion k, generator g0(x), and pattern polynomial p0(x) of degree n− v. Consider the
constacyclic Hilbert sequence C, . . .. Then for each i such that i`+ 1 ≥ r′(C)`+ 1,
p0(x)〈i`+1〉 ∈C〈i`+1〉.
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Proof. Clearly it suffices to prove

p0(x)〈r
′(C)`+1〉 ∈C〈r′(C)`+1〉

since then
p0(x)〈r

′(C)`+1〉 ∗g0(x)〈(i−r′(C))`〉 = p0(x)〈i`+1〉.

We know that
dim(C〈2(r′(C)`+1)〉) = dim(C〈r′(C)`+1〉.

Therefore, by Lemma 3, C〈r′(C)`+1〉 is generated by a basis B of vectors with disjoint
support. By Lemma 12, we know that the generator gr′(C)`+1(x) for C〈r′(C)`+1〉 is of
the form

gr′(C)`+1(x) = u ·
n
v′−1

∑
i=0

dixv′·i.

Thus gr′(C)`+1(x) is its own pattern polynomial, and it suffices to show that

gr′(C)`+1(x) = up0(x)〈r
′(C)`+1〉.

Suppose not, then there is some other pattern polynomial p′(x) ∈C〈r′(C)`+1〉 with
degree n− v′ > n− v,v′ = dim(C〈r′(C)`+1〉) and gr′(C)`+1(x) = up′(x). Let

r j(x) = u j(x jg0(x)〈`〉)∗gr′(C)`+1(x)

where u j is a unit chosen to ensure that r j(0) = 1 if r j(x) 6= 0, if r j(x) = 0, we simply
define u j = 1.

Since dimension doesn’t increase and gr′(C)`+1 is a minimum weight vector,

supp(r j(x)) ∈ { /0,supp(gr′(C)`+1(x))}.

For any j 6= j′ we will show r j(x)− r j′(x) ∈ {0,r j(x),−r j′(x)}. Clearly, if r j(x) = 0 or
r j′(x) = 0 it holds. Thus we consider only when r j(x),r j′(x) 6= 0. In that case,

coeff(r j(x))[1] = coeff(r j′(x))[1] = 1

and
∀m ∈ {2, . . . ,v′}gr′(C)`+1(x)[m] = r j(x)[m] = r j′(x)[m] = 0.

Therefore, coeff(r j(x)− r j′(x)) begins with at least v′ consecutive zeroes, so r j(x)−
r j′(x) = 0 by Lemma 6.

In order to ensure such properties of the r j(x), it must be the case that

g0(x) = u
v′−1

∑
j=0

e j p∗(x)

where deg(p∗(x)) = n− v′ and supp(p∗(x)) = supp(gr′(C)`+1(x)). Furthermore, v′|n
and without loss of generality we can chose the e j such that p∗(0) = 1. Therefore,
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p∗(x) has all characteristics of the pattern polynomial except that it might not be of
highest degree. Since n−v′ > n−v, this violates that p(x) was the pattern polynomial.
Thus, the assumption gr′(C)`+1(x) is equal to some other pattern polynomial is false,

gr′(C)`+1(x) = up0(x)〈r
′(C)`+1〉.

In Lemma 12, we will show that several different properties of a code are equivalent
to the code having a basis with disjoint support. As determined in Lemma 3, having
a basis with disjoint support is necessary and sufficient to ensure that a code’s dimen-
sion is invariant under the Schur product. Thus, it will be helpful to have a greater
understanding of the structure of such a code. Lemma 12 is also used in the proof of
Theorem 2 .

Lemma 12 (Disjoint support basis equivalence). Let C⊂Fn be a constacyclic code with
modulus f (x) = xn−a, generator polynomial g(x) of degree n− k such that g(x)| f (x)
and k|n . Then the following are equivalent:

1. g(x) = u ·∑
n
k−1
i=0 dixk·i where u is a unit and d−

n
k = a

2. G = uG′ for some unit u

3. B = {coeff(xi ·g(x)),0≤ i < k} has disjoint support

4. C is spanned by a basis of disjoint support

5. there is some vector c ∈C such that wt(c) = n
k .

Proof. This proof will proceed by showing (1)→ (2),(2)→ (3),(3)→ (4),(4)→ (5),
and (5)→ (1).

We begin by showing that (1)→ (2). Given (1), we know that G has rows with
disjoint support and the first k columns of G are a diagonal matrix where each entry
is g(0). Therefore Gaussian Elimination would only multiply the matrix by g(0)−1,
leaving G = u′G′.

We will now show that (2)→ (3). We note that if we take the first row of G′ it is
equal to u−1g(x) for unit u. Then if we take x ju−1g(x) for 0≤ j < k, we see that

supp(coeff(x ju−1g(x)))∩{1, . . . ,k}= { j+1},

since the dimension is k and so G′= [IK |M] for some M ∈Fk×(n−k). Given that the rows
of G′ span C and coeff(xkg(x))[m] = 0 for 1 < m ≤ k, it is clear that xkg(x) = dg(x)
for some nonzero d ∈ F. Consequently, supp(g(x)) = supp(xekg(x)) for any integer e.
Hence, j ∈ supp(g(x)) for 0≤ j < k if and only if j+zk ∈ supp(g(x)) for all 0≤ z < n

k .
Since deg(g(x)) = n− k we know j /∈ supp(g(x)) for j ∈ [k− 1] \ {1}. Finally, we
conclude supp(g(x)) = {1+ zk,0≤ z < n

k}, ensuring that B has disjoint support.
Clearly, (3)→ (4), as {coeff(x jg(x)),0≤ j < k} is a basis of disjoint support that

spans C.
We now show (4)→ (5). Suppose C is spanned by a basis B with disjoint support.

For each b ∈ B we know by Lemma 7 that wt(b) ≥ n
k . Furthermore, since the vectors
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of B have disjoint support we know n ≥ wt(∑b∈B b) = ∑b∈B wt(b) ≥ k n
k ≥ n. Thus

wt(b) = n
k for each b ∈ B to allow this. Hence, there is some c ∈C such that wt(c) = n

k .
We conclude by showing (5)→ (1). Suppose c ∈C with wt(c) = n

k , and without
loss of generality assume c[1] = 1. Then by Lemma 7, supp(c) = {1+ zk,0≤ z < n

k}.
Therefore, B = {sic,0≤ i < k} has disjoint support. This ensures that B has dimension
k, so it spans C. Furthermore, coeff(g(x)) = uc since coeff(g(x))[m] = 0 for n− k <
m ≤ n. We note that since supp(skc) = supp(c) and skc ∈ span(B), we can conclude
skc = e′c for some unit e′. Therefore, exkg(x) = g(x) for some unit e. Hence,

g(x) = u

n
k−1

∑
i=0

dixki

for unit u and d0 = 1. Then

xkg(x)− eg(x) =

( n
k−1

∑
i=1

xki(edi−1−di)

)
+(ed n

k−1a−1) = 0.

This ensures that di+1 = edi and ed n
k−1 = a−1. Consequently, di = ei and d−

n
k = a.

6.4 Invariance under `-wise schur product
In Theorem 3, we quantify how to identify codes whose powers are invariant under suc-
cessive applications of the `-wise Schur product after the constacyclic Hilbert sequence
reaches its maximum dimension.

Theorem 3 (Invariance under the `-wise Schur product). Let C ⊂ Fn be a consta-
cyclic code with modulus f (x) = xn − a, generator g(x) and pattern polynomial

p(x) = ∑

n
v−1
i=0 dixvi. Then C〈r′(C)`+1〉 =C〈z`+1〉 for all z≥ r′(C) if and only if d` = 1.

Proof. Suppose that d` = 1. Then for z≥ r′(C), by Theorem 2 we know that C〈z`+1〉 =

(p(x)〈r′(C)`+1〉 ∗ p(x)〈(z−r′(C))`〉). Furthermore,

p(x)〈(z−r′(C))`〉 =
n
v−1

∑
i=0

(d`)(z−r′(C))ixvi =

n
v−1

∑
i=0

xvi.

Hence, C〈z`+1〉 =C〈r′(C)`+1〉, as they are each generated by (p(x)〈r′(C)`+1〉).
Suppose C〈r′(C)`+1〉 = C〈z`+1〉 for any z ≥ r′(C). Then by Theorem 2 we know

C〈(r′(C)+1)`+1〉 = (p(x)〈r′(C)`+1〉 ∗ p(x)〈`〉). Hence p(x)〈r′(C)`+1〉, p(x)〈(r′(C)+1)`+1〉
both belong to the code. Therefore, their difference is in the code. It is equal to

p(x)〈r′(C)`+1〉 − p(x)〈r′(C)`+1〉 ∗ p(x)〈`〉 =

n
v−1

∑
i=0

di(r′(C)`+1) ∗ (1−d`i)xvi = 0.

We note that it must equal zero since p(0) = 1 and deg(p(x)) = n− v. Therefore,
the difference is zero in the final v− 1 positions and first position. Thus, it has v
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consecutive zeros, and by Lemma 6 must equal 0. Hence, di(r′(C)`+1) ∗ (1−d`i) = 0 for
each i. Focusing on i = 1, we see that 1 = d` as desired.

Remark 2. As a motivation for Theorem 3, we observe that for a constacyclic code
C over modulus xn − a, it is possible for dim(C) = dim(C〈`+1〉) while C 6= C〈`+1〉.
Consider a code C over F5[x]/(x4−1) and generator g(x) = g(x) = x3 +2x2 +4x+3.
Then dim(C) = n−deg(g(x)) = 1, and C = span([3,4,2,1]). Furthermore, the basis of
C〈2〉 is generated by span([3,4,2,1]∗ [3,4,2,1]) = span([4,1,4,1]). Thus dim

(
C〈2〉

)
=

1. Yet, [3,4,2,1] /∈ span([4,1,4,1]), so C 6=C〈2〉.

6.5 Determining the pattern polynomial
In Theorem 4, we will describe an efficient algorithm to compute the pattern polyno-
mial for any constacyclic code.

Theorem 4 (Determining the pattern polynomial). Let C ⊂ Fn be a constacyclic code
with modulus f (x) = xn− a, generator g(x), and dimension k. Let w be the length of
the input, where w≥wt(g(x))+ log(n)+ log(a) to include a description of g(x),n, and
a. It is possible to compute the pattern polynomial p(x) in O(w2) time. After doing so,
for deg(p(x)) = n− v, it is possible to compute {ci} such that g(x) = ∑

v−1
i=0 cixi p(x) in

O(v) time.

Proof. The proof will proceed as follows. We begin by assuming without loss of gener-
ality that g(0)= 1. In O(w) time, we will compute a candidate set V of size O(w) which
contains v. We will then test each v′ ∈ V in O(w) time to determine the whether there
is some polynomial of degree v′ that satisfies all properties of the pattern polynomial,
except perhaps being of highest degree. We take the highest degree such polynomial as
the pattern polynomial. Afterwards, since p(0) = g(0) = 1, we conclude ci = w[i+1]
for 0≤ i < v.

We know that a generator g(x) has some pattern polynomial

p(x) =

n
v−1

∑
j=0

α
ixvi

such that

g(x) =
v−1

∑
i=0

cixi p(x) =
n−1

∑
i=0

bixi.

We observe that ci = bi, as p(0) = g(0) = 1. Clearly, c0 = 1 since g(0) = 1, thus either
v = n or coeff(g(x))[v+1] 6= 0. Therefore, in O(w) time, we can compute

V = {n}∪{i−1, | i ∈ supp(coeff(g(x))\{1}},

while ensuring that v ∈V and |V |= O(w).
For each v′ ∈ V , we test in O(w) time whether there is some polynomial p′(x) of

degree n−v′ satisfying all requirements of the pattern polynomial except perhaps being
highest degree. If v′ = n, then p′(x) = 1 clearly satisfies all requirements of the pattern
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polynomial except perhaps being of highest degree. Otherwise, p′(x) is the pattern
polynomial if and only if (1) v′|n,

(2) p′(x) =

n
v′−1

∑
j=0

d jxv′ j,d−
n
v′ = a,

(3) g(x) =
v′−1

∑
j=0

b jx j p′(x),

and (4) p′(x) is the highest degree polynomial for which all these requirements are
satisfied.

We note that the form for (2) is equivalent to the requirement that{
coeff(xi p′(x))

∣∣ 0≤ i < v′
}

have disjoint support by Lemma 12. Clearly, for p′(x)
to satisfy these requirements, d = coeff(g(x))[v′+1]. It is straightforward to check (1)
and that d−

n
v′ = a as well as compute both p′(x) and

g′(x) =
v′−1

∑
j=0

b jx j p′(x).

To check (3), we simply verify that the w nonzero coefficients of coeff(g(x)) match
the corresponding coefficients of coeff(g′(x)) and that no other nonzero coefficients
of g′(x) exists. Finally, (4) is achieved by taking the highest degree p′(x) satisfying
requirements (1), (2), and (3). Once all v′ ∈V have been checked, we must be left with
p′(x) satisfying (1),(2),(3), and (4).

6.6 Additional Results
In Lemma 13, we expand upon the results from Lemma 12, and show two properties
of a polynomial taking the form of a generator found in Lemma 12. These properties
are used in the proofs of other lemmas in this work.

Lemma 13. Let v|n and p(x) = u ·∑
n
v−1
i=0 dixv·i where u is a unit and d−

n
v = a. Then (1)

xv p(x) = d−1 p(x) over modulus f (x) and (2) p(x)|xn−a.

Proof. We first show (1). By definition, xv p(x)−d−1 p(x)= (∑
n
v−1
i=1 (di−1−d−1di)xv)+

d
n
v−1a−d−1 = 0.

We now show (2). In order to show p(x)|xn−a we simply show that p(x) · (xv ·a ·
d−a) = xn−a. Upon evaluation, we determine

p(x) · (xv ·a ·d−a) = (

n
v−1

∑
j=0

d j+1 ·a · xv( j+1))− (

n
v−1

∑
j=0

d j ·a · xv j).

Reindexing and shifting terms yields

d
n
v ·a · xv· nv +(

n
v−1

∑
j=1

(d j ·a · xv j)−d j ·a · xv j)−ax0.
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We simplify to
d

n
v ·a · xn−a = xn−a.

Thus, p(x) · (xv ·a ·d−a) = xn−a.

The constacyclic Hilbert sequence monotonically increases in dimension until the
dimension stops increasing. We show in Lemma 14 that when F is a finite field, after the
dimension stops increasing, the constacyclic Hilbert sequence cycles between at most
|F| different codes. Thus, we further qualify the behavior of such codes of sufficiently
large product dimension.

Lemma 14 (Cycles in the constacyclic Hilbert sequence). Let C⊂ Fn for F a finite field
of order |F | be a constacyclic code with modulus f (x) = xn− a, generator g(x), and

pattern p(x) = ∑

n
v−1
j=0 c jxv j. Then C〈r′(C)`+1〉,C〈(r′(C)+1)`+1〉, . . . forms a cycle of length

at most |F|.

Proof. By Theorem 2, C〈z`+1〉 = (p(x)〈z`+1〉) for z≥ r′(C). Thus,

C〈(r′(C)`+1)+|F|`〉 =
(

p(x)〈r′(C)`+1〉 ∗ p(x)〈|F|`〉
)
.

We note that

p(x)〈|F|`〉 =

n
v−1

∑
j=0

(c|F|j )`xv j =

n
v−1

∑
j=0

xv j.

Therefore, C〈(r′(C)`+1)+|F|`〉 =C〈r′(C)`+1〉.

In Lemma 15, we observe a bijection between nontrivial cyclic codes of length n
invariant under the Schur product and factors of n.

Lemma 15 (Bijection between factors of n and invariant codes). Consider a cyclic code
C of length n. Aside from the trivial subspace C = {0n} generated by g(x) = 0, there is
a bijection between subspaces C⊂Fn where C〈2〉=C and factors of n. In this bijection,
for each factor, k, of n the corresponding code C has dimension k.

Proof. Let m(k) = ∑

n
k−1
i=0 xk·i for k|n. We will show that m is a bijection between factors

of n and generators of nontrivial codes invariant under the Schur product.
For any factor k of n, let g(x) = m(k) = ∑

n
k−1
i=0 xk·i. (xk−1)g(x) = xn−1 by Lemma

13 and dim((g(x)) = k. Furthermore, g(x) is its own pattern polynomial so r′(C) = 0
and, by Theorem 3, C〈2〉 =C. Thus m maps factors of n to nontrivial generators of C’s
of the form C〈2〉 = C. In doing so, m is injective because deg(m(k)) 6= deg(m(k′)) for
k′ 6= k.

For any nontrivial C generated by g(x) such that C〈2〉 = C, we know r′(C) = 0.
Therefore, g(x) is its own pattern polynomial. Furthermore, by Theorem 3, g(x) =

∑

n
k−1
i=0 dixki where d` = d1 = 1. So for any generator g(x) such that that C〈2〉 =C, it is

clear that g(x) = m(k). Thus, m is surjective. Hence, m is bijective as desired.
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Remark 3. We observe that a constacyclic Hilbert sequence can include a dimension
increase of 1. Consider a code C over F3/x6−1 generated by g(x) = g(x) = x4+2x3+
x+2. Then dim(C) = 2 and C = ({(2,1,0,2,1,0),(0,2,1,0,2,1)}). Furthermore,

C〈2〉 = ({(2,1,0,2,1,0)∗ (2,1,0,2,1,0),(2,1,0,2,1,0)∗ (0,2,1,0,2,1)})

= ({(1,0,0,1,0,0),(0,1,0,0,1,0)}) = ({(1,0,0,1,0,0)}).
Therefore, C〈2〉 = (1+ x3), so dim(C〈2〉) = dim(C)+1.

7 Hilbert sequences in practice
To provide some intuition about how the dimensions of constacyclic codes be-
have in practice, we generated the Hilbert sequences for cyclic and negacyclic
codes in the rings Fq[x]/(x50 ± 1). We chose small a small subset of primes q ∈{

nextprime(2i)
∣∣ i ∈ {8, . . . ,16}

}
, and restricted our plots to those primes where the

ring Fq[x]/(x50±1) had at most 1000 generators that generated codes of rate less than
1/2.

For all tests, the Hilbert sequence stabilized at length 5, and the fraction of genera-
tors that produced given Hilbert sequence are shown in Figures 1, 2. The x-axis shows
the dimensions of the codes, thus the label 5-12-17-18-18 corresponds to constacyclic
codes, C, with dim

(
C〈1〉

)
= 5, dim

(
C〈2〉

)
= 12, dim

(
C〈3〉

)
= 17, dim

(
C〈4〉

)
= 18, and

dim
(
C〈5〉

)
= 18.

0

0.05

0.1

0.15

0.2

0.25

0.3

1-1-1-1-1
2-2-2-2-2
4-5-5-5-5
4-6-8-10-10
4-9-10-10-10
5-5-5-5-5
5-9-10-10-10
6-10-10-10-10
8-10-10-10-10
9-10-10-10-10
10-10-10-10-10
12-22-32-42-50
14-26-38-50-50
16-30-40-50-50
18-30-40-50-50
20-25-25-25-25
20-30-40-50-50
20-45-50-50-50
21-25-25-25-25
21-45-50-50-50
22-42-50-50-50
22-46-50-50-50
22-50-50-50-50
24-25-25-25-25
24-45-50-50-50
24-46-50-50-50
24-49-50-50-50
24-50-50-50-50

F
ra
ct
io
n

Hilbert sequences (f = x50 + 1)

q = 67
q = 131
q = 1031
q = 2053

Figure 1: Negacyclic Dimension Sequences.
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0-10-10

-10
8-10-10

-10-1
0

9-1
0-1

0-10-10
10
-10

-1
0-10-10

2
0-25-25-25

-25
21-25

-25-2
5-25

21
-4
5-50-50

-5
0

2
2-46-50

-50-50
24
-2
5-25-2

5-25
2
4-45

-5
0-5

0-50

F
ra
ct
io
n

Hilbert sequences (f = x50 − 1)

q = 67
q = 2053

Figure 2: Cyclic Hilbert Sequences. There were only 27 generator polynomials that
generated codes of rate less than 1/2, and every Hilbert sequence appeared either once
or twice.

8 Conclusion and Future Directions
Overall, it is clear that constacyclic codes have structured growth under the Schur prod-
uct. One can efficiently identify the dimension the code will grow to, the generators of
the powers of the code past r′(C), and when the code and or powers of the code are in-
variant under the Schur product. This inherent structure is important to consider when
developing and or performing cryptanalysis of cryptosystems involving constacyclic or
related codes to avoid inducing or to exploit vulnerabilities related to such properties.

The future directions of this work are twofold: improving the results proven in
this paper and extending the results to other areas. In the first category, can the
complexity bound for acquiring the pattern polynomial be improved from O(w2)?
Can r′(C) be computed in time faster then O(n4log(n))? Can the time used to
acquire generators of powers of C be written in terms of the input length rather
than n, perhaps by using sparse matrix operations? Can the chain of generators for
C,C〈`+1〉,C〈2`+1〉, . . . ,C〈(r

′(C)−1)`+1〉 be obtained more efficiently through using prop-
erties of the pattern polynomial? In the second category, can any of these results be
extended to the context of cyclic lattices? Can the techniques used in this paper be
modified to apply to similar yet different results in cyclic lattices? Micciancio and
Regev [37] wondered if one could safely use cyclic lattices in LWE-based cryptosys-
tems to improve efficiency. Can such extensions be used to justify or preclude doing
so? Can properties of constacyclic codes under the Schur product be used to design
and or break future cryptosystems which use constacyclic codes?
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