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UPPER BOUNDS FOR ENERGIES OF SPHERICAL CODES OF

GIVEN CARDINALITY AND SEPARATION

P. G. BOYVALENKOV†, P. D. DRAGNEV ††, D. P. HARDIN∗, E. B. SAFF∗,
AND M. M. STOYANOVA†††

Abstract. We introduce a linear programming framework for obtaining upper bounds
for the potential energy of spherical codes of fixed cardinality and minimum distance.
Using Hermite interpolation we construct polynomials to derive corresponding bounds.
These bounds are universal in the sense that they are valid for all absolutely mono-
tone potential functions and the required interpolation nodes do not depend on the
potentials.
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1. Introduction

Let Sn−1 denote the unit sphere in R
n and C ⊂ S

n−1 be a spherical code; i.e. a finite
subset of S

n−1. Given an (extended real-valued) function h : [−1, 1] → [0,+∞], the
(unnormalized) potential energy (or h-energy) of C is given by

(1) Eh(C) :=
∑

x,y∈C,x 6=y

h(〈x, y〉),

where 〈x, y〉 denotes the usual inner product of x and y.

Denote by

s(C) := max{〈x, y〉 : x, y ∈ C, x 6= y},
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the maximal inner product of a spherical code C and by

C(n,M, s) := {C ⊂ S
n−1 : |C| = M,s(C) = s}

the family of all spherical codes on S
n−1 of given cardinality M with maximal inner

product s. Note that the set C(n,M, s) can be empty, for example C(n, n + 1, s) is
empty for s < −1/n) and C(n, 2n, s) is empty for s < 0.

Given, n, M , s, and h, we are interested in upper bounds on the quantity

(2) Gh(n,M, s) := sup
C∈C(n,M,s)

{Eh(C)},

where we use the convention that supremum of the empty set is −∞. Hereafter, we shall
consider the class AM([−1, 1]) of potentials h, which are absolutely monotone in [−1, 1];

that is, extended real-valued functions h : [−1, 1] → (0,+∞] such that h(k)(t) ≥ 0 for
every t ∈ [−1, 1) and every integer k ≥ 0, where h(1) := limt→1− h(t). Among the most
prominent absolutely monotone potentials we list

h(t) = [2(1 − t)]1−n/2, Newton potential,

h(t) = [2(1 − t)]−α/2, α > 0, Riesz potential,

h(t) = e−α(1−t), Gaussian potential,

h(t) = − log[2(1− t)], Logarithmic potential.

Many important potential interactions tend to infinity when t tends to 1−. Therefore,
for obtaining finite upper energy bounds, it is necessary to impose restrictions on the
separation s since as s tends to 1− the energy of the code tends to infinity.

One natural restriction is to consider upper energy bounds for codes that minimize
h-energy for specified or general h; such upper bounds on the minimal energy for Riesz
(0 < α < 2) and logarithmic potentials on S

2 have been considered by Wagner in [34].

Another restriction leads to the class of spherical τ -designs. Energy bounds for the
Coulomb energy of spherical designs on S

2 were considered by Hesse and Leopardi [19]
(see also [18]). Recently, more general results (including lower and upper bounds) for
Riesz and logarithmic energy of spherical designs with relatively small cardinalities were
obtained by Grabner and Stepanyuk [17] (see also [32]). Universal upper and lower
energy bounds for spherical designs were obtained by the present authors for all ab-
solutely monotone potentials in [6]. In all these cases the spherical designs considered
are well-separated (the asymptotic existence of such designs was proved by Bondarenko-
Radchenko-Viazovska [4]). We also remark that Leopardi [21] examined bounds on the
normalized Riesz energy for a class of spherical codes that is both well-separated and
asymptotically (as M → ∞) equidistributed.

In this paper we consider yet another possibility – spherical codes (not necessarily
spherical designs of large strength) with prescribed cardinality and maximal inner product
(equivalently, minimum distance or separation). We derive a general linear programming
approach in the spirit of Delsarte-Yudin for obtaining upper bounds on Gh(n,M, s) along
with conditions under which these bounds are sharp (see Theorem 3.2). The effectiveness
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of these bounds relies on the construction of suitable upper bounding polynomials that
we show to exist for all potentials from AM([−1, 1]). We then test our estimates on
some relevant codes.

Recently, we developed [6, 7, 9, 10, 11] linear programming techniques for obtaining
universal lower bounds for energy of spherical codes of different classes1. With the addi-
tion of the upper bounds from this paper we establish an ”energy strip” where all energies
of codes from C(n,M, s) belong.

The paper is organized as follows. In Section 2 we present a general linear programming
upper bound on Gh(n,M, s), see Theorem 2.2. In Section 3, with the help of Levenshtein-
type polynomials, we construct ‘feasible’ polynomials that provide the energy bound for
absolutely monotone potentials. The main result is Theorem 3.2 where a new universal
upper bound for Gh(n,M, s) is asserted. The bound is universal in the sense that it
is a linear combination with positive weights of the values of the potential function on
a collection of nodes, where both weights and nodes are independent of the potential
function. Theorem 3.10 provides a necessary condition for optimality of the bound from
Theorem 3.2. Examples and further discussions are provided in Section 4.

2. Linear programming for upper bounds for Gh(n,M, s)

Let P
(n)
i (t), i = 0, 1, . . ., be the Gegenbauer polynomials normalized by P

(n)
i (1) = 1,

which satisfy the following three-term recurrence relation

(i+ n− 2)P
(n)
i+1(t) = (2i+ n− 2) t P

(n)
i (t)− i P

(n)
i−1(t) for i ≥ 1,

where P
(n)
0 (t) := 1 and P

(n)
1 (t) := t. In standard Jacobi polynomial notation (see [33,

Chapter 4]), we have that

(3) P
(n)
i (t) =

P
((n−3)/2,(n−3)/2)
i (t)

P
((n−3)/2,(n−3)/2)
i (1)

.

If f is a continuous function in [−1, 1], then f can be uniquely expanded in terms of
the Gegenbauer polynomials as

(4) f(t) =
∞
∑

i=0

fiP
(n)
i (t),

where the convergence is in L2([−1, 1]) and the coefficients fi are given by

(5) fi = γn

∫ 1

−1
f(t)P

(n)
i (t)(1 − t2)(n−3)/2 dt

where

γn = 1/

∫ 1

−1

[

P
(n)
i (t)

]2
(1− t2)(n−3)/2 dt =

Γ(n/2)√
πΓ((n− 1)/2)

1Similar results for codes in Hamming spaces are obtained in [8, 10, 12].
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is a normalizing constant. If the coefficients fi are eventually all of the same sign, then
it is a classical result of Schoenberg [29] that the series on the right-hand side of (4)
converges uniformly and absolutely to f .

Definition 2.1. For fixed n ≥ 2, s ∈ [−1, 1), and given h, denote by Un,s
h the feasible

set of functions f ∈ C([−1, 1]); that is, the functions satisfying

(F1) f(t) ≥ h(t) for every t ∈ [−1, s] and

(F2) the coefficients in the Gegenbauer expansion (4) satisfy fi ≤ 0 for i = 1, 2, 3, . . ..

For a spherical code C ⊂ S
n−1 and a postive integer i, the i-th moment of C is defined

by

(6) Mi(C) :=
∑

x,y∈C

P
(n)
i (〈x, y〉).

The well known positive definiteness of the Gegenbauer polynomials implies thatMi(C) ≥
0 for every nonnegative integer i. If Mi(C) = 0 for every i ∈ {1, 2, . . . , τ}, then C is called
a spherical τ -design. Spherical designs were introduced in 1977 by Delsarte, Goethals
and Seidel in their seminal paper [15] with the following equivalent definition (among
others): C is a spherical τ -design if and only if

∫

Sn−1

p(x)dσn(x) =
1

|C|
∑

x∈C

p(x)

holds for all polynomials p(x) = p(x1, x2, . . . , xn) of total degree at most τ where σn
denotes the normalized (n− 1)-dimensional Hausdorff measure. The largest τ such that
C is a spherical τ -design is called the strength of C.

The following Delsarte-Yudin type linear programming theorem is a key tool for ob-
taining the upper bounds for the quantity Gh(n,M, s) given in Theorem 3.2.

Theorem 2.2. Let n ≥ 2, M ≥ 2 be positive integers, s ∈ [−1, 1), and h : [−1, 1) → R.
If f ∈ Un,s

h and C ∈ C(n,M, s), then

(7) Eh(C) ≤ Gh(n,M, s) ≤ M(f0M − f(1)),

with equality holding throughout (7) if and only if both conditions

(a) f(t) = h(t) for every t ∈ {〈x, y〉 : x 6= y ∈ C};
(b) fiMi(C) = 0 for all i = 1, 2, 3, . . .

hold.

Proof. Although this result can be deduced from the lower bound for energy given in [35]
(see also [5, Theorem 5.5.1]), we include a direct proof here for the convenience of the
reader.
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Let C ⊂ S
n−1 be a spherical code. Since f(t) ∈ Un,s

h , its Gegenbauer expansion

f(t) =
∑∞

i=0 fiP
(n)
i (t) converges uniformly on [−1, 1] to f . Thus,

(8) f(1)|C|+
∑

x∈C

∑

y∈C\{x}

f(〈x, y〉) = f0|C|2 +
∑

i>0

fiMi(C),

where the right-hand side of (8) is obtained using (6) and interchanging the order of
summation.

If C ∈ C(n,M, s) and f ∈ Un,s
h , then the condition (F1) together with s(C) = s imply

that the left hand side of (8) is at least Mf(1) + Eh(C). Furthermore, (F2) and the
inequalities Mi(C) ≥ 0 for i = 1, 2, . . . ,deg(f) yield that the right-hand side is at most
M2f0. Therefore

(9) Eh(C) ≤ Ef (C) ≤ M(f0M − f(1)).

Since these estimations are valid for every code C ∈ C(n,M, s) we conclude that the
desired bound follows.

Note that Eh(C) = Ef (C) if and only if condition (a) is satisfied, while it follows from
(8) that Ef (C) = M(f0M−f(1)) if and only if condition (b) is satisfied. Hence, equality
holds in (9) if and only if both (a) and (b) are satisfied. �

In the next section, we will construct polynomials in Un,s
h for any fixed n, s, and

h ∈ AM([−1, 1]) that can be used in conjunction with Theorem 2.2 to provide explicit
upper bounds for Gh(n,M, s), where M is chosen in accordance with s and n.

3. Construction of feasible polynomials for Theorem 2.2

In this section we develop methods for constructing polynomials in Un,s
h for a given

potential h and parameters n and s; we shall refer to such polynomials as feasible poly-
nomials. These methods rely on the Levenshtein framework (reviewed below) used to
obtain universal bounds on the cardinality of maximal codes with given separation dis-
tance and universal lower bounds on potential energy of codes of given cardinality (see
[24], [7], and [11]).

3.1. Levenshtein framework parameters and ULB spaces. We first recall the def-
inition of the Levenshtein function bounding the quantity

A(n, s) := max{|C| : C ⊂ S
n−1, 〈x, y〉 ≤ s, x 6= y ∈ C}

that denotes the maximal possible cardinality of a spherical code on S
n−1 of prescribed

maximal inner product s.

For a, b ∈ {0, 1} and i ≥ 1, let ta,bi denote the greatest zero of the (adjacent) Jacobi

polynomial P
(a+n−3

2
,b+n−3

2
)

i (t) and also define t1,10 = −1. For m ∈ N, let Im denote the
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interval

Im :=







[

t1,1k−1, t
1,0
k

]

, if m = 2k − 1,
[

t1,0k , t1,1k

]

, if m = 2k,
(10)

The collection of intervals {Im}∞m=1 is well defined from the interlacing properties t1,1k−1 <

t1,0k < t1,1k , see [24, Lemmas 5.29, 5.30]. Note also that it partitions I = [−1, 1) into
countably many subintervals with non-overlapping interiors.

For every s ∈ Im, using linear programming bounds for special polynomials f
(n,s)
m (t)

of degree m (see [24, Equations (5.81) and (5.82)]), Levenshtein proved that (see [24,
Equation (6.12)])
(11)

A(n, s) ≤























L2k−1(n, s) :=

(

k + n− 3

k − 1

)

[

2k + n− 3

n− 1
−

P
(n)
k−1(s)− P

(n)
k (s)

(1− s)P
(n)
k (s)

]

, if s ∈ I2k−1,

L2k(n, s) :=

(

k + n− 2

k

)

[

2k + n− 1

n− 1
−

(1 + s)(P
(n)
k (s)− P

(n)
k+1(s))

(1− s)(P
(n)
k (s) + P

(n)
k+1(s))

]

, if s ∈ I2k.

For every fixed dimension n, each bound Lm(n, s) is smooth with respect to s. The
Levenshtein function is defined as

(12) L(n, s) :=

{

L2k−1(n, s), if s ∈ I2k−1,

L2k(n, s), if s ∈ I2k.

It is a function that is continuous and strictly increasing in s, whose values at the end-
points of the intervals Im coincide with the Delsarte-Goethals-Seidel numbers D(n,m)
(see [15] for the definition).

Next, we introduce the notion of a 1/N -quadrature rule over subspaces consisting of
polynomials (see [7]). The classical example of 1/N -quadrature rule is given by Leven-
shtein’s Theorem 5.39 in [24], where a Gauss-Jacobi quadrature formula is defined (see
[23] for the origin of this result).

Definition 3.1. For fixed dimension n ≥ 2 and a real number N ≥ 2, a finite sequence
of ordered pairs {(αi, ρi)}ki=1, where α1 < α2 < · · · < αk are nodes (−1 ≤ α1 and αk < 1)
and ρ1, ρ2, . . . , ρk are positive weights, forms a 1/N -quadrature rule, N > 0, that is exact
for the subspace Λ ⊂ C([−1, 1]) if the quadrature formula

(13) f0 = γn

∫ 1

−1
f(t)(1− t2)(n−3)/2dt =

f(1)

N
+

k
∑

i=1

ρif(αi),

holds true for all polynomials f ∈ Λ.

In our terminology, given a code C ∈ C(n,M, s), we associate (uniquely) m := m(n, s)
such that s ∈ Im. Then (13) is a 1/Lm(n, s)-quadrature rule exact for the subspace of
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real polynomials of degree at most m. Hereafter Lm(n, s), m = 1, 2, . . ., will denote the
Levenshtein function (12) on the interval Im as defined in (10).

The nodes in the Levenshtein’s 1/Lm(n, s)-quadrature rule are the roots of certain

polynomial f
(n,s)
m (t) of degree m (see [24, Theorem 5.39]), called the Levenshtein polyno-

mial, that is used for obtaining the bound (11). The explicit form of f
(n,s)
m (t) (see [23,

Eqs. (1.35-36)] or [24, Eq. (3.82)]) is given by

(14) f (n,s)
m (t) =

∏

αi∈T

(t− αi),

where T is the multiset

(15) T =

{ {α0, α0, α1, α1, . . . , αk−2, αk−2, αk−1} if m = 2k − 1

{α0 = −1, α1, α1, α2, α2, . . . , αk−1, αk−1, αk} if m = 2k

of cardinality m. The reader may easily verify that for both even and odd m that

(16) f (n,s)
m (t) ≤ 0, t ∈ [−1, s].

The numbers α0, α1, . . . , αk−1+ε are the (simple) roots of the equation

(17) (t+ 1)ε
(

Qε
k(t)Q

ε
k−1(αk−1+ε)−Qε

k(αk−1+ε)Q
ε
k−1(t)

)

= 0,

where Qε
i (t) = P

(n−1

2
,ε+n−3

2
)

i (t) are Jacobi polynomials as above, ε ∈ {0, 1} (i.e., (a, b) =
(0, ε)), and m = 2k−1+ ε. Hereafter we use ε ∈ {0, 1} and m = 2k−1+ ε to distinguish
between the cases of odd and even m. Note that s = αk−1+ε and that −1 < αi < αi+1

for each i apart from the case α0 = −1 which happens if and only if m = 2k. The
Levenshtein quadrature now can be stated as

(18) f0 =
f(1)

Lm(n, s)
+

k−1+ε
∑

i=0

ρif(αi),

holding true for every real polynomial f(t) of degree at most m = 2k − 1 + ε.

Spaces of polynomials where a 1/N -quadrature rule is valid for some N ’s (not necessar-
ily integer) and where a solution of a corresponding linear programming problem (about
lower energy bounds) exists were called ULB-spaces in [11] (ULB stands for Universal
lower bound(s)). Theorem 3.2 below shows that in the ULB-space Pm universal upper
bounds (UUB) are also featuring.

3.2. Construction of UUB feasible polynomials. We use the Levenshtein polyno-
mials to construct feasible polynomials. Let n, M , and s be such that the set C(n,M, s)
is nonempty (or conjectured to be nonempty). Let m = m(n, s) be as defined in the
previous subsection and let h ∈ AM([−1, 1]). We consider the polynomial

(19) f(t) := −λf (n,s)
m (t) + gT (t) =

m
∑

i=0

fiP
(n)
i (t),
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where λ > 0 is a parameter (to be determined later) and

gT (t) := Hh,T (t)

is the Hermite interpolation polynomial to the function h(t) that agrees with h(t) exactly
in the points of a multiset T (counted with their multiplicities); that is, gT interpolates
h and h′ agree at repeated nodes.

Note that by the definition of Hermite interpolation the degree of gT (t) is at most
|T |−1 = m−1. Thus, deg(f) = m and this, in particular, implies that we need to verify
non-positivity of the Gegenbauer coefficients fi for 1 ≤ i ≤ m only. Let

(20) f (n,s)
m (t) =

m
∑

i=0

ℓiP
(n)
i (t), gT (t) =

deg(gT )
∑

i=0

giP
(n)
i (t),

be the Gegenbauer expansions of f
(n,s)
m (t) and gT (t), respectively. It is important for the

applications below that ℓi > 0 for every i = 0, 1, . . . ,m in the Gegenbauer expansion of
the Levenshtein polynomials (see, for example, [24, Theorem 5.42]).

Theorem 3.2. Let n ≥ 2, M ≥ 2 be an integer, s ∈ [−1, 1), and h(t) ∈ AM([−1, 1]).
For any large enough λ > 0, we have that the polynomial f(t) defined as in (19) belongs
to the class Un,s

h . In particular, if

(21) λ = max

{

gi
ℓi

: 1 ≤ i ≤ deg(gT )

}

,

the corresponding polynomial f
(h)
m (t) ∈ Un,s

h and

(22) Gh(n,M, s) ≤ M

(

M

Lm(n, s)
− 1

)

f (h)
m (1) +M2

k−1+ε
∑

i=0

ρih(αi).

A code C ∈ C(n,M, s) attains the bound (22) if only if all inner products of C are in T

and (f
(h)
m )iMi(C) = 0 for every i ≥ 1.

Remark 3.3. Since the nodes in the upper bound on the energy Gh(n,M, s) in the
right hand side of (22) do not depend on the potential h, we shall refer to this bound

hereafter as universal upper bound or UUB and to the polynomials f
(h)
m (t) as UUB feasible

polynomials.

Proof. The Hermite interpolation formula with remainder (e.g., see [14]) states that there
is some ξ ∈ [−1, s] such that

h(t) − gT (t) = h(m)(ξ)
∏

αi∈T

(t− αi) = h(m)(ξ)f (n,s)
m (t).

Using absolute monotonicity of h and (16) then shows gT (t) ≥ h(t) for t ∈ [−1, s] and
hence it follows from (19) (again using (16)) that f(t) ≥ h(t) for every t ∈ [−1, s]; i.e.
(F1) is satisfied (whatever λ > 0 is).
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For (F2), observe that (19) implies that the coefficients fi, i = 1, 2, . . . ,m, in the
Gegenbauer expansion of f(t) are in fact the linear combinations −λℓi + gi. Since ℓi > 0
for every i it follows that large enough λ > 0 will ensure fi ≤ 0 for every i = 1, 2, . . . ,m.
Obviously, fi = −λℓi for deg(gT ) + 1 ≤ i ≤ m. Therefore, (F2) is satisfied (for large
enough λ) and the proof of f(t) ∈ Un,s

h is completed.

Since f0M − f(1) is a linear function of λ, the conditions −λℓi + gi ≤ 0 for i =
1, 2, . . . ,deg(gT ) imply that the smallest value of λ which works is as in (21).

Equality in (22) implies equality in Theorem 2.2, therefore, such equality holds only if
all inner products of distinct points in C are in T and fiMi(C) = 0 for every i ≥ 1.

We now compute the bound produced by f(t). We first note that Lm(n, s) ≥ M
follows from (11). Indeed, if the converse M > Lm(n, s) is true, then the monotonicity
of the Levenshtien function implies s(C) > s, which contradicts to C ∈ C(n,M, s).

Expressing f0 by the Levenshtein’s 1/Lm(n, s)-quadrature rule we consecutively obtain

f0M − f(1) = M

(

f(1)

Lm(n, s)
+

k−1+ε
∑

i=0

ρif(αi)

)

− f(1)

=

(

M

Lm(n, s)
− 1

)

f(1) +M
k−1+ε
∑

i=0

ρif(αi)

=

(

M

Lm(n, s)
− 1

)

f(1) +M

k−1+ε
∑

i=0

ρih(αi)

(the last equality follows by using the interpolation conditions f(αi) = h(αi), i =
0, 1, . . . , k − 1 + ε) whence we get (22). The dependence of (22) on λ comes from f(1)
only. Since f(1) is linear and increasing with respect to λ, the best bound is obtained
when λ is chosen as in (21). �

Remark 3.4. We note that that adding an additional interpolation condition, say by
adding a node −1 or s to the multiset T in (15), does not improve the UUB. Indeed,
suppose m = 2k − 1 and we consider T ′ = {−1, α0, α0, . . . , αk−1}. In this case the
interpolation polynomial gT ′(t) = Hh,T ′(t) is of degree 2k − 1 and the interpolation
conditions imply that

gT ′(t)− gT (t) = µf
(n,s)
2k−1(t),

where µ is a real number. Then for any polynomial

f(t) = −λ′f
(n,s)
2k−1(t) + gT ′(t) = (−λ′ + µ)f

(n,s)
2k−1(t) + gT (t)

and this representation says that, in the optimal case, −λ′ + µ = −λ, where λ is chosen
as in (21). Thus we produce the UUB again. The case m = 2k can be dealt analogously.

We next consider the optimality of our bound in a class of feasible polynomials.
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Proposition 3.5. Any polynomial F (t) ∈ Un,s
h of degree at most m satisfying F (1) ≤

f
(h)
m (1), where f

(h)
m is the polynomial from Theorem 3.2, gives an upper bound by Theorem

2.2 which is not better than (22).

Proof. Assume that F (t) =
∑deg(F )

i=0 FiP
(n)
i (t) ∈ Un,s

h , where deg(F ) ≤ m and F (1) ≤
f
(h)
m (1). As in the proof of Theorem 3.2, we see that

F0M − F (1) = F (1)

(

M

Lm(n, s)
− 1

)

+M
k−1+ε
∑

i=0

ρiF (αi).

Since F (1) ≤ f
(h)
m (1), M ≤ Lm(n, s), ρi > 0, and F (αi) ≥ h(αi), we conclude that the

inequality F0M − F (1) ≥ (f
(h)
m )0 M − f

(h)
m (1) follows; i.e., the bound from F (t) is not

better than (22). �

Remark 3.6. Our numerical experiments suggest that the maximum for the parameter
λ in Theorem 3.2 is always attained at i = 1. This naturally connects our results to the
concept of harmonic index t designs defined by Bannai, Okuda, and Tagami [2].

3.3. Distance distributions of attaining codes. We consider the combinatorial prop-
erties of codes which would attain our UUB.

Definition 3.7. Let C ⊂ S
n−1 be a code with s(C) = s. For fixed x ∈ C and t ∈ [−1, s],

denote by

At(x) := |{y ∈ C : 〈x, y〉 = t}|.
The system of nonnegative integers (At(x) : t ∈ [−1, s]) is called the distance distribution
of C with respect to x.

Assume that C ⊂ S
n−1 with s(C) = s and |C| = M attains the bound (22). Then from

Theorem 2.2(a), f
(h)
m (t) coincides with h(t) on the set {〈x, y〉 : x 6= y ∈ C}. Moreover,

from Theorem 2.2(b), we have (f
(h)
m )iMi(C) = 0 for every i ∈ {1, 2, . . . ,m}.

Theorem 3.8. In the context of Theorem 2.2, if a code C ⊂ C(n,M, s) attains the
bound (22) then its distance distribution with respect to x ∈ C satisfies the system of
linear equations

(23) 1 +

k−1+ε
∑

j=0

Aαj
(x)P

(n)
i (αj) = 0 ⇐⇒ Mi(C) = 0.

Proof. The definition (6) of the moments can be rewritten as

(24) Mi(C) := M +
∑

x∈C

k−1+ε
∑

j=0

Aαj
(x)P

(n)
i (αj).
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Since Mi(C) = 0 if and only if
∑

x∈C v(x) = 0 for all spherical harmonics v ∈ Harm(i),
we may use the addition formula [20] to show that the double sum in (24) splits into |C|
sums each one equal to −1. Indeed, for fixed y ∈ C, we consecutively obtain

∑

x∈C

P
(n)
i (〈x, y〉) =

∑

x∈C

1

ri

ri
∑

j=1

vij(x)vij(y) =
1

ri

ri
∑

j=1

vij(y)
∑

x∈C

vij(x) = 0,

where ri = dimHarm(i) and {vij(x) : j = 1, 2 . . . , ri} is an orthonormal basis of Harm(i).
Thus

1 +
k−1+ε
∑

j=0

Aαj
(x)P

(n)
i (αj) =

∑

y∈C

P
(n)
i (〈x, y〉) = 0,

which completes the proof. �

If Mi(C) = 0 for each i ∈ {2, 3, . . . ,m}, we obtain m− 1 = 2k− 2+ ε linear equations
with k + ε unknowns. Of course, we add the trivial equation

(25) 1 +
k−1+ε
∑

j=0

Aαj
(x) = M.

On the other hand, we apply the 1/Lm(n, s)-quadrature for the polynomials P
(n)
i (t),

i = 2, 3, . . . ,m to see that

1 + Lm(n, s)

k−1+ε
∑

j=0

ρjP
(n)
i (αj) = 0.

Looking at this as a system with unknowns Lm(n, s)ρj , j = 0, 1, . . . , k− 1+ ε, we obtain
again (23) (written for i = 2, 3, . . . ,m). It is easy to see that we have at least as many
equations as unknowns for k ≥ 2. If the solution is unique, then

Aαj
(x) = ρjLm(n, s), j = 0, 1, . . . , k − 1 + ε

(in particular, it follows that the distance distribution does not depend on x), which
leads to M = Lm(n, s) by the trivial equations (25) and

Lm(n, s) = 1 + Lm(n, s)

k−1+ε
∑

j=0

ρj

(this is the Levenshtein 1/Lm(n, s)-quadrature for f(t) = 1).

These observations are summarized in the next theorem.

Theorem 3.9. In the context of Theorem 2.2, if a code C ∈ C(n,M, s) with Mi(C) = 0
for each i ∈ {2, 3, . . . ,m} attains (22) then k = 1 or the system (23) has more than one
solution.

An example of attaining codes with k = 1 is given in Section 4.1.
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3.4. Test functions. Next we derive a sufficient condition for optimality of the UUB in
Theorem 3.2. For s ∈ Im and positive integer j, define test functions

R
(n)
j (s) :=

1

Lm(n, s)
+

k−1+ε
∑

i=0

ρiP
(n)
j (αi),

where the parameters (ρi, αi)
k−1+ε
i=0 come from the Levenshtein 1/Lm(n, s)-quadrature.

Theorem 3.10. In the context of Theorem 3.2, if R
(n)
j (s) ≥ 0 for every j ≥ 2k+ ε, then

the bound (22) cannot be improved by using a polynomial F ∈ Un,s
h such that F (1) ≤

f
(h)
m (1).

Proof. Suppose that R
(n)
j (s) ≥ 0 for every positive integer j. Write F (t) ∈ Un,s

h as

(26) F (t) = u(t) +
∑

j≥2k+ε

FjP
(n)
j (t),

where u(t) is a polynomial of degree at most 2k−1+ε with zeroth Gegenbauer coefficient
u0. It is clear that F (αi) ≤ h(αi) for i = 0, 1, . . . , k − 1 + ε, Fj ≤ 0 for every j ≥ 2k + ε,

and F0 = u0. Assume also that F (1) ≤ f
(h)
m (1).

Using the Levenshtein 1/Lm(n, s)-quadrature for u(t) and the above relations we con-
secutively obtain

MF0 − F (1) = Mu0 − u(1)−
∑

j≥2k+ε

Fj

= M

(

u(1)

Lm(n, s)
+

k−1+ε
∑

i=0

ρiu(αi)

)

− u(1)−
∑

j≥2k+ε

Fj

= u(1)

(

M

Lm(n, s)
− 1

)

+M

k−1+ε
∑

i=0

ρiu(αi)−
∑

j≥2k+ε

Fj

=



F (1)−
∑

j≥2k+ε

Fj





(

M

Lm(n, s)
− 1

)

+M

k−1+ε
∑

i=0

ρi



F (αi)−
∑

j≥2k+ε

FjP
(n)
j (αi)



−
∑

j≥2k+ε

Fj

= F (1)

(

M

Lm(n, s)
− 1

)

+M

k−1+ε
∑

i=0

ρiF (αi)−M
∑

j≥2k+ε

FjR
(n)
j (s)

≥ f (h)
m (1)

(

M

Lm(n, s)
− 1

)

+M

k−1+ε
∑

i=0

ρih(αi) = UUB.
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Hence the bound produced by F (t) is not better than (22). �

3.5. The energy strip of C(n,M, s). Lower bounds for Gh(n,M, s) can be derived, of
course, from constructions of good codes (in a sense of having large energies). We present
here an analytic approach defining a strip where the energies of all codes from C(n,M, s)
lie and, in particular, a lower bound on Gh(n,M, s). More precisely, we combine the
upper bound from Theorem 3.2 and the universal lower bound from [7] to obtain a strip
where all possible energies of codes from C(n,M, s) belong.

To explain the lower bounds we start with setting with M = Lm(n, r) for a unique
r ∈ Im, where m = 2k − 1 + ε, ε ∈ {0, 1}, as above (the uniqueness follows from the
strict monotonicity of the Levenshtein bounds). Note that r ≤ s as equality holds if
and only if there exists a universally optimal code of cardinality M = Lm(n, s) (see also

the comment after the next theorem). Let the Levenshtein polynomial f
(n,r)
m (t) have

roots α′
0 < α′

1 < · · · < α′
k−1+ε = r with corresponding weights ρ′0, ρ

′
1, . . . , ρ

′
k−1+ε in the

Levenshtein 1/M -quadrature rule.

Theorem 3.11. The energy of any code C ∈ C(n,M, s) is bounded from below and above
by

(27) M2
k−1+ε
∑

i=0

ρ′ih(α
′
i) ≤ Eh(C) ≤ M

(

M

Lm(n, s)
− 1

)

f(1) +M2
k−1+ε
∑

i=0

ρih(αi),

It is clear from the above that M = Lm(n, s) implies the coincidence of the upper and
lower bounds in (27). In this case the corresponding codes are sharp configurations (also
universally optimal codes; see [2, 13, 24]) which means that they attain simultaneously
the Levenshtein bound, the ULB [7] and the UUB from Theorem 3.2 (as the last two
coincide and the strip (27) becomes a point). Two prominent examples are given by the
simplex code C ∈ C(n, n+1,−1/n) and the cross polytope (also known as bi-orthogonal
code) C ∈ C(n, 2n, 0).

4. Examples

4.1. Orthonormal basis codes and the UUB. First, we now provide an example
of a code where the UUB is attained. Moreover, we obtain more than one optimal
polynomials.

Suppose C ⊂ S
n−1 consists of orthonormal basis vectors in R

n and select s = 0. Then
M = n and

Eh(C) = n(n− 1)h(0).

Clearly, the constant polynomial f(t) := h(0) provides one solution to the LP problem.
We now determine a second one.

In our construction, we have m = 2,

f
(n,0)
2 (t) = t(t+ 1) =

1

n
P

(n)
0 (t) + P1(t) +

n− 1

n
P

(n)
2 (t),
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T = L = {−1, 0}, and

gT (t) = (h(0) − h(−1))t + h(0) = h(0)P
(n)
0 (t) + (h(0) − h(−1))P

(n)
1 (t).

The choice λ = h(0) − h(−1) > 0 yields

f(t) = h(0) − (h(0) − h(−1))t2

=
(n− 1)h(0) + h(−1)

n
P

(n)
0 (t)− (n− 1)(h(0) − h(−1))

n
P

(n)
2 (t) ∈ Uh

n,0.

Our bound can be computed directly by

n(nf0 − f(1)) = n(n− 1)f(0) = n(n− 1)h(0) = Eh(C).

Since k = 1, ε = 1, we find the quadrature nodes and weights to be (α0, ρ0) = (−1, 1/2n),
(α1, ρ1) = (0, (n − 1)/n). Computing the Levenshtein function L2(n, 0) = 2n (note that
L3(n, 0) = 2n as well), the right-hand side of (22) becomes

n
( n

2n
− 1
)

h(−1) + n2

(

h(−1)

2n
+

(n− 1)h(0)

n

)

= n(n− 1)h(0) = Eh(C).

4.2. Bounds for (n,M) = (n, 2n + 1) codes. It is natural to consider upper bounds
for parameters where good codes are known. Here we show how our bound behaves for
spherical codes Cn ⊂ S

n−1 with M = 2n + 1 points constructed in [16]. These codes are
conjectured to be optimal (see [3, Section 3.3]) but this is proved in dimensions 3 [30]
and 4 [36] only.

The maximal inner product of Cn is equal to the unique root s ∈ (0, 1/n) of the
equation

n(n− 2)2X3 − n2X2 − nX + 1 = 0.

These parameters are in the region of the third Levenshtein bound; i.e., we use m = 3.

The ULB [7] with parameters coming from L3(n, r) = M as in Section 3.5 is

(28) Rh(n, 2n + 1) := M2
(

ρ′0h(α
′
0) + ρ′1h(r)

)

, r = α′
1.

To obtain the UUB in this case we consider the corresponding Levenshtein polynomial

f
(n,s)
3 (t) with zeros α0 (double) and α1 = s (simple). Then T = {α0, α0, α1} and g(t) :=
Hh,T (t) is the second degree interpolant to h in the nodes α0 (doubly) and α1. The
polynomial from (19) is

f(t) = −λf
(n,s)
3 (t) + g(t) =

3
∑

i=0

fiP
(n)
i (t)

where λ > 0 has to be chosen to ensure f1 ≤ 0 and f2 ≤ 0 (f3 < 0 follows for every
λ > 0).

Here are the numerical results for n = 5, M = 2n + 1 = 11 and s ≈ 0.13285 with the
Newton potential h(t) = 1/(2 − 2t)(n−2)/2.
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The lower bound from (27) (specified in (28)) is

Rh(5, 11) = 112(ρ′0h(α
′
0) + ρ′1h(α

′
1)) ≈ 37.484.

For the construction of the upper bound we find f
(5,s)
3 (t) with roots (α0, α1 = s) ≈

(−0.68069, 0.13285) and

g(t) = H(h;α0, α0, α1) ≈ 0.23835t2 + 0.46931t + 0.37128.

Then we search for λ to satisfy the conditions fi ≤ 0 for i = 1, 2, 3. The computations
show that all λ ≥ 0.661 work as best the upper bound ≈ 41.906 from Theorem 3.2 (also
the upper bound in (27)) is obtained with the smallest possible λ = g1/ℓ1 ≈ 0.661. For
the representation of the upper bound in (27) we compute L3(5, s) ≈ 13.3014 and

(29) Gh(n,M, s) ≤ 11

(

11

L3(5, s)
− 1

)

f(1) + 112 (ρ0h(α0) + ρ1h(s)) .

The Newton energy of the code C5 is

Eh(C5) = (3n2 − n)h(s) + (n2 − n)h(a) + 2nh(b) + 2nh(c) ≈ 39.0225,

where a ≈ −0.22793, b ≈ −0.553428, and c ≈ −0.89904. The best known (for the
minimum Newton energy problem) code of 11 points on S

4 has energy ≈ 38.0544 [3].

Table 1. ULB and UUB for Newton energy of kissing numbers in di-
mensions 2− 10

n Kissing numbers m Lm(n, 1/2) ULB UUB
bounds [16, 1, 26, 25]

2 6 5 6 -10.75... -10.75...
3 12 5 13.2 98.3 101.3
4 24 5 26 333 344
5 40, . . . , 44 6 48 765., . . . , 947. 840., . . . , 989.
6 72, . . . , 78 6 84. 2116., . . . , 2530. 2218., . . . , 2594.
7 126, . . . , 134 6 142. 5552., . . . , 6376. 5793., . . . , 6514.
8 240 7 240 17721. 17721.
9 306, . . . , 363 7 384. 23149., . . . , 34231. 27443., . . . , 35616.
10 500, . . . , 554 7 605 53059., . . . , 67004. 61467., . . . , 71606.

4.3. Upper and lower bounds on energy of kissing configurations. We now con-
sider upper bounds on the Newtonian energies of kissing configurations. For such config-
urations s = 1/2. Depending on the dimension n we have various known bounds in the
literature for the corresponding kissing number, i.e. the maximum possible cardinality of
a code that has a separation parameter s = 1/2. The exact kissing numbers are known
for dimensions n = 1, 2, 3, 4, 8, 24 (see [22, 27, 28, 31]).
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Table 1 summarizes our results for n = 2 − 10. We list the dimension, known kissing
number intervals, Levenshtein interval m and Levenshtein function value Lm(n, 1/2) and
the corresponding ULB and UUB intervals. Numbers are rounded to integer parts,
rounding being indicated with the decimal point.

4.4. Conclusion and future work. The conditions for attaining the bound of Theorem
3.2 lead to the usual suspects – the universally optimal configurations defined in [13].
From a broader viewpoint, our upper bounds help provide a range of possible energies (or
energy levels) for ‘good’ spherical codes. Thereby, we obtain restrictions on the structure
of codes that can be useful for classification (or nonexistence) purposes. We plan to
explore this idea in a future paper that relates to kissing configurations.

Several additional related questions arise quite naturally. For example, whether the
optimality condition f1 = 0 (see Remark 3.6) is true for every absolutely monotone
potential function h. A second question is whether effective ‘next level’ upper bounds
can be developed in a manner similar to that derived for lower bounds by the present
authors in [11] (see also [13]).

Acknowledgments. The authors thank the anonymous referees for helpful sugges-
tions and comments.
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