Designs, Codes and Cryptography (2020) 88:1401-1445
https://doi.org/10.1007/510623-020-00756-5

®

Check for
updates

Revisiting Gilbert’s known-key distinguisher
Lorenzo Grassi'*3 - Christian Rechberger'

Received: 8 October 2018 / Revised: 30 March 2020 / Accepted: 31 March 2020 / Published online: 4 May 2020
© The Author(s) 2020

Abstract

Known-key distinguishers have been introduced by Knudsen and Rijmen in 2007 to better
understand the security of block ciphers in situations where the key can not be considered to
be secret, i.e. the “thing between secret-key model and hash function use-cases”. Trying to
find a rigorous model to fit this intuition is still ongoing. The most recent advance by Gilbert
(Asiacrypt 2014) describes a new model that—even if it is well justified—seemingly does
not match this intuition. AES is often considered as a target of such analyses, simply because
AES or its building blocks are used in many settings that go beyond classical encryption.
Consider AES-128. Results in the secret-key model cover up to 6 rounds, while results in
the chosen-key model reach up to 9 rounds. Gilbert however showed a result in the known-
key model that goes even further, covering 10 rounds. Does it mean that the use cases
corresponding to the cryptanalysis of hash-function use-cases are inherently less efficient, or
is it rather an artifact of the new model? In this paper we give strong evidence for the latter.
In Gilbert’s work, two types of arguments or rather conjectures are put forward suggesting
that the new model is meaningful. Firstly that the number of “extension rounds” due to the
new model is limited to two. And secondly that only a distinguisher that exploits the uniform
distribution property can be extended in such way. We disprove both conjectures and arrive
at the following results: First, we are also able to show that more than two extension rounds
are possible. As a result of this, we describe the first known-key distinguishers on 12 rounds
of AES that fit into Gilbert’s model. The second conjecture is disproven by showing that the
technique proposed by Gilbert can also be used to extend a known-key distinguisher based on
another property: truncated differentials. A potential conclusion of this work would be that
the counter-intuitive gap between Gilbert’s known-key model and the chosen-key model is
wider than initially thought. We however conclude that results in Gilbert’s model are due to
an artifact in the model. To remedy this situation, we propose a refinement of the known-key
model which restores its original intent to fit the original intuition.

Communicated by T. Iwata.

B Lorenzo Grassi
Igrassi@science.ru.nl

TAIK, Graz University of Technology, Graz, Austria
Know-Center, Graz, Austria

Digital Security Group, Radboud University, Nijmegen, The Netherlands

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-020-00756-5&domain=pdf

1402 L. Grassi, C. Rechberger

Keywords Block cipher - Permutation - AES - Known-Key Distinguisher

Mathematics Subject Classification 68P25 - 94A60

1 Introduction

Block ciphers play an important role in symmetric cryptography, providing a basic tool for
encryption. They are (probably) the most scrutinized cryptographic tools, and they are often
used as the underlying tool to construct other cryptographic algorithms, whose proofs of
security are performed under the assumption that the underlying block cipher is ideal.

The concept of known-key distinguishers was introduced by Knudsen and Rijmen in [20].
In the classical single secret-key setting, the attacker does not know the randomly generated
key and aims to recover it or to build a (secret-key) distinguisher that allows to distinguish
the cipher from a random permutation. The security model in known-key attacks is quite
different though: the attacker knows the randomly drawn key the block cipher operates with
and aims to find a structural property for the cipher under the known key—a property which
an ideal cipher (roughly speaking, a permutation drawn at random) would not have. For
completeness, we mention that a more relaxed version — called chosen-key distinguisher—
can be considered, where the adversary is assumed to have a full control over the key. This
model was introduced in [5], and has been extended to a related-key attack on the full-round
AES-256, while the best chosen-key distinguisher for AES-128 [14] currently present in the
literature covers 9 rounds out of 10. In this paper however we focus on the known-key model
and do not allow/assume related keys.

Since their introductions, known-key attacks have been a major research topic in the
symmetric-key community. Only to provide some examples besides AES, known-key dis-
tinguishers have been proposed for full PRESENT [9] (one of the most studied lightweight
block cipher proposed at CHES 2007) and for Feistel networks [29]. This is justified by the
fact that if known-key distinguishers could be considered less relevant than secret-key ones,
they anyway allow to learn something about the security margin of a cipher. For example, if it
is not possible to find distinguishers for a block cipher when the key is given, then one cannot
find a distinguisher when the key is secret. Secondly and more importantly, hash functions
can be built from block ciphers, and vice versa. For example, given a hash function, it is
always possible to set up a block cipher using the Feistel construction. Vice versa, e.g. the
Davies-Meyer construction or the Miyaguchi-Preneel construction can transform a secure
block cipher into a secure compression function. In a hash setting, block cipher security
models such as the known-key model (or the chosen-key model) make sense since in practice
the attacker has full access and control over the internal computations. Finally, an attack in
these models depicts a structural flaw of the cipher, while it should be desired to work with
a primitive that does not have any flaw, even in the most generous security model for the
attacker. A classical example is the devastating effect on the compression function security
of weak keys for a block cipher [34], which are usually considered as a minor flaw for a block
cipher if the set of these weak-keys is small. Therefore, the security notions to consider for
a block cipher will vary depending on whether this block cipher is used in a hash function
setting or not.

Despite this cumulative impact in the symmetric-key community over the last years,
known-key attacks have been known to be difficult to formalize since [1] proposed the notion
of known-key indifferentiability to capture the security of block ciphers under a known key.

@ Springer

Revisiting Gilbert’s known-key distinguisher 1403

In particular, they focus on known-key distinguishers for block ciphers based on idealized
primitives such as randomly drawn functions or permutations, that is block ciphers for which
the round function looks like an ideal primitive and where the adversary can have access
to this underlying ideal primitive. Later on, in [27] the impact of attacks in the known-key
model on hash functions is studied.

Citing Knudsen and Rijmen [20], “imagine a block cipher” for which a known-key distin-
guisher exists, “but where no efficient attacks are known in the traditional black-box model.
Should we recommend the use of such a cipher? We do not think so!”

1.1 Known-key distinguishers for AES: the state of the art

The known-key model. In the known-key model, a full access to an instance of the encryption
function associated with a known random key and its inverse is given. The purpose is to
simultaneously control the inputs and the outputs of the primitive, i.e. to achieve input-output
correlations that one could not efficiently achieve with inputs and outputs of a perfect random
permutation to which one would have an oracle access. A formal definition of a known-key
distinguisher is provided in Sect. 3, where we propose and describe in detail a generic scenario
for known-key distinguishers. We emphasize that all known-key distinguishers currently
present in the literature—including the ones presented in this paper — implicitly exploit (and
can be described in) the scenario proposed in Sect. 3.2.

Known-key distinguishers for AES. AES and related constructions served as a benchmark
for cryptanalytic techniques since the very introduction of this model by Knudsen and Rijmen
[20] with a 7-round result. Subsequently, 8-round results were obtained using truncated
differentials [17], which were later on improved in [19]. Currently, this last one—which
exploits the rebound technique [22] and the so called “multiple limited-birthday problem”—
is the best 8-round known-key distinguisher in the literature. At Asiacrypt 2014 Gilbert [16]
found a way to extend an 8-round known-key distinguisher (using a novel representation of
AES) into a more intricate 10-round distinguisher and hence presented for the first time a
known-key distinguisher for full AES-128.

All the known-key distinguishers on AES currently present in the literature are briefly
recalled in Sect. 3 using the “subspace trail notation™, recently introduced at FSE/ToSC
2017. In Table 1 we list the known-key distinguishers for AES, including our main results.

On Gilbert’s Approach. As we will describe in more detail in Sect. 3.1, the approach of [16]
makes use of a freedom in the known-key model that was actually always there but never
spelled out explicitly. In more detail, there is always the role of a “verifier”, in addition to
a “shortcut-player” and a “generic player”. In [16] the verifier has perhaps for the first time
some non-negligible computations to do. The details of Gilbert’s approach are such that it
is still not possible to simply “peel-off” an arbitrary number of rounds, on the contrary it
seems that only the detection of a very specific property (the so called “uniform distribution
property”) could take advantage of computations of the verifier.

! Our choice to use the subspace trail notation is due to the fact that it allows in some cases an easier and
more formal description than the original notation.

@ Springer

1404 L. Grassi, C. Rechberger

Table 1 AES known-key distinguishers

Rounds Computations Memory Property KK Gil-KK Reference

7 256 256 Zero-Sum v [20]

7 224 216 Differential Trail v [25]

7 220 216 Multiple Diff. Trail v Appendix E.1
8 264 264 Uniform Distribution v [16] - Appendix C
8 248 232 Differential Trail v [17]

8 244 232 Multiple Diff. Trail v [19]

8 242.6 213 Statistical Integral v [10]

8 223 216 extended 7-Round MultDT v Appendix E.2
10 204 204 extended 8-Round Unif. Dist. v [16]

10 259.6 259 extended 8-Round Stat. Integral v [10]

10 250 232 extended 8-Round MultDT v Sect. 5

12 282 232 extended 8-Round MultDT v Sect. 6

12 206 204 extended 8-Round Unif. Dist. v Sect. 7

The computation cost is the sum of the computational cost to generate N-tuples of plaintexts/ciphertexts and
the verification cost. Here we show which known-key distinguishers are defined in Gilbert’s model proposed
in [16]—denoted by Gil-KK—and which are defined in the “classical” known-key model—denoted by KK.
We recall that the latter ones exploit a property directly on the plaintexts/cipheretxts which is independent of
the details of the cipher E(-) and of the secret key. For distinguishers which exploit the technique introduced
by Gilbert [16], we highlight the distinguisher used as starting point and extended with the technique (initially)
proposed in [16]. As remarked in the main text, such distinguishers are meaningful only under the assumption
of validity of Gilbert’s model. MultDT multiple differential trail

1.2 Our contributions
Systematization of known-key distinguisher

First of all, we begin with recapitulating the literature about the concept of known-key
distinguisher in Sect. 3. By doing so, we propose and describe a generic scenario for a known-
key distinguisher by interpreting it as a game between two players—a “shortcut-player” and
a “generic player”—that face the same cipher. The idea is that the player who knows the
key—namely, the “shortcut-player”—must be able to generate a set of plaintexts/ciphertexts
(that satisfies a required property) faster than the other player who does not know the key
(or equivalently, that faces an ideal cipher)—namely, the “generic-player”. Then we recall
the known-key distinguishers present in the literature in the above scenario. In particular, we
focus on Gilbert’s distinguisher proposed in [16], and we show that it can be easier explained
using the “subspace trail notation” proposed at ToSC/FSE 2017 than using the “twisted
representation”.

Analysis of Gilbert's known-key distinguisher: refuting both conjectures via progress in
cryptanalysis

As we already recalled, at Asiacrypt 2014 Gilbert proposed a new known-key distinguisher on

full AES-128 [16], by extending an 8-round known-key distinguisher based on the so-called
uniform distribution property into a more intricate 10-round distinguisher. In the conclusion

@ Springer

Revisiting Gilbert’s known-key distinguisher 1405

of his paper, Gilbert claims that it seems technically difficult to use a stronger property than
the uniform distribution one to extend an 8-round known-key distinguisher to a 10-round
one:

1st Conjecture: “while we do not preclude that the use of the stronger property that several
pairs satisfying the differential relation of [17] [i.e. truncated diff. relations
exploited by the rebound distinguisher] can be derived might potentially
result in a 10-round distinguisher that outperforms the 10-round dis-
tinguisher presented above, giving a rigorous proof seems technically
difficult.”

In particular, he left “the investigation of improved 10-round known-key distinguishers and
associated proofs—or even plausible heuristic arguments if rigorous proofs turn out to be
too difficult to obtain—as an open issue.”

In this paper, we pick up this challenge, and using a strategy similar to the one proposed
by Gilbert in [16], we show how to construct a more efficient 10-round distinguisher, by
exploiting known-key distinguishers based on truncated differential trails. In particular, we
use as a starting point the 8-round known-key distinguisher presented in [19], and we extend
it at the end and at the beginning using the strategy proposed by Gilbert. This allows to set
up a 10-round known-key distinguisher for AES (see Sect. 5) with a time complexity of
approximately 2°.

As one of the main (cryptanalytic) results, in Sect. 6 we show that it is possible to extend
our 10-round distinguisher up to 12 rounds. Moreover, exploiting a similar strategy, in Sect. 7
we extend Gilbert’s 10-round distinguisher based on the uniform distribution property up to
12 rounds. These 12-round AES known-key distinguishers provide counter-examples of the
claim made in [16] about the (im)possibility to use Gilbert’s technique to extend an 8-round
distinguisher by more than 2 rounds:

2nd Conjecture “The reader might wonder whether the technique we used to derive a
known-key distinguisher for the 10-round AES from a known-key distin-
guisher for the 8-round AES does not allow to extend this 8-round known
distinguisher by an arbitrary number of rounds. It is easy however to see
that the argument showing that 10-round relation R is efficiently check-
able does not transpose for showing that the relations over r > 10 rounds
one could derive from the 8-round relation by expressing that the r-round
inputs and outputs are related by r — 8 > 2 outer rounds to intermediate
blocks that satisfy the 8-round relation are efficiently checkable.”

Our results are summarized in Table 2.

Table 2 1st/2nd Conjectures and AES Gilbert’s known-key distinguishers

Rounds Property 1st Conjecture 2nd Conjecture References
10 Extended 8-Round Unif. Dist. [16]

10 Extended 8-Round Stat. Integral v [10]

10 Extended 8-Round MultDT v Sect. 5

12 Extended 8-Round MultDT v v Sect. 6

12 Extended 8-Round Unif. Dist. v Sect. 7

Referring to the 1s¢ and the 2nd conjectures given in the main text, in this table we emphasize which ones of
our results disprove them. MultDT multiple differential trail

@ Springer

1406 L. Grassi, C. Rechberger

A proposal of a “New” model for known-key distinguishers

The second main contribution is the high level insight that the details of the known-key
model need to be changed if we aim to restore the original intent of the known-key model.
The reason is that with our new result the difference between the chosen-key model and what
is currently thought of as the known-key model is counter-intuitive: As we show it is now
possible to have cryptanalytic results on more rounds of AES in the known-key model than
in the chosen-key model and this is true for more than a single property. Hence we propose
a simple restriction of the verifier in the known-key model to remedy the situation.

Firstly, we remark and emphasize that the goal of this paper is to discuss the validity
of Gilbert’s model independently of its (possible) practical applications. In particular, even
if Gilbert’s known-key distinguisher leads to statements on more rounds of AES than ever
before (without related keys) that seem meaningful, then it is not clear if such statements can
become useful in the sense of e.g. having an impact on the case where a block cipher is used
to construct a hash function. This has also been noticed in [16], where it is pointed out that
even if the strategy proposed by Gilbert allows to set up efficient known-key distinguishers,
its “impact on the security of [...] AES when used as a known key primitive, e.g. in a hash
Sunction construction, is questionable” (see abstract of [16]).

To achieve our goal, under the assumption of the validity of such model, we set up dis-
tinguishers based on the truncated differential property instead of the uniform distribution
one in Gilbert’s framework, and we show that it is also possible to extend them for up to 12-
round AES, that is two rounds beyond the claim given by Gilbert in [16]. Using these results
as a starting point, we propose—with more confidence than would be possible without our
results—a (new) definition of known-key distinguisher model that rules out Gilbert’s and our
attacks proposed in this paper. As our results show, this seems necessary for better capturing
the original idea of known-key distinguishers as something “between secret-key model and
hash function use-cases”. For this reason, we conclude in Sect. 8, with a discussion of the
results and a proposal of a refinement of the known-key model which restores its original
intent (in which the role of the verifier gets back to being marginal).

2 Preliminary

2.1 Preliminary—description of AES

The Advanced Encryption Standard [13] is a Substitution- Permutation network that supports
key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the internal state as a
4 x 4 matrix of bytes that are interpreted as values in the finite fields Fys6, defined using
the irreducible polynomial X8 + X% + X3 + X 4 1. Depending on the version of AES, N,
round are applied to the state: N, = 10 for AES-128, N, = 12 for AES-192 and N, = 14
for AES-256. An AES round applies four operations to the state matrix:

— SubBytes (S-Box): applying the same 8-bit to 8-bit invertible S-Box 16 times in parallel
on each byte of the state (it provides non-linearity in the cipher);

— ShiftRows (SR): cyclic shift of each row to the left;

— MixColumns (M C): multiplication of each column by a constant 4 x 4 invertible matrix
Mpic (MC and SR provide diffusion in the cipher?);

— AddRoundKey (ARK): XORing the state with a 128-bit subkey.

2 SR makes sure column values are spread, M C makes sure each column is mixed.

@ Springer

Revisiting Gilbert’s known-key distinguisher 1407

One round of AES can be described as R(x) = K @ MC o SR o S-Box(x). In the first
round an additional AddRoundKey operation (using a whitening key) is applied, and in the
last round the MixColumns operation is omitted. Finally, as we do not use the details of the
AES key schedule in this paper, we refer to [13] for a complete description.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext, an intermediate state
orakey. Then x; j withi, j € {0, ..., 3} denotes the byte in the row i and in the column j. We
denote by k" the subkey of the r-th round. If only the key of the final round is used, then we
denote it by k to simplify the notation. Finally, we denote by R one round of AES, while we
denote r rounds of AES by R”. We sometimes use the notation Rg instead of R to highlight
the round key K. As a last thing, in this paper we often use the term “partial collision” (or
“collision”) when two texts belong to the same coset of a given subspace X.

2.2 Preliminary—subspace trails

Invariant subspace cryptanalysis can be a powerful cryptanalytic tool, and subspace trails
[18] — introduced at ToSC/FSE 2017—are a recent generalization of it.

Let F denote a round function in an iterative block cipher and let V & a denote a coset of
a vector space V. Then if F(V @a) =V @ a we say that V @ a is an invariant coset of the
subspace V for the function F. This concept can be generalized to trails of subspaces.

Definition 1 ([18]) Let (Vy, V3, ..., V,41) denote a set of r + 1 subspaces with dim(V;) <
dim(V;41). If for eachi = 1, ..., r and for each a; € V;, there exist a;4+1 € V;4+1 such that
F(V; ® a;) € Vi11 @ ajy1, then (Vi, Va, ..., V,11) is a subspace trail of length r for the
function F. If all the previous relations hold with equality, the trail is called a constant-
dimensional subspace trail.

This means that if F' denotes the application of ¢ rounds with fixed keys, then F'(V; @&
ar) = Vip1 @ as+1. We refer to [18] for more details about the concept of subspace trails.
Our treatment here is however meant to be self-contained.

Subspace trails of AES

In this section, we recall the subspace trails of AES presented in [18]. For the following, we

only work with vectors and vector spaces over IF;SM, and we denote by {ep o, ..., €33} the

unit vectors of IE“21§<4 (e.g. e;,j has asingle 1 inrow i and column j). We also recall that given
a subspace X, the cosets X @ a and X & b (where a # D) are equal (thatis X ®a = X & b)
ifandonlyifa ® b € X.

Definition 2 The column spaces C; are defined as C; = (eq ;. e1,i, €2.i, €3.i)-

For instance, Cp corresponds to the symbolic matrix

x1000 x1000
_J{x000 _|x 000
Co—{ %5000 Vxl,xz,X3,X4€F28}_ %5000
x4000 x4000

Definition 3 The diagonal spaces D; and the inverse-diagonal spaces ID; are respec-
tively defined as D; = SR_I(C,') = (ep,i,e€1,i+1,€2.i+2,€3,i+3) and ID; = SR(C;) =
(eo,i, e1,i—1, €2,i—2, e3,;—3), where the indexes are taken modulo 4.

@ Springer

1408 L. Grassi, C. Rechberger

For instance, Dy and ZDg correspond to the symbolic matrices

¥ 000 ¥ 000
lox 00 100 0x
Do = 00x30]/" 1Dy = 00 x30
00 0 xs 0xs0 0

Definition 4 The i-th mixed spaces M; are defined as M; = MC(ZD;).
For instance, M corresponds to the symbolic matrix

0x02 - x; X4 X3 0x03 - xp
X1 X4 0x03 - x3 0x02 - xp
X1 0x03 - x4 0x02 - x3 X2

0x03 - X1 0x02 - X4 X3 X2

Mo =

Definition 5 For I C {0, 1, 2, 3}, let C;, Dy, ID; and M be defined as
c=Pc. Di=@Dn. ID,=FID: M;=P M.
iel iel iel iel
As shown in detail in [18]:

— for any coset Dy @ a, there exists a unique b € C}- such that R(D; @ a) =C; @ b;
— for any coset C; & a, there exists a unique b € ./\/11l such that R(C; & a) = M; & b.

Theorem 1 For each I and for each a € Di-, there exists one and only one b € ./\/lll such
that
R*(D; ®a) = M; @ b. (M

We refer to [18] for a complete proof of this theorem. Observe that b depends on a (the
constant that defines the initial coset of Dy) and on the secret key k.

Moreover, note that if X is a generic subspace, X @ a is a coset of X and x and y are two
elements of the (same) coset X @ a, then x @ y € X. It follows that:

Lemma 1 Forall x,y and forall I {0, 1, 2, 3}:
Prob(R*(x) ® R*(y) e My |x®y e D;) = 1.)

As demonstrated in [18], we finally recall that for each 7, J < {0, 1, 2, 3}:

M;NDy;={0} ifandonlyif [I|+|J| <4, 3)
Theorem2 LetI,J C {0, 1,2,3} suchthat |I|+ |J| <4. Forallx # y:
Prob(R*(x) ® R*(y) e My |x ®y € D)) = 0. 4)

We remark that all these results can be re-described using a more “classical” truncated
differential notation, as formally pointed out in [8,23]. For example, if two texts ! and 12
are equal except for the bytes in the i-th diagonal® for each i € I, then they belong in the
same coset of D;. A coset of D; corresponds to a set of 232171 texts with || active diagonals.
Again, two texts #! and 12 belong in the same coset of ZD; if the bytes that lie in the i-th
anti-diagonal for each i ¢ I are equal to zero. Similar considerations hold for the column
space C; and the mixed space M.

3 The i-th diagonal of a 4 x 4 matrix A is defined as the elements that lie on row r and column ¢ such that
r — ¢ =i mod 4. The i-th anti-diagonal of a 4 x 4 matrix A is defined as the elements that lie on row r and
column c such that r 4+ ¢ = i mod 4.

@ Springer

Revisiting Gilbert’s known-key distinguisher 1409

3 Known-key security of block ciphers

Firstly, we give a formal definition of the known-key distinguisher scenario, recalling the one
proposed in [16] by Gilbert as a starting point.

3.1 Definition of known-key distinguisher

Informally, a known-key distinguisher exploits the fact that it is in general harder for an
adversary who does not know the key to derive an N-tuple of input blocks of a given block
cipher E that is “abnormally correlated” with the corresponding N-tuple of output blocks
than for one who knows the secret key. This difficulty is well expressed by the T -intractable
definition, expressed by Gilbert as follows:

Definition6 Let E : (K, X) € {0, 1}* x {0, 1}* — Ex(X) € {0, 1}" denote a block cipher
of block size n bits. Let N > 1 and R denote an integer and any relation over the set S of
N-tuples of n-bit blocks. R is said to be T -intractable relatively to E if, given any algorithm
A that is given an oracle access to a perfect random permutation 7 of {0, 1}" and its inverse,
itis impossible for A to construct in time 7" < T two N-tuples X = (X;) and Y = (¥;) such
that Y; = 1 (X;),i = 1, ..., N and X R Y with a success probability p > 1/2 over IT and
the random choices of .A. The computing time 7’ of A is measured as an equivalent number
of computations of E, with the convention that the time needed for one oracle query to IT or
IT7 1 is equal to 1. Thus if ¢ denotes the number of queries of A to /T or IT~!, theng < T".

Definition7 Let E : (K, X) € {0, 1}¥ x {0, 1} - Eg(X) € {0, 1}" denote a block cipher
of block size n bits. A known-key distinguisher (R, .A) of order N >1 consists of (1) arelation
‘R over the N-tuples of n-bit blocks (2) an algorithm A that on the input of a k-bit key K
produces in time 7 4, i.e. in a time equivalent to 7 4 computations of E, an N-tuple X = (X;)
i =1, ..., N of plaintext blocks and an N-tuple Y = (¥;) i = 1, ..., N of ciphertext blocks
related by ¥; = Ex (X;) and by X R). The two following conditions must be met:

— The relation R must be T 4-intractable relatively to E;
— The validity of R must be efficiently checkable.

To formalize the last requirement, we incorporate the time for checking whether two N-tuples
are related by R in the computing time 7 4 of algorithm A.

We emphasize that while the algorithm A takes a random key K as input, the relation R
satisfied by the N-tuples of input and output blocks constructed by A or A’ is the same for
all values of K (in other words, it is independent of K) and must be efficiently checkable
without knowing K .

3.2 The known-key distinguisher scenario

To better understand these definitions, we propose and describe in more detail a generic
scenario for a known-key distinguisher, which is depicted in Fig. 1. This scenario is composed
of five characters, which are a key generator, an oracle, two players and a verifier. We assume
that the oracle is instantiated by an ideal cipher IT defined as*

I (k, p) € {0, 1}* x {0,)" — ¢ = [(k, p) € {0, 1}"

4 The parameters k and n are the same that defines the encryption scheme E, thatis E : (K, p) € {0, 1}/‘ X
{0, 1}* - ¢ = Eg(p) € {0, 1}".

@ Springer

1410 L. Grassi, C. Rechberger

Oracle IT/IT~*

2
‘ Generic Player A’
Key (3)
Generator
(2

Shortcut Player A 3)

Fig. 1 A Known-Key Distinguisher Scenario. First, we assume a relationship R is chosen and fixed. Step
(1): the secret key is given to the Oracle I7 /1T ~1, to the Shortcut Player A and to the Verifier. Step (2): the
Shortcut Player A and the Generic Player A" generate the N-tuples that satisfy the required relationship R.
Step (3): the Verifier receives the N-tuple and checks if R is satisfied or not. The fastest player to generate
the N-tuple wins the “game”

such that 7(k, -) is a permutation for each fixed k € {0, l}k . Equivalently, IT is chosen
uniformly at random among all ciphers with a k-bit key and an n-bit input/output. Moreover,
we assume that the verifier knows the details both of E and of I7.

After fixing a relation R defined as in Def. 6, the known-key distinguisher scenario can
be described as follows:

1Ist) step: the key generator generates a key, which is given to the oracle and to one of the
two player. In the following:

e “shortcut player” denotes the player who knows the key and faces the encryption scheme
E;

e “generic player” denotes the player who does not know the key and faces the ideal cipher
II.

Referring to the previous definitions by Gilbert, the generic player can be identified by the
algorithm A’, while the shortcut player can be identified by the algorithm A;

2nd) step: the two players generate the N-tuple of (plaintexts, ciphertexts) which satisfy
the required relation R. Since the generic player does not know the key, he must
ask the oracle (identified with IT and/or IT~! in the previous definitions) for the
encryption (resp. decryption) of chosen plaintexts (resp. ciphertexts). We stress
that this step does not consist only in the generation of (plaintext, ciphertext)
pairs, but also includes any computational cost that the player must do in order
to find the N-tuple with the required property;

3rd) step: when a player finds the N-tuple which satisfies the required relation R, he sends
it to the verifier. The verifier finally checks if (1) the relation Yl.’ = FEg(X lf) (case
of shortcut player) or ¥/ = IT(X}) (case of generic player) is satisfied for each i
and if (2) the N-tuple satisfies the relation R. The first/fastest player who sends
the N-tuple with the required property R wins the “game”.

A distinguisher is meaningful if the cost of the generic player—assuming that the cost of
one oracle-query is equal to the cost of one encryption—to generate the N-tuple is higher
than the cost of the shortcut player, when the probability of success is equal for the two
players. Equivalently, a distinguisher is meaningful if the probability of the generic player
to win the game is higher than the probability of the shortcut player, when the number of
(plaintext, ciphertext) pairs that the two players can generate is fixed and equal for both

@ Springer

Revisiting Gilbert’s known-key distinguisher 1411

players. In other words, in the first version one considers the computational costs of the
two players to generate the N-tuples with a fixed probability of success (equal for both the
players). In the second version, the computational cost (equivalent to the number of oracle
queries for the generic player and the number of N-tuple generated by the shortcut one) is
fixed and one considers the probabilities of success of the two players to win the game.

Before going further, we emphasize that the role of the verifier is only to prevent one or
both of the two players from cheating. In other words, in the case of honest players, the verifier
can be omitted, and the winner of the game is simply the first/fastest player that claims to
have found the N-tuple of (plaintexts, ciphertexts) which satisfy the required relation R. We
highlight that such a verifier is implicitly present in all the distinguishers currently present
in the literature.

Verification Step. Both for the distinguishers that we are going to present and for Gilbert’s
one, the computational cost of the verification step is not negligible. To clarify, we identify
the verification cost® only as the cost to check that the relation R holds. Thus, in order to
compare our distinguishers to the others present in the literature, we define the cost of the
distinguisher as the sum of the cost of the verification step (i.e. the cost of the verifier) and
of the cost to construct the set of plaintexts/ciphertexts with the required property. For this
reason, we assume for the following that a relationship R is efficiently checkable if and only
if the computational cost of the verifier is negligible with respect to the players’ ones. This
implies that the cost of the distinguisher can be approximated with the computational cost
of the shortcut player (since the cost of the other player is always higher in the case of a
meaningful distinguisher).

What about the cost of the Generic Player? Since the generic player depends on the oracle
to generate the N-tuple (i.e. he cannot work alone to generate it), two possible settings can
be analyzed. In the first one, only the number of oracle queries is considered to determine
the computational cost of this player, that is the number of encryptions/decryptions required
by the generic player to the oracle. In the second one, both the number of oracle queries
and any other computational cost of the generic player (which is in general not negligible)
are considered. Intuitively this second setting is weaker than the first one, in the sense that a
known-key distinguisher in the first setting works also in the second one but not vice-versa.
In other words, one can expect that the required number N of tuples is in general higher (or
at least equal) in the first setting than in the second one.

For the goal of this paper, in the following we limit ourselves to consider only the first
scenario.

Role of the Ideal Cipher in the Known-Key Scenario. For completeness, note that the
ideal cipher in the previous model can be replaced by the encryption scheme E faced by the
shortcut player if such a cipher is a Strong PseudoRandom Permutation (see Appendix A for
more details).

4 State of the art of known-key distinguishers for AES-128

Here we review the most relevant distinguishers for AES in the above scenario, with particular
attention to the ones proposed by Gilbert in [16]. For simplicity, we assume that the relations

5 Inother words, the cost of checking that the relations ¥; = E g (X;) (case of shortcut player) and ¥; = IT(X;)
(case of generic player) are satisfied for each i is not considered/included. In the following, we assume that
such relations are always satisfied.

@ Springer

1412 L. Grassi, C. Rechberger

R i iy i taating figy
b e
So S Sa S3 Sa Ss Se S7
g i iy g giimniliiy iy o
{S&s] BERS|
So S1 Sa S3 Sa Ss Se Sz Ss
Fig.2 7- and 8-round differential paths for AES-128

Y; = Ex(X;) (case of shortcut player) and Y; = IT(X;) (case of generic player) are always
satisfied for each i, that is that the two players do not cheat about these relations.

4.1 Distinguishers based on the Rebound Technique
4.1.1 7- and 8-Round known-key distinguisher & the rebound attack

For the case of the 7- and 8-round known-key distinguishers proposed in [25] and [17], the goal
of the two players is to find two pairs of (plaintexts, ciphertexts)—i.e. (pl,cl)and(p2,)—
s.t. (1) the two plaintexts are equal in one fixed diagonal—equivalently, belong to the same
coset of D; forafixedi € {0, 1, 2, 3} (i.e. pl ® p2 € D;)—and (2) the two ciphertexts are
equal in one fixed anti-diagonal (if the final MixColumns operation is omitted)—equivalently,
belong to the same coset of M; for a fixed i € {0, 1, 2, 3} (i.e. cledc?e M;).

In the above known-key distinguisher setting, the best technique that the shortcut player
(i.e. the player who knows the key) can exploit to win the game is the Rebound Attack. The
rebound attack is a differential attack and it was proposed in [26] for the cryptanalysis of
AES-based hash functions. Since it is a differential attack, one needs a “good” (truncated)
differential trail in order to exploit it. Examples of truncated differential trails used for 7-
and 8-round AES are depicted in Fig. 2. The rebound attack consists of two phases, called
inbound and outbound phase. In the first one, the attacker uses the knowledge of the key
to find pairs of texts that satisfy the middle rounds of the truncated differential trail. In the
second one, he propagates the solutions found in the first phase in the forward and in the
backward directions, and checks if at least one of them satisfies the entire differential trail.

As proved in [17], for the AES case and using the rebound attack, the shortcut player
needs approximately 248 computations in order to find the two (plaintexts, ciphertexts) pairs
(p1, c1) and (p2, ¢2) with the required properties (besides a memory cost of 16 x 232 — 36
bytes). Instead, in the case of an ideal cipher, the generic player needs approximately 264
operations in order to find them with the same probability.

4.1.2 Multiple limited-birthday 8-round known-key distinguisher

An improvement of the previous known-key distinguisher on 8-round of AES was proposed
in [19]. Using the subspace trail notation, in this modified version of the 8-round known-
key distinguisher, the goal of the two players is to find two pairs of (plaintexts, ciphertexts)
such that the two plaintexts belong to the same coset of D; for an arbitrary i and the two
ciphertexts belong to the same coset of M for an arbitrary j, where i and j are not fixed
in advance and it is not required that they are equal (i.e. no condition is imposed on i and
J)- A concrete example is depicted in Fig. 3. For arbitrary initial and final subspaces, the
computational cost of the shortcut player is reduced from 2*® to 2% (note that there are 4

@ Springer

Revisiting Gilbert’s known-key distinguisher 1413

et
W]

‘H: 5 1R . 1R . 1R
W

S

=
)
T

Fig.3 8-round differential characteristic for known-key distinguisher of AES-128

initial and final different subspaces D; and M ;, for a total of 42 =24 possibilities) while the
required memory is still 232, as shown in detail in [19]. In Appendix E.1 we show that the
same technique can be exploited to improve the 7-round known-key distinguisher presented
in [25].

4.2 Gilbert’s known-key distinguishers
4.2.1 Uniform distribution 8-round known-key distinguisher

Another 8-round known-key distinguisher for AES is based on the uniform distribution
property and it was proposed by Gilbert in [16]. In this case, the goal of the two players is
to find a set of 204 (plaintext, ciphertext) pairs—that is, (p',cHfori =0, ..., 2% — 1—such
that the bytes of the plaintexts and of the ciphertexts are uniformly distributed:

— foreach j, k € {0, 1,2, 3} and for each x € Fzs, there are 20 plaintexts pi fori e I C
{0, ..., 2% — 1} with |I| = 2 that satisfy P =xforalliel;

— foreach j, k € {0, 1,2, 3} and for each x € Fzs, there are 2°° ciphertexts ciforiel C
{0, ..., 2% — 1} with | /] = 2% that satisfy ¢, , = x foralli € 1.

Using the subspace trail notation, it is possible to re-formulate the goal of the two players as
follows: find a set of 204 (plaintext, ciphertext) pairs—thatis, (p', ¢') fori =0, ..., 204 _1—
such that

— foreach I C {0, 1, 2, 3} with |/| = 3 the plaintexts are uniformly distributed in cosets of
the diagonal space Dy, or equivalently, for each I with |/| = 3 and foreacha € DIL there
are 232 plaintexts p/ for j € J € {0, ..., 2%% — 1} with | J| = 23? such that p/ € D; @ a
forall j € J;

— foreach I C {0, 1,2, 3} with |7| = 3 the ciphertexts are uniformly distributed in cosets
of the mixed space M, or equivalently, for each / with || = 3 and for each a € /\/11l
there are 232 ciphertexts ¢/ for j € J C {0, ...,2% — 1} with |J| = 232 such that
cleMy@aftorall j e J.

If the final MixColumns is omitted, an equivalent condition holds on the ciphertexts by
replaying the mixed space M with the inverse-diagonal one ZD;. To be more formal:

Definition 8 Consider 2%* texts 1 IF;;“ fori =0,...,2%% —1,andlet I C {0, 1, 2, 3} with
|I| = 3 fixed. These 2% texts ¢ are “uniformly distributed” in cosets of M if

@ Springer

1414 L. Grassi, C. Rechberger

.....

such that t/ € M; @ a foreacht/ € J;
— given sets .7, and ., just defined for two different cosets M; @ a and M; @& b where
(a ® b) € M+, then , N T, = .

Before going further, we prove that the two previous formulations are equivalent, namely that
the bytes of the plaintexts are uniformly distributed if and only if the plaintexts are uniformly
distributed in cosets of the diagonal space D for each J with |J| = 3 (analogous for the
ciphertexts). Consider the case in which the plaintexts are uniformly distributed in cosets of
the diagonal space D, which means that for each a € Df‘,z, 3 = Dy, there are 232 plaintexts
plfori e I €0, ..., 264 — 1} and |1| = 2% that belong e.g. to the same cosetof D123 D a
(analogous for the other spaces D; with |J| = 3). For each fixed a € Df—,2,3 = Dy, this
means that

Viel, ¥je{0,1,2,3}: p'€Dips@a ifandonlyif pf;=a,;.

Working at byte level, note that for each x € F,s and for each index j, there are 224 different
a e Dt2,3 = Dy s.t. aj ; = x. It follows that there are 224 .23 = 256 plaintexts p' s.t.
p’] =% which means that the bytes of the given plaintexts are uniformly distributed. To
complete the proof, it is sufficient to use a similar strategy and the definition of D in order
to prove that, given plaintexts whose bytes are uniformly distributed, they are uniformly
distributed in cosets of the diagonal space D for each J with |J| = 3.

Finally, for the follow-up we highlight that the uniform distribution property implies the
balance/zero-sum property® both on the plaintexts and on the ciphertexts.

The strategy of the shortcut player. Here, we briefly re-propose the best strategy that the
shortcut player can use to win the game using the subspace trails notation instead of the
Super-S B notation (Super-SB(-) = S-Box cARK o M Co S-Box(-))—see Appendix C for
more details. The ideais to start in the middle with a set & of texts defined as & := D; M ;B¢
for a constant ¢, where |S| = 2%*. Observe that

G=DioMjedc= |J Mjob= |J Daa)
beD;®¢ aeM;dc

i.e. the set & can be re-written as the union of cosets of the space D; or as the union of
cosets of the space M ;. The ciphertexts are given by the 4-round encryption of &, and the
plaintexts by the 4-round decryption of G.

After encrypting & for 4 rounds, the texts are uniformly distributed in each coset of M;
of dimension 12 (i.e. | /| = 3). That is, after 4 rounds, each coset of M for || = 3 contains
exactly 232 elements. Indeed, by Theorem 2 note that given two elements in the same coset of
Dy, they can not belong to the same coset of M for |I]|+|J| < 4 after 4-round. Thus, given
a coset of D; with |i| = 1, after 4 rounds each element is distributed in a different cosets of
My for |J| = 3. Since a coset of D; contains 232 elements and since there are exactly 232
cosets of M, the elements of D; & M ; are uniformly distributed in each coset of M. The
same happens if one decrypts & for 4 rounds. In this case, after decrypting & for 4 rounds,
the texts are uniformly distributed in each coset of D; of dimension 12 (i.e. |/| = 3), that is
each coset of Dy for |I| = 3 contains exactly 232 clements.

On the meaningfulness of this distinguisher. What is the minimum number N = 2*+ M >
2% of random (plaintext, ciphertext) pairs s.t. there is a subset of 2¢* pairs whose bytes

6 The set of texts {t'};; satisfies the balance property if and only if Dicr =0

@ Springer

Revisiting Gilbert’s known-key distinguisher 1415

are uniformly distributed both on the plaintexts and on the ciphertexts with non-negligible
property?
First of all, note that 2 texts satisfy the uniform distribution on each byte with probability

255 064 ;56 16 64 16
. 2 _l'2 . _3 264 _ 2 ’) _3 264
[e] - ()

Indeed, consider the following problem. Given N texts and 2 sets, assume that each text
belongs to one of the two sets with probability 2~ !. It follows that the N texts are uniformly
distributed among the two sets with prob. (N]\;2) 27N _In a similar way, given d > 2 sets,

they are uniformly distributed with probability’]_[7;01 (N ;/{}’ / d) -d7N.

Using Stirling’s formula n! >~ n" - ¢™" - /27 - n, this probability is well approximated by

16
264 gy 204 1 128 1 12.84
_ (- N) —1/2 7—T7328.1 _ H—2
p= ((256‘)256 (27%) ~ <7249 W) (256" ~2 =2 . (6)

In other words, given 2% plaintexts whose bytes are uniformly distributed, this represents
the probability that the bytes of the corresponding ciphertexts are uniformly distributeds.
Given 2% + M texts, it is possible to construct

My 1 2% m\Y
204)T amm \ M

different sets of 2%* texts (where the approximation is given using Stirling’s formula and
by the assumption M < 2%%). This number is always bigger than p~—2 = 22** for each
M > 2'2_ Thus, given 264 +2'2 random pairs, there is a good probability to find 2% (plaintext,
ciphertext) pairs for which the bytes of the plaintexts and of the ciphertexts are uniformly
distributed. It follows that if the cost of the generic player is approximated by the number
of oracle queries, then his cost is approximately of 204 4 212 ~ 2% encryptions versus 264
encryption of the shortcut player.

So, why is this distinguisher meaningful? Instead of focusing on the cost of the two players,
the idea is to show that the probability of the generic player to win the game given 2 texts
is negligible. To do this, authors of [16] claim that this probability is upper bounded by the
probability of the following game: “given 204 _ 1 (plaintext, ciphertext) pairs whose bytes
are ‘almost uniform’—see the definition in the following, find a text for which the bytes of the
corresponding 2% texts are uniformly distributed”. Since this probability is upper bounded
by 27'27—see proof of Prop. 4 of [16] — and since this second game is (strongly) “related”
to the original one, the conclusion follows immediately. For completeness, we emphasize
that no formal proof is provided in [16] that supports this second claim. In other words, it is
not formally proved that the fact that this second game is “hard” implies the hardness of the
original game, and/or viceversa.

Finally, we formally define what “almost uniform” means. Consider 264 —1 texts ' € F;?“

fori = 0,..., N — 2. We say that the bytes of 2°* — 1 texts ¢ are “almost uniform” if for

7 Consider the case N = 2% and d = 256. The product of the binomial coefficients is explained as follows.

For each one of the 16 bytes, there must exist 264 /256 = 256 texts for each one of the 256 possible values.
64 64 _ 556

Thus, there are (%56) possible sets of 256 texts for which the byte as value 0, (2 2562) possible sets of 256

texts for which the byte as value 1 and so on.

8 For comparison, note that given 204 plaintexts whose sum is zero, then the sum of the corresponding
ciphertexts is equal to zero with probability 2~ 128,

@ Springer

1416 L. Grassi, C. Rechberger

each row and column j, k =0, 1,2, 3 (1) there exists x € F,s s.t. there are 25§ — 1 texts that
satisfy t;’k = x and (2) for each y € F,s \ x, there are 2°° texts that satisfy t;.’k = y. More
generally:

Definition 9 Consider 2" — d texts ' € Fj3* fori =0,..., N —d — 1 ford > 1. The bytes

of these 2V — d texts ¢/ are “almost uniform” if for each row and column j, k =0, 1,2, 3:
— there exists aset X = {x1, ..., xy € Fys} with cardinality s < d such that for each x; € X
with 1 <[< s there are 2V=8 — 4 < 5 < 2N=8 _ ¢ texts that satisfy tj',k = x; where
Yo S =ds
— foreach y € Fys \ X, there are 2N 8 texts that satisfy t;’k =y.

Note that, given a set of 2"V texts whose bytes are uniformly distributed, then the bytes of each
subset of 2V — d texts (for each d > 1) are “almost uniform” distributed w.r.t. the previous
definition.

4.2.2 Extension to 10 rounds of AES

The previous distinguisher is the starting point used by Gilbert in order to set up the first 10-
round known-key distinguisher for AES. The basic idea is to extend this 8-round distinguisher
based on the uniform distribution property adding one round at the end and one at the
beginning. In the known-key distinguisher scenario presented above, the players have to
send to the verifier 264 (plaintext, ciphertext) pairs, that is (pi, ci) fori =0,...,2% —1, such
that :

1. there exists akey kU s.t. the bytes of { R0 (p')}; are uniformly distributed, or equivalently
s.t. the texts {Ryo (p")}; are uniformly distributed among the cosets of D; for each I
with |I]| = 3;

2. there exists a key k' s.t. the bytes of { Rk_l(]) (¢')}; are uniformly distributed, or equiv-
alently s.t. the texts {ngé(ci)} ; are uniformly distributed among the cosets of M ; for
each J with |J| = 3.

We emphasize that it is not required that k° and k'° are equal to the “real” subkeys (generated
by the key-generator — see before) that define Ek (-), that is k™ can be different from the r-th
subkey. In other words, it is only required that such keys exist, and not that they are equal to
the real subkeys®. The same assumption holds for all Gilbert’s like distinguishers presented
in this paper and in the literature. Moreover, in this game, the subkeys k° and k' are assumed
to be independent—no key-schedule holds (argumentation are given by Gilbert to show that
the same distinguisher is applicable also to the case in which the key-schedule holds—we
discuss this topic in details in the following).

Since uniform distribution implies balance property (vice-versa is not true in general),
for the follow-up we highlight that if the plaintexts and the ciphertexts satisfy the previous
properties, then they also have the zero-sum property respectively after one round encryption

w.rt. the key k¥ (that is, @1-230_1 Ryo(p') = 0) and after one round decryption w.r.t. the key
K10 (that is, @2 ! Rob(c) = 0).

On the meaningfulness of this distinguisher. What is the probability that given a set of 264

texts there exists a key k such that the bytes of 1-round encryption (resp. decryption) of such

9 For this and the following distinguishers, we abuse the notation k" to denote a key of a certain round r. In
general, it is not required that in a Gilbert’s-like distinguisher such subkey k" is equal to the real secret subkey.
In order to simplify the notation, we decided to abuse the notation k" to denote both cases.

@ Springer

Revisiting Gilbert’s known-key distinguisher 1417

texts are uniformly distributed? Using the calculation proposed for the 8-round distinguisher
and since there are 2'28 different keys, this probability is equal to 228 p ~ 2128 .2-7328.1 —
2772001 — 2=2"% where p is defined in (6). Similar to the 8-round case, it follows that
204 4 212 ~ 264 (plaintext, ciphertext) pairs are sufficient to have good probability to win
the game.

Again, why is this distinguisher meaningful ? Working as for the 8-round case and in order
to support this distinguisher, authors of [16] show that the probability of the generic player
to win the game given 2%* texts is negligible. To do this, a claim is made about the fact that
this probability is upper bounded by the probability of the following game: “given 2% — d
(plaintext, ciphertext) pairs for d > 5 — that is, (pi, ch foreachi =0, ..., 204 g —1-
with the property that there exist a set of keys k° and k'° for which the bytes of Ryo(i)
andof MC~'o Rk_l(l) (c%) (that is 1-round encryption of p' and the I-round decryption of the
ciphertexts) are ‘almost uniform’ distributed, find the remaining d texts for which the bytes of

the corresponding 2% texts after 1-round encryption/decryption are uniformly distributed”.

516
21826417
Prop. 6 in [16]— and since this second game is “related” to the original one, the conclusion
follows immediately.

Since this probability is upper bounded by (2'%8)% x (~ 27165__gee proof of

Strategy of the verifier, of the shortcut player and of the generic one. Since the keys
k% and k'° for which the relation R is satisfied can be different from the real subkeys, the
verifier has no information of the keys for which the relation R is satisfied, and her task is
to check if they exist. It follows that one must show that the above conditions are efficiently
checkable. The only way to verify these requirements is to find these two subkeys in an
efficient way, which is not possible using a brute force attack (kY and k9 have 128 bits).
Under Gilbert’s assumption—no key-schedule holds, the verifier can work independently on
k9 and k1. Instead of checking all the 2 - 2128 = 2129 possible values of k% and k1°, the idea
proposed in [16] is to check uniform distribution working on single columns of SR(c’) and of
SR~I(p") (the strategy proposed by Gilbert'? is similar to the one proposed in Algorithm 1).
In this way, the verifier must guess only 32 bits instead of 128, and she has to repeat this
operation 4 times (one for each anti-diagonal/diagonal) for each key. In the following, we
discuss a way to improve this procedure working independently on each byte of k° and k0
instead of entire anti-diagonal/diagonal. The idea is simply to use integral attack [11,21] to
filter wrong keys (much) faster.

About the shortcut player (i.e. the one who knows the key), he can construct these
(plaintext, ciphertext) pairs using the same strategy just discussed for the 8 rounds distin-
guisher (note that in this case the keys k° and k!0 correspond to the secret sub-keys). As
a result, the distinguisher can be considered meaningful (w.r.t. the definition given before)
since (1) the probability that the generic player (i.e. the one who does not know the secret
key) successfully outputs (input, output) pairs that satisfy the previous properties (both in
the input and in the output) is upper bounded by 2719 and since (2) the verifier can find the
keys k® and k1° that satisfy the required property (if they exist) with a computational cost
which is smaller than the cost of the two players.

264

10 Algorithm 1 is presented in order to propose a 12-round distinguisher based on the uniform distribution
property as extension of 10-round Gilbert’s distinguisher. The difference between this algorithm and the one
proposed in [16] is the fact that in our case some wrong-key candidates can be eliminated using the zero-sum
property. In other words, in order to turn our algorithm into the one proposed in [16], it is sufficient to check
all the keys k = (ko,0, k1,3, k2,2, k3,1) from (0x00, 0x00, 0x00, 0x00) to (Oxff, Ox ff, Ox ff,0x ff), and
not only the ones found by Algorithm 2.

@ Springer

1418 L. Grassi, C. Rechberger

4.2.3 Generic considerations on Gilbert’s 10-round distinguisher

The previous 10-round distinguisher proposed in [16] is different from all the previous dis-
tinguishers up to 8 rounds present in the literature. For all distinguishers up to 8-round, the
relation R that the N-tuple of (plaintexts, ciphertexts) must satisfy does not involve any
operation of the block cipher E. As a consequence, it allows the verifier to check whether the
N-tuple of (plaintexts, ciphertexts) satisfy the required relation R without knowing anything
of the key. When R does not re-use operations of E, this provides some heuristic evidence
that this distinguisher can be considered meaningful.

On the other hand, the previous 10-round distinguisher and the ones that we are going
to propose do not satisfy this requirement, i.e. in these cases the relation R involves and
re-uses some operations of E. The novelty of Gilbert’s work is not just the possibility to
extend the distinguisher up to 10-round AES, but rather the introduction of a new distin-
guisher model. Requiring the existence of round keys for which the 1-round encryption of
the plaintexts (respectively, 1-round decryption of the ciphertexts) satisfy the relation R, or
in other words considering relations R that depend on some operations of E, allows to set up
new distinguishers that penetrate more round of the block cipher. For a detailed discussion
on the reasons why such known-key distinguishers should not be systematically ruled out as
if they were artificial we refer to Sect. 3 of [16].

A variant of Gilbert’s distinguisher. Before going further, we highlight a variant of Gilbert’s
distinguisher—that also applies to all our proposed distinguishers present in the paper — which
allows to better understand it. Consider the case in which the two players have to send to the
verifier the N-tuple that verify the required relation R fogether with the subkeys for which
such a relation is satisfied. As an example, in the 10-round distinguisher just presented, the
players have to send 2%* (plaintexts, ciphertexts) pairs (p’, ¢') and the two subkeys k° and
k' such that the bytes of Ryo(p)yand MC~!o R];(l,(ci) are uniformly distributed. Thus,
since the task of the verifier is to check that the relation R is satisfied only for the keys she
received, it follows that her computational cost is negligible. On the other hand, we show in
details in Appendix B that such variant of the distinguisher is meaningless, since it can be
set up for any number of rounds of AES.

4.2.4 Another strategy for the verifier

In order to extend Gilbert’s distinguisher on 12-round AES by exploiting the uniform dis-
tribution property, we present another possible strategy that allows to check the existence
of keys k* and k'° for which the required property R is verified. The goal of the following
strategy is not to improve the computational cost of the verifier, but to show the possibility
to check the existence of such keys working independently on each byte of the keys instead
of combinations of 4 bytes. The idea is simply to first filter wrong key candidates using the
integral attack [11,21]: in this way, the verifier limits herself to check the uniform distribu-
tion property only on the keys that satisfy the zero-sum property. In other words, instead of
checking directly the uniform distribution property as done in [16], we first filter wrongly
guessed key by checking the zero-sum property.

In more detail, instead of working on 4 bytes of the subkeys k" and k'° simultaneously
(as proposed in [16]), we highlight that it is actually possible to work at byte level, finding
k% and k'° on single bytes (independently of the others) as in a classical integral/zero-sum
attack. The idea is to exploit the fact that uniform distribution implies zero-sum property:

@ Springer

Revisiting Gilbert’s known-key distinguisher 1419

Data: 204 texts t/ fori = o,..., 204 _q)
Result: One anti-diagonal of k - e.g. (kq,0. k1,3, k2,2, k3,1) - s.t. each byte of Mc~ 1o Ri(t") is
uniformly distributed
Let A[0, ..., 232 — 1] and B![0, ..., 255], B2[0, ..., 255], B3[0, ..., 255], B*[0, ..., 255] five arrays
initialized to zero;
for i from 070 2% — 1 do
x i o+28 421040, 402l
Alx] < Alx]+ 1;
end
Use Algorithm 2 to find kg 0. k1,3, k2,2, k3,1 - i.e. to filter wrong candidates;
for each k = (ko0, k1,3, k2,2, k3,1) found using Algorithm 2 do
for s from (0x00, 0x00, 0x00, 0x00) o (Oxff,0xff,O0xff,O0xff) do
Lets = (SO, sl, 52, s3) S Fgg be a column of 4 bytes;
Compute x = MC 1o Ri(s); // partial decryption of s w.r.t. to k -
note: x = (xl,xz, x3, x4) S IF;‘S is a column of 4 bytes
Increment B, B2, B3, B*[x]: B/[x/] < BJ/[x/]+ A[x] foreach j = 1,2, 3, 4;
end
if uniform distribution - i.e. Blx] = 256for each x =0, ..., 255 and for each j = 1,2, 3, 4 then
| identify k as possible candidate;
end
end
return candidates for (kg 0. k1,3, k2,2, k3,1).

Algorithm 1: Verifier Strategy: find one anti-diagonal (e.g. the first one) of the last round-
key k - equivalent for the other anti-diagonals and for the first round key - such that the bytes
of MC'o R, () are uniformly distributed. For simplicity, we omit the final MixColumns.

Data: 264 texts ¢! fori = 0,.., 204 _)
Result: One byte of k - e.g. ko o - s.t. ; S-Box_l(pb 0 ®koo) =0

Let A[O, ..., 28 _ 1] an array initialized to zero;
for i from 010 264 — 1 do
A[t(i)!o] <« (A[’é.o] +1)mod?2; // A[lx] denotes the value stored in the x-th
address of the array A
end
for k from 0x00 to Ox ff do
x < 0;
for i from 0 70 255 do
‘ X <—x®A[i]~S—B0x71(i D k); // Ali] can only be 0 or 1
end
if x = 0 then
| identify k as candidate for kg (3
end
end
return candidates for kg .

Algorithm 2: First Part of Verifier Strategy: working on each byte of the key independently
of the others, filter wrong key candidates using zero-sum property.

Ist) step/filter: the verifier first looks for subkeys k® and k'© that satisfy 6912:‘0—1 R (p') =
0 and @230_1 Rk_l(l) (c') = 0 working independently on each byte;

i

2nd) step/filter: only for keys that satisfy zero-sum, she then checks if the uniform property
is verified, working simultaneously on 4 bytes of the subkeys.

@ Springer

1420 L. Grassi, C. Rechberger

We emphasize that if zero-sum is not satisfied, then also uniform distribution is not satis-
fied. Moreover, we highlight that the number of subkeys that satisfy zero-sum is very small
compared to the number of all possible keys. Indeed, note that since zero-sum is satisfied
with prob. 27128 and since there are only 228 keys, on average only one key passes the first
step/filter. This also implies that “checking uniform distribution once that zero-sum property
is satisfied” has negligible cost compared to the total cost. A pseudo-code of this strategy is
proposed in Algorithm 2.

Just for completeness, we mention that using this proposed strategy!!, the verification cost
is a little smaller than the one given in the original strategy proposed in [16] (approximately'?
2264 v5 10-2%* look-ups table, that is 237-3 vs 237 ten-round encryptions assuming 1 S-Box
look-up ~ 1 table look-up). One more time, we emphasize that the goal of this strategy is to
show the possibility to work on single byte of the key independently of the others in order to
find k% and k'°: this allows us in the following to set up a distinguisher on 12-round AES.

4.3 Statistical integral distinguisher with multiple structures

Finally, we mention for completeness that at ACISP 2017 the distinguishers proposed by
Gilbert in [16] has been improved by T. Cui, L. Sun, H. Chen and M. Wang [10]. In this
paper, authors turn both the 8- and 10-round Gilbert’s distinguishers into “statistical integral
ones” [32] with the goal to reduce the data/time complexity.

5 New 10-round distinguisher of AES—Full AES-128

Using the same strategy proposed by Gilbert in [16], we set up our 10-round distinguisher by
extending the 8-round one presented in [19] and recalled in Sect. 4.1.2 both at the beginning
and at the end. In the above defined known-key distinguisher scenario, the players have to send
tothe verifiern > 64 different tuples of (plaintext, ciphertext) pairs, that s {(pi1 , ci1), (pl-z, 61‘2)}
fori =0,....,n—1,s.t.:

1. there exists a key k" s.t. for each tuple there exists j for which the two plaintexts belong
to the same coset of D; after one round, that is

k% st Vie{0,..,n—1}, 3je{0,..,3} st Rp(p))® Ro(p?) € D

2. there exists a key k'O s.t. for each tuple there exists / for which the two ciphertexts
belong to the same coset of M; one round before, that is

3k st Vie(0...n—1}, FUe(0,..3} st Ry(c))®R(c]) e M.

We stress that the keys kO and k' must be equal for all the tuples. In other words, if there
exist two different tuples (co, ¢1) and (c3, ¢3) such that Rk_](co) (&) Rk_](cl) € M; and
RI;_1 (c2)® Rll_ ! (c3) € M; for two different keys k # k, then the above defined relation R is

not satisfied. Note that without this request on the secret keys k? and k'?, it is extremely easy

1" Note that all the arrays A defined in Algorithms 1 and 2 can be computed simultaneously and stored, and
that we expect that only few (on average only one) keys pass Algorithms 2. Thus, the cost of the verification
step is well approximated by the cost to compute the array A.

12 Note that both Algorithm 1 and 2 can be optimized such that it is fossible to compute the array A simul-
taneously for each row and column of the text #*, for a total cost of 264 table look-ups. It follows that the cost
of our strategy corresponds to the cost to prepare the array A for the two algorithm, that it 205 table look-ups.

@ Springer

Revisiting Gilbert’s known-key distinguisher 1421

to construct tuples such that the two ciphertexts belong to the same coset of M; one round
before. Indeed, as we are going to show, given two ciphertexts ¢! and ¢2, on average there
exist 4 - (28)* = 234 different keys k such that R,:l(cl) &) R,:l(cz) € M, for a certain /.
As aresult, it is straightforward to construct n different tuples that satisfy the above defined
relationship R without any condition on the key k.

We also observe that the claim “the transposition of our technique to the 8-round distin-
guisher of [17] does not allow to derive a valid 10-round distinguisher” made in [16] is
justified only when just n = 1 tuple of pairs is used and/or no assumption on the key k is
done. In other words, the above defined relation R—for which we consider n > 64 different
tuples of pairs of texts—together with the requirement of uniqueness of the key k allows to
extend the 8-round distinguisher of [17] exploiting the same strategy proposed in [16].

Key-schedule vs Independent Subkeys. Before we go on, it is also important to emphasize
that no condition on the keys k° and k!° is imposed, except that they exist and they are equal
for all the tuples. That is, we do not require that these keys are equal to the real secret subkeys.
The same consideration holds also for the next distinguishers presented in this paper, and for
the 10-round distinguisher presented by Gilbert in [16].

Moreover, as in [16], two possible scenarios can be considered and studied:

1. no key-schedule holds—k° and k'© are independent;
2. AES key-schedule among k° and k.

Intuitively, the second case (i.e. with key schedule) is harder than the first one (i.e. without
key schedule) for the generic player, since a further property must be verified. In other words,
the time required by this player to generate the tuples for the second scenario is not smaller
than for the first one, that is the probability of success in the second scenario is not higher
than in the first one.

In the following, we limit ourselves to consider the case of independent subkeys. To
justify this choice, we recall the strategy adopted by Gilbert in [16] to set up his 10-round
distinguisher. First he considers the case of AES with independent subkeys (denoted by
AES7,), and he presents a 10-round known-key distinguisher for AES*. Then, he simply
observes that this known-key distinguisher on AES}, “is obviously applicable without any
modification to AESy, i.e. the full AES-128" (see [16, Sect. 4.2 - page 221]). Using the same
argumentation, we can easily conclude that also our distinguisher can be applied to real AES,
i.e. to the case in which the key schedule holds. Indeed, as we are going to highlight in the
following, nothing changes for the shortcut player (i.e. the one who knows the key), while
this scenario is more complicated for the generic player, since a further condition on k° and
k'O (that is, the key schedule) is imposed.

About the “Number n of Different Tuples of (plaintext, ciphertext) Pairs”. In the fol-
lowing we present the distinguisher in the case of independent subkeys. To obtain a suitable
value for n, we consider the best strategy that the generic player can adopt to win the game.

A value of n is suitable when the computational cost of the generic player is worse than the
one of the other player. To find such a value, one has to consider the numbers of oracle-queries
done by the two players (and potentially any further cost of the generic player). In particular,
if only the number of oracle-queries is taken in account, then n must be equal or greater
than 8, which implies that the computational cost for the shortcut player is of 2*7 and for
the generic player is (approximately) of 2439 In order to make the advantage of the shortcut
player more significant, we have chosen an (arbitrary) value of n = 64, which implies a cost
for the shortcut player of 2°° computations and (approximately) of 26%¢ computations for
the generic player.

@ Springer

1422 L. Grassi, C. Rechberger

5.1 The verifier

Given n tuples, the verifier has to check the existence of keys k° and k'° as defined previously.
Since the subkeys are independent (no key schedule is considered), the idea is simply to work
independently on the plaintexts (in order to find k°) and on the ciphertexts (in order to find & '°).

Let’s work for simplicity on the ciphertexts (analogous for the plaintexts). The idea is to
find the key k!0 (if it exists) using the the low-data truncated differential attack'? on 3-round
AES-128 presented in [18]. In the following, we briefly recall such an attack, opportunely
modified with respect to the one presented in [18] due to the different scope of this work. In
particular, here we describe the attack on 3 rounds presented in [18] as an attack on a single
round.

Truncated differential attack [18]. Consider three texts in the same coset of M; fori €
{0, 1, 2, 3} and the corresponding ciphertexts after one round, that is (pj ol Yforj=1,2,3
where ¢/ = R(p/) and p/ € M; @ a for an arbitrary (fixed) a € M;". The goal of the
attack is to find the key & such that the ciphertexts belong to the same coset of M; one round
before, that is k has to satisfy the following condition:

R'HeR!) eM and R'H@R!(CP) e M. (7

For simplicity, we assume that the final MixColumns operation is omitted (otherwise one
simply switches the final MixColumns and the final AddRoundKey operation, as usual in the
literature).

Since each column of M; depends on different and independent variables, the idea of the
attack is to work independently on each column of M; (and so of SR ~1(k)), and to exploit
the relationships that hold among the bytes that lie in the same column of M;.

Without loss of generality, we assume i = {0} and we present the attack only for the first
column of SR™! (k) (analogous for the others). As showed in [18], the conditions (7) are
fulfilled if the bytes of the first column of SR~ (k) satisfy the following relations:

h I/ h h h h
50,0 = 0x02 - sf,3, 532 =513 531 = 0x03 - 57 5,)

where si’fj = S-Box ™! (cil,j D ki j)® S-Box ! (clh’j ® k; ;) for h = 2, 3. For each value of
k13 (28 possible values in total), the idea is to find the values of kg o, k2,2 and k3 ; that satisfy
the previous relationships. On average, 28 combinations of these four bytes (i.e. one for each
possible value of k 3) satisfy the relations (8) for each pair of the ciphertexts. In other words,
given two texts ¢! and ¢2, on average there are (28)* = 232 keys k for which the condition
R,:l cHe R,:l (c?) € M, is satisfied (as already mentioned before). The idea is to test them
using the second pair of ciphertexts: on average, only the right combination passes the test.
The same procedure is used for the others columns of SR (k).

The total computational cost of the attack is well approximated by the cost of the first phase,
that is by the cost to find (on average) the 28 combinations of ko0, ..., k3,1 that satisfy (8) for
the first column—similar for the others (the cost of checking them with the second pair of texts
is negligible). In particular, the computational cost of this attack using 3 chosen plaintexts can
be approximated by 2!7-! S-Box look-ups (and negligible memory cost), or approximately
2116 table look-ups and a memory cost of 16 x 22 = 2'6 using a precomputation phase. We
refer to [18] for all the details.

Finally, we emphasize that the same attack works exactly in the same way also in the
decryption direction (chosen ciphertexts attack) with the same complexity. In this case, the

13 we emphasize that this attack has been practical verified (see [18] for details).

@ Springer

Revisiting Gilbert’s known-key distinguisher 1423

Data: 2 ciphertexts pairs (!, ¢2) and (¢!, ¢3), whose corresponding plaintexts belong in the same
coset of D).
Result: First diagonal of the secret key k (i.e. k; ; foreachi =0, ..., 3).
(Note: the same procedure with the same ciphertexts can be used to recover the other diagonal