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ON THE c-DIFFERENTIAL UNIFORMITY OF CERTAIN

MAPS OVER FINITE FIELDS

SARTAJ UL HASAN, MOHIT PAL, CONSTANZA RIERA,

AND PANTELIMON STĂNICĂ

Abstract. We give some classes of power maps with low c-differential
uniformity over finite fields of odd characteristic, for c = −1. Moreover,
we give a necessary and sufficient condition for a linearized polynomial
to be a perfect c-nonlinear function and investigate conditions when
perturbations of perfect c-nonlinear (or not) function via an arbitrary
Boolean or p-ary function is perfect c-nonlinear. In the process, we
obtain a class of polynomials that are perfect c-nonlinear for all c 6= 1,
in every characteristic. The affine, extended affine and CCZ-equivalence
is also looked at, as it relates to c-differential uniformity.

1. Introduction

Let p be an odd prime (unless stated otherwise), and let n be a positive
integer. We denote by Fq the finite field with q = pn elements and by F∗

q,
the multiplicative cyclic group of nonzero elements of Fq. We call a function
from Fpn to Fp a p-ary function on n variables.

For positive integers n and m, any map F : Fpn → Fpm is called a vectorial
p-ary function, or (n,m)-function. When m = n, F can be uniquely repre-

sented as a univariate polynomial over Fpn of the form F (x) =
∑pn−1

i=0 aix
i,

ai ∈ Fpn .
TheWalsh transformWF (a, b) of an (n,m)-function F at a ∈ Fpn , b ∈ Fpm

is defined as

WF (a, b) =
∑

x∈Fpn

ζTrm(bF (x))−Trn(ax)
p ,

where ζ = e
2πi
p is a p-root of unity and Tr : Fpn → Fp is the absolute trace

function, given by Tr(x) =
n−1
∑

i=0

xp
i

.

We also say that α ∈ F∗
pn is a β-linear structure for F , if F (x+α)−F (x) =

β, for all x ∈ Fpn .
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Let F be a function F : Fpn → Fpn. For any a, b ∈ Fpn , we denote by
N(a, b) the number of solutions x ∈ Fpn to F (x+ a)− F (x) = b. Let

∆F = max{N(a, b) | a, b ∈ Fpn , a 6= 0},

then a function F is called differentially δ-uniform if ∆F = δ. When ∆F = 1,
we call F to be perfect nonlinear (PN) function. In the literature, the PN
functions sometimes also referred to as planar functions. It is straightfor-
ward to see that in the case of characteristic two, x + a and x have the
same image and hence there is no PN function over a finite field of even
characteristic.

Deviating from the usual differentials (F (x+ a), F (x)), Borisov et. al. [2]
introduced the notion of so called multiplicative differentials of the form
(F (cx), F (x)) and they used this new type of differentials to attack some
existing ciphers. Motivated by the multiplicative differential as discussed in
[2], two of us, along with Ellingsen, Felke, and Tkachenko [10] defined a new
(output) multiplicative differential in the following way.

Definition 1.1. Let F be a function from a finite field Fpn to itself. For any
a, c ∈ Fpn, the (multiplicative) c-derivative of F with respect to a is defined
as

cDaF (x) = F (x+ a)− cF (x) for all x ∈ Fpn.

For a, b ∈ Fpn , let c∆F (a, b) = #{x ∈ Fpn : F (x + a) − cF (x) = b}. The
c-differential uniformity of F , denoted as c∆F , is then defined as

c∆F := max{c∆F (a, b) : a, b ∈ Fpn, and a 6= 0 if c = 1}.

When c∆F = δ, we say that c-differential uniformity of F is δ.

It is easy to see that when c = 1, c-differential uniformity coincides with
the usual notion of differential uniformity. If δ = 1 then F is called perfect
c-nonlinear (PcN) function and when δ = 2 then F is called almost perfect
c-nonlinear (APcN) function.

Recently, Bartoli and Timpanella [1] gave a generalization of planar func-
tions as follows.

Definition 1.2. Let β ∈ Fpn\{0, 1}. A function F : Fpn → Fpn is a β-planar
function in Fpn if ∀ γ ∈ Fpn , F (x+ γ)− βF (x) is a permutation of Fpn .

In the particular case, when β = −1, then β-planar function is called
quasi-planar. In view of the Definition 1.1, the β-planar functions are simply
PcN functions and quasi-planar functions are PcN functions with c = −1.
In what follows, we shall adopt the notations given in Definition 1.1. It is
easy to see from the definition of PcN function that when c 6= 1 and a = 0
then F (x + a) − cF (x) = (1 − c)F (x) is a permutation polynomial if and
only if F (x) is a permutation polynomial. Therefore, we shall consider the
perfect c-nonlinearity of permutation polynomials only.

In the next section, we establish a relation between the difference function
of the power map xd and Dickson polynomial of first kind over Fpn , for c =
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−1. In fact, such a relationship has its origin in [14, Proposition 8], where it
was established for the fields of characteristic 3. However, it turns out that
the sufficient conditions of [14, Proposition 8] are not correct. Bartoli and
Timpanella in their recent work [1, Theorem 6.1] extended and corrected
[14, Proposition 8].

Now we give the structure of the paper. In Section 2, we show that over
a finite field Fpn of odd characteristic, the conditions of [1, Theorem 6.1] are

also sufficient. As a consequence, we shall show that x
pℓ+1

2 is PcN for c = −1

over Fpn if and only if ℓ = 0 or
ℓ

gcd (ℓ, n)
is even (see also [15], or [13], where

this function was thoroughly analyzed). In Section 3, we give four classes
of power maps whose c-differential uniformity for c = −1 is 2, 3, 6 and 7. In
Section 4, we give all values of d for which xd is PcN over the finite fields
F35 , F55 and F75 , respectively, for c = −1. Following the pattern of the
computational results, we propose a conjecture about the plausible values
of d for which xd is PcN over Fp5 for c = −1. Similarly in Section 5, we

give all values of d for which xd is PcN over the finite fields F37 , F57 and
F77 , respectively, for c = −1. Following the pattern of the computational
results, we propose another conjecture about the plausible values of d for
which xd is PcN over Fp7 for c = −1. In Section 6, for c 6= 1, we give a
necessary and sufficient condition for a linearized polynomial to be PcN. We
also find necessary and sufficient conditions for the sum F + γf to be PcN,
where γ ∈ Fpn , F is PcN and f is any Boolean function. We also show that
in some instances such perturbations do not produce PcN functions. We
further discuss the affine, extended affine and CCZ-equivalence as it relates
to c-differential uniformity. Finally, in Section 7 we present the conclusion
of the paper.

2. PcN power maps and Dickson polynomials

Recall that for c = −1, a polynomial function F (x) is called PcN over
Fpn if the corresponding mapping x → F (x + a) + F (x) is a permutation
of Fpn for each a ∈ Fpn. Therefore, a power map xd is PcN if and only if

(x+a)d+xd is a permutation of Fpn for each a ∈ Fpn . Now we present some
lemmas that will be useful in the sequel. Throughout this section, we shall
assume that c = −1, whenever we refer to PcN functions.

Lemma 2.1. A monomial xd is perfect (−1)-nonlinear in Fpn if and only

if xd and (x+ 1)d + (x− 1)d are permutations of Fpn.

Proof. Let F (x) = xd; then, by definition, F is a PcN function if and only
if (x+ a)d + xd is a permutation of Fpn for all a ∈ Fpn . For a = 0, we have

(x + a)d + xd = 2xd, and 2xd is clearly a permutation of Fpn if and only if

xd is a permutation of Fpn . For a 6= 0, we have

(x+ a)d + xd is a permutation of Fpn
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⇐⇒ ad
[

(x

a
+ 1

)d
+

(x

a

)d
]

is a permutation of Fpn

⇐⇒
(x

a
+ 1

)d
+

(x

a

)d
is a permutation of Fpn

⇐⇒ (y + 1)d + yd is a permutation of Fpn; where ay = x

⇐⇒

(

2y + 1 + 1

2

)d

+

(

2y + 1− 1

2

)d

is a permutation of Fpn

z:=2y+1
⇐⇒

(

1

2

)d [

(z + 1)d + (z − 1)d
]

is a permutation of Fpn

⇐⇒ (z + 1)d + (z − 1)d is a permutation of Fpn .

This completes the proof of the lemma. �

In what follows, we shall adopt this definition of PcN function for power
maps, when c = −1. One of the motivations behind considering this defini-
tion is that we can establish a connection between (x+ 1)d + (x − 1)d and
d-th Dickson polynomial of the first kind. We recall the Dickson’s original
approach of defining the Dickson polynomial Dd(x, a), which was essentially
based on the relationship between the sum of d-th powers and elementary
symmetric functions. In fact, the d-th Dickson polynomial of the first kind
Dd(x, a) ∈ Fq[x] (q a power of the prime p) admits the following represen-
tation

ud1 + ud2 =

⌊ d
2
⌋

∑

i=0

d

d− i

(

d− i

i

)

(−u1u2)
i(u1 + u2)

d−2i

= Dd(u1 + u2, u1u2),

(2.1)

where u1, u2 are indeterminates andDd(x, a) =

⌊ d
2
⌋

∑

i=0

d

d− i

(

d− i

i

)

(−a)ixd−2i.

We will be using in some places Hilbert’s Theorem 90 (see [3]), which
states that if F →֒ K is a cyclic Galois extension and σ is a generator of the

Galois group Gal(K/F), then the relative trace TrK/F(x) =

|Gal(K/F)|−1
∑

i=0

σi(x) =

0, x ∈ K, if and only if x = σ(y)− y, for some y ∈ K.
We now recall a result of Nöbauer [11], which we shall often use, regarding

the permutation behavior of Dickson polynomial of the first kind over the
finite field Fpn .

Lemma 2.2. [11] Let a ∈ F∗
pn. The d-th Dickson polynomial of the first kind

Dd(x, a) permutes the elements of finite field Fpn if and only if gcd (d, p2n−
1) = 1.

The following lemma will be used throughout.



ON THE c-DIFFERENTIAL UNIFORMITY OF CERTAIN MAPS OVER FINITE FIELDS5

Lemma 2.3. [10, Lemma 9] Let p be a prime number and ℓ, n be positive
integers such that ℓ ≤ n. Then:

(1) If p is odd, then gcd(pℓ + 1, pn − 1) = 2 if
n

gcd(ℓ, n)
is odd.

(2) If p is odd, then gcd(pℓ+1, pn−1) = pgcd(ℓ,n)+1 if
n

gcd(ℓ, n)
is even.

(3) If p = 2, then gcd(2ℓ + 1, 2n − 1) =
2gcd(n,2ℓ) − 1

2gcd(n,ℓ) − 1
.

The following lemma gives a nice connection between the difference func-
tion of the power map xd and the Dickson polynomial for first kind over
F3n , for c = −1.

Lemma 2.4. [14, Proposition 8] For a positive odd integer n with n ≥ 3, if
d ≡ −1 (mod 3) and gcd (d, 32n − 1) = 1, then

(2.2) (x+ 1)d + (x− 1)d = 2Dd(x, 1)

is a permutation of F3n , where Dd(x, 1) is the Dickson polynomial of the
first kind.

As alluded to in Introduction, the sufficient conditions in the above lemma
do not hold, and the counterexamples can be found using easy computer
searches. For instance, when n = 5 and d = 17, d clearly satisfies the
conditions of Lemma 2.4, but (x+1)17 + (x− 1)17 6= 2Dd(x, 1). Bartoli and
Timpanella [1, Theorem 6.1] provided the correct conditions on d for which
(2.2) holds over finite fields of odd characteristic. However, it appears that
there is a missing case (k = 0) in [1, Theorem 6.1], which we shall include
here. The following theorem provides a relationship between the difference
function of the power map xd and the Dickson polynomial of first kind over
Fpn, for c = −1.

Theorem 2.5. Let p be an odd prime, d be a positive integer such that
d = a0+a1p+a2p

2+ · · ·+akp
k for some k ≥ 0, where ai ∈ {0, 1, · · · , p− 1}

and a0, ak 6= 0, then (x+ 1)d + (x− 1)d = 2Dd(x, ǫ) for some ǫ ∈ F∗
p if and

only if either

(1) d = 1, 2, 3; or

(2) a0 =
p+ 1

2
and aj =

p− 1

2
∀j ∈ {1, 2, . . . , k}

(

thus, d =
pk+1 + 1

2

)

.

Proof. The necessity of the theorem has already been proved in [1] for all
k except for the case k = 0. Here we shall prove the necessity for the case
k = 0. In this case, we have d = a0 ∈ {1, . . . , p − 1}. We now consider two
cases, namely, p = 3 and p > 3. If p = 3, the only possible values for d are
1 and 2 and we are done. If p > 3 (hence, we can assume d ≥ 4, since the
values d = 1, 2, 3 were already covered in Condition (1)), we shall show that

the only possible value of a0 is
p+ 1

2
. It is given that

(x+ 1)d + (x− 1)d = 2Dd(x, ǫ)
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for some ǫ ∈ F∗
p. By using binomial expansion on the left in the above

equation, and by comparing the coefficients on both sides, we have

(

d

2i

)

≡
d

d− i

(

d− i

i

)

(−ǫ)i (mod p),

for all i ∈
{

0, 1, . . . , ⌊d2⌋
}

.
Surely, for i = 0, the previous claim is obviously true. For i = 1, we have

a0(a0 − 1)

2
≡ −ǫ · a0 (mod p),

which is true if and only if ǫ ≡
1− a0

2
(mod p).

For i = 2, we have

(2.3)
a0(a0 − 1)(a0 − 2)(a0 − 3)

24
≡

a0(a0 − 1)2(a0 − 3)

8
(mod p).

Now since a0 ∈ {4, . . . , p − 1}, the congruence (2.3) reduces to 2a0 ≡ 1

(mod p) which is true if and only if a0 =
p+ 1

2
. Therefore for k = 0 and

d ≥ 4,
p+ 1

2
is the only possible value for a0. Hence, the necessity of the

theorem for the case k = 0 is established.
Next, we shall proceed to prove the sufficiency of the theorem. When

d = 1, then (x+1)d+(x−1)d = 2x = 2Dd(x, ǫ) for any ǫ ∈ F∗
p. When d = 2,

then (x + 1)d + (x − 1)d = 2(x2 + 1) = 2Dd

(

x,−
1

2

)

. When d = 3, then

(x + 1)d + (x − 1)d = 2(x3 + 3x) = 2Dd(x,−1). For d ≥ 4, we shall show
that

(x+ 1)d + (x− 1)d = 2Dd

(

x,
1

4

)

.

Since we evaluate Dickson’s polynomial over some extension of the involved
prime field, Fp, we assume that the variables take values in the extension

Fq of Fp (q = pn, for some n). Now, for α ∈ Fq, we let u1 =
u

2
∈ Fq2 and

u2 =
u−1

2
∈ Fq2 , where u, u

−1 are the roots of the polynomial z2−2αz+1 ∈

Fq[z]. Then, the sum of the roots is 2α = u+ u−1 ∈ Fq, and Equation (2.1)
reduces to

Dd

(

u+ u−1

2
,
1

4

)

=
(u

2

)d
+

(

u−1

2

)d

Dd

(

α,
1

4

)

=
(u

2

)d
+

(

u−1

2

)d

.
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One may note that when d = a0 + a1p + a2p
2 + · · · + akp

k for some k ≥ 0
and a0 =

p+1
2 and aj =

p−1
2 , for all j ∈ {1, 2, . . . , k}, then

d =
p+ 1

2
+

p− 1

2

k
∑

j=1

pj =
p+ 1

2
+

p− 1

2
p
pk − 1

p− 1
=

pk+1 + 1

2
.

Now, we have (with ℓ = k + 1)

(α+ 1)
pℓ+1

2 + (α− 1)
pℓ+1

2 =

(

u+ u−1

2
+ 1

)

pℓ+1

2

+

(

u+ u−1

2
− 1

)

pℓ+1

2

=

(

1

2

)
pℓ+1

2
(

(u+ u−1 + 2)
pℓ+1

2 + (u+ u−1 − 2)
pℓ+1

2

)

=

(

1

2u

)
pℓ+1

2
(

(u2 + 2u+ 1)
pℓ+1

2 + (u2 − 2u+ 1)
pℓ+1

2

)

=

(

1

2u

)
pℓ+1

2
(

(u+ 1)p
ℓ+1 + (u− 1)p

ℓ+1
)

=

(

1

2u

)
pℓ+1

2
(

2up
ℓ+1 + 2

)

= 2

(

1

2

)
pℓ+1

2
(

u
pℓ+1

2 + (u−1)
pℓ+1

2

)

= 2





(u

2

)
pℓ+1

2

+

(

u−1

2

)

pℓ+1

2





= 2D pℓ+1

2

(

u+ u−1

2
,
1

4

)

= 2D pℓ+1

2

(

α,
1

4

)

.

Hence, the theorem is proved. �

Remark 2.6. Theorem 2.5 above completes Theorem 6.1 of [1]. Proposi-
tion 8 of [14] is a particular case of the above theorem with p = 3. Also,
the above theorem provides a simpler proof of [1, Proposition 4.1] in the
particular case of ℓ = 2.

Our focus is now to study the perfect c-nonlinearity of the power map

x
pℓ+1

2 over Fpn , where ℓ ≥ 0 and n > 1 (note that this has been also inves-
tigated in [13]). As alluded to in Introduction, we shall consider the perfect
c-nonlinearity of permutation polynomials only. In view of this, we shall

first examine the permutation behaviour of the power map x
pℓ+1

2 . We may
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impose a restriction of ℓ < n, so as to ensure that the exponent pℓ+1
2 does

not exceed pn − 1. The following theorem gives the necessary and sufficient

conditions on ℓ and n for which the power map x
pℓ+1

2 is a permutation of Fpn .
Surely, we can find it as a particular case of existing permutation classes,
but our proof is short enough to warrant an inclusion here.

Theorem 2.7. The power map x
pℓ+1

2 is a permutation of Fpn if and only if
any one of the following conditions hold :

(1) ℓ = 0;
(2) ℓ is even and n is odd ;
(3) ℓ is even and n is even together with t2 ≥ t1, where n = 2t1u and

ℓ = 2t2v such that 2 ∤ u, v;
(4) ℓ is odd, n is odd and p ≡ 1 (mod 4).

Proof. The case ℓ = 0 is trivial. For ℓ 6= 0, if the exponent
pℓ + 1

2
is

even, gcd

(

pℓ + 1

2
, pn − 1

)

≥ 2 and thus, the power map X
pℓ+1

2 is not a

permutation of Fpn . We shall, therefore, consider the case when
pℓ + 1

2
is

odd. It is easy to see that
pℓ + 1

2
is odd if and only if ℓ is even or ℓ is

odd and p ≡ 1 (mod 4). If we assume that
pℓ + 1

2
is odd, then a direct

application of Lemma 2.3 shows that X
pℓ+1

2 is a permutation of Fpn if and

only if gcd

(

pℓ + 1

2
, pn − 1

)

= 1, that is, gcd
(

pℓ + 1, pn − 1
)

= 2, which

is equivalent to
n

gcd(ℓ, n)
is odd. Further, under the assumption that

pℓ + 1

2

is odd, we observe that
n

gcd(ℓ, n)
is odd if and only if one of later three

conditions of the statement of the theorem holds and hence, the theorem is
proved. �

Although the map x
pℓ+1

2 is a permutation of Fpn when both ℓ, n are odd
and p ≡ 1 (mod 4), the following theorem tells that it ceases to be perfect
(−1)-nonlinear over Fpn (compare with [13, Theorem 8]).

Theorem 2.8. If both ℓ, n are odd and p ≡ 1 (mod 4), then the power map

x
pℓ+1

2 is not perfect (−1)-nonlinear over Fpn.

Proof. Since ℓ is odd and p ≡ 1 (mod 4),
pℓ + 1

2
is odd. Now, by a direct

application of Lemma 2.1, Theorem 2.5 and Lemma 2.2 at the appropriate
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places, we obtain the following equivalence

x
pℓ+1

2 is PcN over Fpn

⇐⇒ (x+ 1)
pℓ+1

2 + (x− 1)
pℓ+1

2 is a permutation of Fpn

⇐⇒ D pℓ+1

2

(

x,
1

4

)

is a permutation of Fpn ,∀ 1 ≤ ℓ < n

⇐⇒ gcd

(

pℓ + 1

2
, p2n − 1

)

= 1

⇐⇒ gcd
(

pℓ + 1, p2n − 1
)

= 2

⇐⇒
2n

gcd (ℓ, 2n)
is odd.

But since ℓ and n are odd,
2n

gcd (ℓ, 2n)
is never odd and we are done. �

In view of Theorem 2.8, it remains to check perfect (−1)-nonlinearity of

the map x
pℓ+1

2 only under the first three conditions of Theorem 2.7 which
essentially make it a permutation of Fpn . Notice that the first three con-
ditions of Theorem 2.7 have a common property that ℓ is even. Thus, it
makes sense to assume that ℓ is even and prove the following theorem that
gives necessary and sufficient conditions on ℓ and n for which the power

map x
pℓ+1

2 is perfect (−1)-nonlinear over Fpn (compare with [13, Theorem
8], which also investigates the map).

Theorem 2.9. The power map x
pℓ+1

2 is perfect (−1)-nonlinear over Fpn if
and only if any one of the following conditions holds:

(1) ℓ = 0;
(2) ℓ even and n odd ;
(3) ℓ even and n even together with t2 ≥ t1 + 1, where n = 2t1u and

ℓ = 2t2v such that 2 ∤ u, v.

Proof. From Theorem 2.7 and Theorem 2.8, it is clear that we need to check

the perfect (−1)-nonlinearity of the map x
pℓ+1

2 only when ℓ is even. The

case ℓ = 0 is trivial. Suppose ℓ 6= 0. Since ℓ is even,
pℓ + 1

2
is odd. Now by

the similar arguments as in the proof of Theorem 2.8 based on Lemma 2.1,
Theorem 2.5 and Lemma 2.2 , we arrive at the following

x
pℓ+1

2 is PcN over Fpn if and only if
2n

gcd (ℓ, 2n)
is odd.

It is easy to see that
2n

gcd (ℓ, 2n)
is odd if and only if one of the latter two

conditions of the statement of the theorem is true and thus, we are done. �
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Remark 2.10. Observe that Theorem 2.9 gives a simpler proof of [15, The-
orem 5], which, in turn, provides a simpler proof of a conjecture of Bartoli
and Timpanella [1, Conjecture 4.7], already settled in [15].

3. Power maps with Low c = −1 differential Uniformity

Due to their wide range of applications in symmetric key cryptography,
functions with low differential uniformity are very important objects. In
this section, we give some classes of power maps (monomials) with low c-
differential uniformity for c = −1. We first recall a useful lemma [12] related
to the Dickson polynomial of the first kind, which is more general than
Lemma 2.2 (see [11]).

Lemma 3.1. [12, Proposition 41] Let a ∈ F∗
pn, and let Dd(x, a) be the

Dickson polynomial of the first kind. Then Dd(x, a) is an m-to-1 function
over Fpn if and only if gcd

(

d, p2n − 1
)

= m.

Now we shall prove the following theorem that gives (−1)-differential

uniformity of the map x
pℓ+1

2 over Fpn under certain restrictions. Two of
us found the (−1)-uniformity of this map in its generality in [13], but with
much more effort, so we thought that the following simpler approach in the
next theorem is worth including here, albeit the result being weaker.

Theorem 3.2. Let x
pℓ+1

2 be a power map from Fpn to itself and gcd(ℓ, 2n) =
1, p an odd prime. If p ≡ 1 (mod 4), or p ≡ 3 (mod 8), then the (−1)-

differential uniformity of x
pℓ+1

2 over Fpn is
p+ 1

2
.

Proof. Since gcd(ℓ, 2n) = 1, ℓ is odd. Thus, p ≡ 1 (mod 4) implies that

pℓ + 1 ≡ 2 (mod 4), i.e,
pℓ + 1

2
is odd (we will only show the first claim as

the second is rather similar: we, however, use that if p ≡ 3 (mod 8) implies

that pℓ + 1 ≡ 4 (mod 8), that is,
pℓ + 1

4
is odd). Now we will show that for

all a, b ∈ Fpn , the following equation

(3.1) (x+ a)
pℓ+1

2 + x
pℓ+1

2 = b

has at most
p+ 1

2
solutions in Fpn. We first consider the case when a = 0.

In this case, Equation (3.1) can have at most gcd
(

pℓ+1
2 , pn − 1

)

roots. By

Lemma 2.3, if n is odd, then gcd
(

pℓ + 1, pn − 1
)

= 2 and if n is even,

then gcd
(

pℓ + 1, pn − 1
)

= p + 1. Therefore, gcd

(

pℓ + 1

2
, pn − 1

)

= 1

for n odd and gcd

(

pℓ + 1

2
, pn − 1

)

=
p+ 1

2
for n even. Thus, for a = 0,
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Equation (3.1) can have at most
p+ 1

2
solutions. We can be more precise:

for a = 0, then Equation (3.1) has one solution for n odd and exactly p+1
2

solutions for n even for some b, and we argue that below. Let α be a primitive
root in Fpn and b

2 = αk, for some k. With x = αy, Equation (3.1) becomes

α
pℓ+1

2
y = αk. We are reduced to the equation

(3.2)
pℓ + 1

2
y ≡ k (mod pn − 1).

If gcd

(

pℓ + 1

2
, pn − 1

)

= m ∈

{

1,
p+ 1

2

}

, then Equation (3.2) has so-

lutions if and only if m | k, and under that assumption, using elementary
number theory, there are exactly m solutions y for Equation (3.2), and they

are y0, y0 +
pn−1
m , y0 +2pn−1

m , . . . , y0 + (m− 1)p
n−1
m , where y0 =

k
m

(

pℓ+1
2m

)−1

(mod pn−1
m ), thus inferring our claim (those b for which we have the claim

are of the form b = 2αk, with k ≡ 0 (mod m)).
In the case of a 6= 0, we can take a = 1 in (3.1). After relabelling, it is

equivalent to find the maximum number of solutions of the equation

(3.3) (x+ 1)
pℓ+1

2 + (x− 1)
pℓ+1

2 = b′

in Fpn , where b′ ∈ Fpn. By Theorem 2.5, the above equation can be re-
written as

(3.4) D pℓ+1

2

(

x,
1

4

)

= b′.

Now, by Lemma 2.3, we have gcd
(

pℓ + 1, p2n − 1
)

= p + 1 and hence,

gcd

(

pℓ + 1

2
, p2n − 1

)

=
p+ 1

2
. Therefore, by Lemma 3.1, Equation (3.4)

can have at most
p+ 1

2
roots, however, with the bound being attained,

otherwise D pℓ+1

2

(

x, 14
)

would not be m-to-1. This completes the proof. �

The following are immediate corollaries to Theorem 3.2.

Corollary 3.3. Let F (x) = x
5
ℓ
+1

2 be a power function on F5n , G(x) =

x
13

ℓ
+1

2 on F13n , and gcd (ℓ, 2n) = 1. Then for c = −1, the c-differential
uniformity of the function F is 3 and the one of G is 7.

Corollary 3.4. Let F (x) = x
3
ℓ
+1

2 be a power function on F3n , G(x) =

x
11

ℓ
+1

2 on F11n , and gcd (ℓ, 2n) = 1. Then for c = −1, F is an APcN
function (see also [10, Thm. 10]), and the (−1)-differential uniformity of G
is 6.
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4. PcN power functions over Fp5 with c = −1

In this section, first we shall prove four propositions, which will be useful
in the sequel.

Proposition 4.1. Let c ∈ F∗
p then the c-differential uniformity of the power

functions xd and xdp
j
, j ∈ {0, 1, . . . , n− 1} over Fpn is the same.

Proof. For a, b ∈ Fpn , we have

(x+ a)d − cxd = b ⇐⇒ xp
j

◦
(

(x+ a)d − cxd
)

= xp
j

(b)

⇐⇒ (x+ a)dp
j

− cxdp
j

= e, where xp
j

(b) = e ∈ Fpn .

Since xp
j

is a permutation, if b runs over Fpn then so does e. This completes
the proof. �

Proposition 4.2. Let c = ±1 and gcd (d, pn−1) = 1, then the c-differential

uniformity of the power functions xd and xd
−1

over Fpn is the same, where
d−1 is the inverse of d modulo pn − 1.

Proof. For any a, b ∈ Fpn , we have

(x+ a)d − cxd = b ⇐⇒ (x+ a)d = (cxd + b)

⇐⇒ x+ a = (cxd + b)d
−1

⇐⇒ a = (cxd + b)d
−1

− x

⇐⇒ a = (y + b)d
−1

−
yd

−1

cd−1
, where y = cxd

⇐⇒ a = (y + b)d
−1

− cyd
−1

Therefore, for c = ±1, the c-differential uniformity of xd and xd
−1

over Fpn

is the same. �

Proposition 4.3. Let p be an odd prime and d′ = p4+(p−2)p2+(p−1)p+1.

Then for c = −1, the map xd
′

is PcN over Fp5.

Proof. From Theorem 2.9, we know that for c = −1, x
p2+1

2 is PcN over

Fp5. Now since gcd

(

p2 + 1

2
, p5 − 1

)

= 1, its multiplicative inverse modulo

p5 − 1 exists and is equal to p4 + (p − 2)p2 + (p − 1)p + 1. Therefore, by

Proposition 4.2, xd
′

is a PcN over Fp5 for c = −1. �

In view of Proposition 4.1, Proposition 4.2 and Theorem 2.9, the following
proposition immediately follows from the fact, stated in [15], that over F∗

pn

with n odd, p

(

pn + 1

p+ 1

)

is the inverse of
pn−1 + 1

2
.
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Proposition 4.4. Let p be an odd prime and d =
p5 + 1

p+ 1
. Then for c = −1,

xd is PcN over Fp5.

As an empirical support for these results, and in search of more PcN power
functions for c = −1, we performed an exhaustive search of all possible
exponents d for which xd is PcN for c = −1 over the finite fields F35 , F55 ,
and F75 , respectively. The result of this search was that d is of the form

pj
{

1,
p2 + 1

2
, p4 + (p− 2)p2 + (p− 1)p + 1,

p4 + 1

2
,
p5 + 1

p+ 1

}

for all 0 ≤ j ≤ 4, for p = 3, 5, 7, respectively. Based on this empirical
evidence, we propose the following conjecture.

Conjecture 4.5. Let p be an odd prime.Then, for c = −1, and for all
0 ≤ j ≤ 4,

pj
{

1,
p2 + 1

2
, p4 + (p− 2)p2 + (p− 1)p + 1,

p4 + 1

2
,
p5 + 1

p+ 1

}

are the only values of d for which xd is PcN on Fp5 .

5. PcN power functions over Fp7 with c = −1

Proposition 5.1. Let p be an odd prime and d1 = (p − 1)p6 + p5 + (p −
2)p3 + (p− 1)p2 + p. Then for c = −1, the map xd1 is a PcN map over Fp7.

Proof. From Theorem 2.9, we know that for c = −1, x
p2+1

2 is PcN map over

Fp7. Now since gcd

(

p2 + 1

2
, p7 − 1

)

= 1, its multiplicative inverse modulo

p7− 1 exists and is equal to (p− 1)p6 + p5+(p− 2)p3 +(p− 1)p2 + p. Thus,
by Proposition 4.2, the map xd1 is PcN function over Fp7 for c = −1. �

Proposition 5.2. Let p be an odd prime and d2 = (p − 2)p6 + (p − 2)p5 +
(p − 1)p4 + p3 + p2 + p. Then for c = −1, the map xd2 is a PcN function
over Fp7.

Proof. From Theorem 2.9, we know that for c = −1, the power function

x
p4+1

2 is PcN over Fp7 . Now since gcd

(

p4 + 1

2
, p7 − 1

)

= 1, its multiplica-

tive inverse modulo p7 − 1 exists and is equal to (p − 2)p6 + (p − 2)p5 +
(p− 1)p4 + p3 + p2 + p. Therefore. by Proposition 4.2, the map xd2 is PcN
function over Fp7 for c = −1. �

In view of Proposition 4.1, Proposition 4.2 and Theorem 2.9, the following
proposition is a direct consequence of the fact that over F∗

pn with n odd,

p

(

pn + 1

p+ 1

)

is the inverse of
pn−1 + 1

2
.
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Proposition 5.3. Let p be an odd prime and d3 =
p7+1
p+1 . Then for c = −1,

the power function xd3 is PcN over Fp7.

As an empirical support for these results, and in search of more PcN power
functions for c = −1, we performed an exhaustive search of all possible
exponents d for which xd is PcN for c = −1 over the finite fields F37 , F57 ,
and F77 , respectively. The result of this search was that d is of the form

pj
{

1,
p2 + 1

2
, ((p − 1)p6 + p5 + (p− 2)p3 + (p − 1)p2 + p),

p4 + 1

2
,

p6 + 1

2
, (p − 2)p6 + (p− 2)p5 + (p − 1)p4 + p3 + p2 + p,

p7 + 1

p+ 1

}

for all 0 ≤ j ≤ 6, for p = 3, 5, 7, respectively.

Conjecture 5.4. Let p be an odd prime. Then for c = −1 and for all
0 ≤ j ≤ 6,

pj
{

1,
p2 + 1

2
, ((p − 1)p6 + p5 + (p− 2)p3 + (p − 1)p2 + p),

p4 + 1

2
,

p6 + 1

2
, (p − 2)p6 + (p− 2)p5 + (p − 1)p4 + p3 + p2 + p,

p7 + 1

p+ 1

}

are the only values of d for which xd is PcN over Fp7 .

Remark 5.5. The pattern in [1, Conjecture 5.3], Conjecture 4.5 and Con-
jecture 5.4 appears to suggest that over a finite field Fpn, where n is odd, the
positive integers in the following set

{

pj
{

1,
p2 + 1

2
,
p4 + 1

2
, . . . ,

pn−1 + 1

2

}}

j=0,1,2,...,r−1

and their multiplicative inverse modulo (pn − 1) are the only possible expo-
nents d for which the power function xd is PcN for c = −1. However, this
is not true in general and the smallest example is d = 29 over the finite
field F39 . Therefore, the question about the exponents d, for which the power
functions xd are PcN over finite field Fpn, where n odd, is not clear, even
conjecturally.

6. Perturbations of PcN and other functions

After linear functions and power functions, linearized polynomials are
another special class containing permutation polynomials. The following
proposition gives a necessary and sufficient condition for a linearized poly-
nomial to be perfect c-nonlinear, similar to [8, Proposition 2.4].

Proposition 6.1. Let c 6= 1. A linearized polynomial L is perfect c-
nonlinear over Fpn if and only if L is a permutation polynomial if and only
if its only root in Fpn is zero.
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Proof. Recall that a linearized polynomial L(x) over finite field Fpn is a

polynomial of the form
∑n−1

i=0 aix
pi . Now consider the difference function

cDaL(x) = L(x+ a)− cL(x)

=

n−1
∑

i=0

ai(x+ a)p
i

− c ·

n−1
∑

i=0

aix
pi

= (1− c) ·

n−1
∑

i=0

aix
pi +

n−1
∑

i=0

aia
pi .

Now, if the only root of L(x) in Fpn is zero, then L(x) is a permutation
polynomial. Now since c 6= 1, the difference function cDa being an affine
linearized polynomial is also a permutation polynomial and hence L(x) is
perfect c-nonlinear. �

Corollary 6.2. Let c 6= 1. The binomial F (x) = xp
j

− axp
i

, 0 ≤ i < j, is a
perfect c-nonlinear function over Fpn if and only if a is not a (pj−i − 1)-st
power in Fpn and c 6= 1.

Proof. If a is not a (pj−i − 1)-th power in Fpn then the only root of F (x)
in Fpn is 0 and hence F (x) is a linearized permutation polynomial and the
result follows from Proposition 6.1. �

It is not a simple matter to characterize when a perturbation of a function
with some specific property is preserved. We can, however, characterize
when the sum of a PcN and an arbitrary p-ary function is also PcN (for
1 6= c ∈ Fp), thus extending in some direction the previous corollary.

Theorem 6.3. Let 1 6= c ∈ Fp be fixed, p odd. Let F be a perfect c-nonlinear
function, and f be an arbitrary p-ary function, both on Fpn. Then, F + γf
is perfect c-nonlinear if and only if for any λ ∈ Fpn with Tr(γλ) = β ∈ F∗

p,
the following is true

WRa(−λ, β) =
∑

y∈Fpn

ζTr(βRa(y)+λy) = 0,

where ζ is a p-root of unity, Ra = Ha ◦ G
−1, cDaf(x) = Tr(Ha(x)) (Ha is

non-unique) and G−1 is the compositional inverse of G = cDaF .

Proof. Certainly, F + γf is PcN if and only if

F (x+ a) + γf(x+ a)− cF (x) − cγf(x)

= F (x+ a)− cF (x) + γ(f(x+ a)− cf(x))

= cDaF (x) + γ · cDaf(x)

is a permutation polynomial.
We now write cDaf(x) = Tr(Ha(x)), for some (non-unique) function Ha

on Fpn (since c ∈ Fp, if f is p-ary, then cDaf is p-ary, and such Ha does
exists). We then use [7, Theorem 2], which states that if G is a permutation
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andH is arbitrary, thenG(x)+γTr(H(x)) is a permutation polynomial if and

only if for any λ ∈ Fpn with Tr(γλ) = β ∈ F∗
p then

∑

y∈Fpn

ζTr(βR(y)+λy) = 0,

where R = H ◦G−1. Our theorem is shown. �

What can we say about a Boolean perturbation of a non-permutation?
Let F = L + γf . From [7, Proposition 3], we know that if F is a PP then
the linearized polynomial L on Fpn must be a permutation or a p-to-1 map
(surely, in general a linearized polynomial can have a kernel with dimension
higher than 1, but the quoted result shows that if L is a ps-to-1 (s > 1)
function, then F cannot be a PP). We denote by Im(L) = {L(x) |x ∈ Fpn},
the image of the map L. If L is a permutation polynomial, then Theorem 6.3
applies, so we consider the case of a p-to-1 linearized polynomial.

Theorem 6.4. Let 1 6= c ∈ Fp, L be a p-to-1 linearized polynomial on Fpn

and f an arbitrary p-ary function, and let F = L + γf be a permutation
polynomial. Then F = L + γf is perfect c-nonlinear if and only if both of
the following conditions are satisfied for all a ∈ F∗

pn:

(i) γ 6∈ Im(L);
(ii) cDaf(x+ ǫ)− cDaf(x) 6= 0, for all x ∈ Fpn, ǫ ∈ Ker(L)∗.

Proof. Let a ∈ F∗
pn and 1 6= c ∈ Fp. Notice that

cDaL(x) = L(x+ a)− cL(x)

= (1− c)L(x) + L(a)

= L((1− c)x+ a).

Therefore, Im(cDaL) ⊆ Im(L). Further, as we know, F is perfect c-nonlinear
if and only if

cDaF (x) = cDaL(x) + γ cDaf(x) = L((1− c)x+ a) + γ(f(x+ a)− cf(x))

is a permutation polynomial.
We now slightly modify the proof of [7, Theorem 4], since, as it is, it

cannot be applied directly for our case. Further, observe that

cDaF (x) =

{

L((1 − c)x+ a) if f(x+ a)− cf(x) = 0;

L((1 − c)x+ a) + γd if f(x+ a)− cf(x) = d ∈ F∗
p.

If γ ∈ Im(L), then γ = L(α), α ∈ Fpn , and for d ∈ F∗
p, γd = dL(α) =

L(dα). Therefore, the image set of cDaF is contained in the image set of
L. Consequently, cDaF cannot be a permutation as L is a p-to-1 function.
Thus, we can assume that γ 6∈ Im(L). For any ǫ ∈ Ker(L)∗, we have

cDaF (x+ ǫ)− cDaF (x)

= L((1 − c)(x + ǫ) + a)− L((1 − c)x+ a) + γ(cDaf(x+ ǫ)− cDaf(x))

= L((1 − c)ǫ) + γ(cDaf(x+ ǫ)− cDaf(x))

= γ(cDaf(x+ ǫ)− cDaf(x))
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Thus, if cDaF is a permutation, then cDaf(x + ǫ) − cDaf(x) has to be
non-zero for all x ∈ Fpn and ǫ ∈ Ker(L)∗.

Conversely, we assume that (i) and (ii) hold. Let y, z ∈ Fpn such that

cDaF (y) = cDaF (z). Thus

cDaF (y)− cDaF (z) = 0

L((1 − c)(y − z)) + γ(cDaf(y)− cDaf(z)) = 0.

Let y − z = ǫ, then the above equation reduces to

(1− c)L(ǫ) + γ (cDaf(z + ǫ)− cDaf(z)) = 0.

If ǫ ∈ Ker(L), then by condition (ii), ǫ = 0, forcing y = z. If ǫ /∈ Ker(L),

then cDaf(y)− cDaf(z) = d̃ ∈ F∗
p, so 0 = (1− c)L(y−z)+γd̃, contradicting

the fact that γ 6∈ Im(L). �

We shall use below some results of [6, Theorem 3] and [7, Corollary 1(i)].

Theorem 6.5. Let p be a prime number, β, γ ∈ Fpn and H ∈ Fpn[x]. Then
the polynomial

F (x) = x+ γTr(H(xp − γp−1x) + βx)

is a permutation polynomial if and only if Tr(βγ) 6= −1.

(Surely, if p = 2, the trace condition is Tr(βγ) = 0.) We are now ready to
show the next result, where we construct a class of (linearized) polynomials
that are PcN for every c 6= 1, in all characteristics.

Proposition 6.6. Let p be a prime number, α, γ ∈ Fpn. Then F (x) =
x+ γTr(xp − αx) is PcN for all c 6= 1 if and only if Tr(γ(1 − α)) 6= −1.

Proof. The c-differential of F at a is now

cDaF (x) = F (x+ a)− cF (x)

= x+ a+ γTr (xp + ap − αx− αa)− cx− γcTr(xp − αx)

= (1− c)x+ (1− c)γTr(xp − αx) + a+ γTr(ap − αa).

Thus, F is PcN if and only if (1−c)x+(1−c)γTr(xp−αx)+a+γTr(ap−αa)
is PP for all a, which is equivalent to (1− c)x+ (1− c)γTr(xp − αx) being
a PP, and further, x + γTr(xp − αx) being a PP. Now, we re-write the
previous function as x+Tr

(

xp − γp−1x+ (γp−1 − α)x
)

. Using Theorem 6.5

with β = γp−1 − α, we see that the last claim will hold if and only if
Tr

(

γ
(

γp−1 − α
))

= Tr (γp)− Tr (γα) = Tr(γ(1− α)) 6= −1. �

We saw that some modifications of PcN functions preserve their perfect
c-nonlinearity. It surely makes sense to ask whether the c-differential uni-
formity is preserved through affine, extended affine or CCZ-equivalence [5].
Given a function F , we call the set {βF,c | c ∈ Fpn}, the differential spec-
trum of F . We ask here the question of whether that the differential uni-
formity spectra is preserved under the A-equivalence, EA-equivalence, or
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CCZ-equivalence. Our guess was that it is not preserved by EA, nor CCZ-
equivalence, and an easy computation via SageMath confirmed it: while x3

has c-differential spectrum [1, 2, 3], the EA-equivalent function x3 + x4 has
c-differential spectrum [1, 2, 3, 4], both on F24 .

It is not difficult to show that the differential spectrum is invariant under
the (restricted to input) affine-equivalence (A-equivalence) (recall that F,F ′

on F2n are restricted to input A-equivalent if F ′(x) = F ◦ L(x), where L
is an affine permutation on F2n), and we provide the argument next. The
equation F ′(x+a)−cF ′(x) = b is equivalent to (F◦L)(x+a)−c(F◦L)(x) = b,
that is F (L(x) + L(a)) − cF (L(x)) = b. Setting L(x) = y,L(a) = α, the
previous equation becomes F (y + α) − cF (y) = b. Surely, any solution of
F ′(x + a) − cF ′(x) = b is in one-to-one correspondence to a solution of
F (y + α)− cF (y) = b, since L is invertible.

Since the CCZ-equivalence is more general than EA-equivalence, we shall
concentrate on it. Recall that two (n,m)-functions F,F ′ from Fpn to Fpm

are CCZ-equivalent if and only if their graphs GF = {(x, F (x)) |x ∈ Fpn},
GF ′ = {(x, F ′(x)) |x ∈ Fpn} are affine equivalent, that is, there exists an
affine permutation A on Fpn × Fpm such that A(GF ) = GF ′ .

As in [5], we use the identification of the elements in Fpn with the elements
in Fn

p , and denote by x both an element in Fpn and the corresponding element
in Fn

p . We first decompose the affine permutation A as an affine block-

matrix, Au =

(

A11 A12

A21 A22

)

u+

(

c
d

)

, for an input vector u, where A11,A21,

A12,A22 are n×nmatrices with entries in Fp, and

(

c
d

)

is a column vector in

Fp2n (just a reminder to the reader that EA-equivalence means that A12 = 0
and (full-fledged) A-equivalence means that A12 = A21 = 0). Fix c ∈ Fpn ,
and let the c-differential system be written as y − x = a, F (y) − cF (x) = b.

Applying the affine permutation A to

(

a
b

)

we get

(

A11 A12

A21 A22

)(

a
b

)

=

(

A11 A12

A21 A22

)(

y − x
F (y)− cF (x)

)

=

(

A11 A12

A21 A22

)(

y
F (y)

)

−

(

A11 A12

A21 A22

)(

x
cF (x)

)

=

(

y′

F ′(y′)

)

−

(

A11 c · A12

A21 c · A22

)(

x
F (x)

)

.

We see that it is not obvious how the second term can be transformed into

a pair

(

x′

c∗F ′(x′)

)

of the graph GF ′ , unless F,F ′ are also CCZ-equivalent

also via an affine transformation whose linear part is a constant multiple of
(

A11 c · A12

A21 c · A22

)

. We summarize this discussion in the next theorem.
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Theorem 6.7. Let F,F ′ be CCZ-equivalent via an affine transformation

A =

(

A11 A12

A21 A22

)

and also via

(

1
c∗ · A11

c
c∗ · A12

1
c∗ · A21

c
c∗ · A22

)

. Then the c-differential

uniformity of F is the same as the c∗-differential uniformity of F ′.

With the above discussion, we see that the c-differential uniformity may
change under EA or CCZ-equivalence. Keeping that in mind, we now switch
directions a bit and ask whether we can perturb some APcN functions, via
a linear/linearized map, thereby obtaining a PcN function. This is in line
with the long standing open question on whether some of the known PN or
APN functions can be transformed into PN or APN permutation functions
by perturbing them via some linear mapping. We will only treat here the

Gold case, F (x) = xp
k+1. From [10] we know that F is PcN only for c = 1

(under n
gcd(n,k) odd), when p > 2, and it is never PcN for c 6= 1. The case of

p = 2 was treated in [13].

Theorem 6.8. Let k ≥ 1, n ≥ 2 be integers, p prime, c 6= 1 in Fpn. The
following are true:

(i) If G1(x) = xp
k+1 + γTr(x) is perfect c-nonlinear for γ ∈ F∗

pn, then

γ 6∈







−
ap

k+1

Tr
(

a
1−c

)

(1− c)2

∣

∣

∣

∣

a ∈ F∗
pn,Tr

(

a

1− c

)

6= 0







.

(ii) The function G2(x) = xp
k+1 + γxp

k

is never PcN, regardless of the
value of γ ∈ F∗

pn.

Proof. (i) We first perturb F in the following way G1(x) = F (x) + γTr(x),
γ 6= 0, and attempt to find some condition on γ such that G1 can potentially
be PcN. We look at the c-differential equation of G1, namely

(1− c)xp
k+1 + a xp

k

+ ap
k

x+ ap
k+1 + γ(1− c)Tr(x) + γTr(a) = b,

that is,

xp
k+1 +

a

1− c
xp

k

+
ap

k

1− c
x+ γTr(x) =

b− γTr(a)− ap
k+1

1− c
.

By relabeling (since the free term is linear in b), it will be sufficient to
investigate the equation

xp
k+1 +

a

1− c
xp

k

+
ap

k

1− c
x+ γTr(x) = b.

We argue now that in many instances the equation has more than one so-
lution. We let b = 0. Surely, x = 0 is one such solution. We write (for
a 6= 0)

xp
k

(

x+
a

1− c

)

+
ap

k

1− c

(

x+
γ(1− c)

apk
Tr(x)

)

= 0.
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Now, x = − a
1−c 6= 0 is another solution if γ(1−c)

apk
Tr

(

− a
1−c

)

= a
1−c , or,

equivalently, Tr
(

a
1−c

)

= − ap
k
+1

γ(1−c)2 . We obviously need ap
k
+1

γ(1−c)2 ∈ F∗
p, for

some a, which is equivalent to the first claim.

(ii) Next, we perturb F as G2(x) = F (x) + γ xp
k
, γ 6= 0. As before, the

c-differential equation of G2 is then

(1− c)xp
k+1 + a xp

k

+ ap
k

x+ ap
k+1 + γ((1 − c)xp

k

+ ap
k

) = b,

or, by relabeling b−ap
k
+1−γap

k

1−c 7→ b

xp
k+1 +

a+ γ(1− c)

1− c
xp

k

+
ap

k

1− c
x = b.

If b = 0, then x = 0 is a solution. Assuming b = 0, x 6= 0, a 6= 0, factoring
out x, and using y = 1

x , we get

yp
k

+
a+ γ(1− c)

ap
k

y +
1− c

ap
k

= 0.

It is easy to show that taking a = γ(c − 1), then y =
(

c−1

apk

)p−k

(which

always exists, since gcd(pk, pn − 1) = 1) is a solution of the above equation,

and hence x =

(

ap
k

c−1

)p−k

is a solution of the original equation in x. Hence

cDaG2 is not a permutation, and therefore, G2 is not PcN, for c 6= 1. �

Surely, the question is whether G1(x) = x2
k+1 + γTr(x) is ever PcN over

F2n . We quickly took some small examples of F2n , 2 ≤ n ≤ 4, determined by
the primitive polynomials x2+x+1, x3+x+1, x4+x+1 over F2, all with some

primitive root α. We then checked that G1(x) = x2
k+1+γTr(x) is never PcN

on F2n , for 2 ≤ k < n ≤ 4. If k = n, we can get PcN functions. For the con-
sidered cases, if (k, n) = (2, 2), G1 is PcN when (c, γ) = (0, 1), (α, 1), (α2 , 1);
if (k, n) = (3, 3), G1 is PcN when (c, γ) = (c, α), (c, α2), (c, α4), since the
function G1 becomes a linearized polynomial (via x2

n+1 = x2 on F2n). We
do not have other examples for small dimensions. The computation was
done via SageMath.

7. Further comments

In this paper, in the first part, we used Dickson polynomials techniques
to show some results (some were independently shown recently). We also
found that recently published necessary conditions, which give a relationship
between the difference function of a monomial and the Dickson polynomial
of first kind (odd characteristic), are also sufficient (Theorem 2.5). Next,
we give several classes of PcN and functions with low (−1)-differential uni-
formity, and we propose two conjectures based upon some computational
data. We also obtain a class of polynomials that are PcN for all c 6= 1,
in every characteristic. Further, we discuss the affine, extended affine and
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CCZ-equivalence as it relates to c-differential uniformity. We then con-
centrate on perturbation of a PcN function to also be perfect c-nonlinear
and give necessary and sufficient conditions in some cases. We also show
that in some instances such perturbations do not produce PcN functions.
Surely, it would be very interesting to find other perturbations, linear or
not, that may decrease the c-differential uniformity. For example, one can
computationally check that a “switching” technique [4, 9] produces some
PcN functions as well: the functions x3 + γTr(x3), x9 + γTr(x3) are PcN on
F23 for c = 0, γ = α,α2, α4.
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