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Abstract
In this paper we consider a finite-dimensional vector space P over the Galois field GF(2),
and the family Bk (respectively, B∗

k ) of all the k-sets of elements of P (respectively, of
P∗ = P \ {0}) summing up to zero. We compute the parameters of the 3-design (P,Bk) for
any (necessarily even) k, and of the 2-design (P∗,B∗

k ) for any k.Also, we find a new proof for
the weight distribution of the binary Hamming code. Moreover, we find the automorphism
groups of the above designs by characterizing the permutations of P , respectively of P∗,
that induce permutations of Bk , respectively of B∗

k . In particular, this allows one to relax
the definitions of the permutation automorphism groups of the binary Hamming code and
of the extended binary Hamming code as the groups of permutations that preserve just the
codewords of a given Hamming weight.

Keywords Block designs · Hamming codes · Permutation automorphisms · Weight
distribution · Subset sum problem

Mathematics Subject Classification 05B05, 94B05, 51E22

1 Introduction

Point-flat designs D = (P,B) of an affine geometry AG(n, p) over GF(p), as well as of a
projective geometry PG(n, 2) over GF(2), are basic examples of 2-(v, k, λ) designs, and the
blocks have the property that the sum of their points is zero. More generally, the so-called
2-(v, k, λ) designs over GF(2), when seen as 2-(2v − 1, 2k − 1, λ) designs, whose points
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are the non-zero vectors of GF(2)v and whose blocks are the sets of non-zero vectors of
suitable k-dimensional subspaces, form a remarkable class of designs, whose blocks have
the property that the sum of their points is zero.

In [10] and [11] it is shown that symmetric and affine 2-designs D = (P,B) can be
embedded in a finite commutative group in such a way that the blocks are exactly the k-
sets of elements of P that sum up to zero, whereas the only Steiner triple systems with this
property are the point-line designs of AG(n, 3) and PG(n, 2) (see also [15], for a visual
representation of the case of PG(3, 2)). Furthermore, the only known Steiner 2-design over
a finite field, found by Braun et al. [5] and revisited in [8], can be seen as a 2-(8191, 7, 1)
design with the property that the points on each block sum up to zero. Also, the designs over
GF(2) considered in [7,28] are 2-(2v − 1, 7, 7) designs, whose blocks have the property that
the sum of their points is zero.

This leads to the following two questions. First, one may ask what 2-designs are additive,
that is, can be embedded in a finite commutative group (P,+) in such a way that the sum of
the elements in any block is zero [10]. Conversely, let (P,+) be a finite commutative group
with v elements, and let Bk be the family of all the k-sets of elements of P summing up to
zero. One may ask under what conditions the k-sets in Bk form the blocks of a 2-(v, k, λ)

designDk = (P,Bk). Alternatively, one may consider the family B∗
k of all the subsets of P∗

of size k whose elements sum up to zero, where P∗ is the set of non-zero vectors in P. The
families Bk and B∗

k have appeared also in the context of additive combinatorics and additive
number theory, in connection with the subset sum problem over finite abelian groups [23].

For k = 3, it is easy to see that D3 is a 2-(v, 3, λ) design (necessarily with λ = 1) if and
only if P is an elementary abelian 3-group. For k = 4 and k = 5, the following is true (see
[9]):

(i) D4 = (P,B4) is a 2-(v, 4, λ) design if and only if P is an elementary abelian 2-group.
In this case, λ = v−2

2 and, moreover, D4 is a 3-(v, 4, 1) design;
(ii) D5 = (P,B5) is a 2-(v, 5, λ) design if and only if P is an elementary abelian 5-group.

In this case, λ = v−3
2 + (v−7)·(v−5)

6 .

In [25] it is shown that, for an odd prime p, and for P = GF(p)n, the incidence structure
Dk = (P,Bk) is a 2-(pn, k, λ) design if and only if k is a multiple of p. In this case,

λ = 1

pn

(
pn − 2

k − 2

)
+ k − 1

pn

(
pn−1 − 1

k/p − 1

)
.

Moreover, it is shown that the incidence structure D∗
k = (P∗,B∗

k ) is a 1-(pn − 1, k, r)
design for any k /∈ {1, pn − 2}. In either case, the full automorphism group of the design is
found, on the basis of the results given in [16]. Thequestion is still openwhetherDk = (P,Bk)

is a 2-(v, k, λ) design only if P is an elementary abelian group.
For p = 2, and P = GF(2)n, the problem shows a somewhat different behaviour and is

treated here. In this case, the situation has also been widely studied in the context of coding
theory and additive number theory, as the blocks in B∗

k (respectively, in Bk) can be seen as
codewords of weight k in the (2n − 1, 2n − n − 1, 3)-Hamming code (resp., in the extended
binary Hamming code of length 2n), as well as solutions of the subset sum problem over
GF(2)n \ {0} (resp., over GF(2)n) in the special case of subsets of size k summing up to 0.
For instance, a closed-form expression for the number of blocks in B∗

k is given in [14, p. 758,
Proposition 4.1] (see also [22, Theorem 1.2] in the general case of a prime number p, and
the alternative proofs in [21,23]).

In this self-contained paper we present a collection of results onDk andD∗
k from the point

of view of combinatorial design theory. Some of these results were already known merely
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in the context of coding theory (sometimes only implicitly), whereas some other results are
new. In the former case, we provide alternative and purely combinatorial proofs.

In Sect. 2 we give alternative proofs of the formulas for the cardinalities of the families
Bk and B∗

k , and of the fact that, for k even, Dk = (P,Bk) is a 3-(2n, k, λ3) design, and we
compute the parameter λ3 explicitly. Also, we give an alternative proof that, for any integer
k, with 3 ≤ k ≤ 2n − 4, D∗

k = (P∗,B∗
k ) is a 2-(2

n − 1, k, λ) design, and, again, we compute
λ explicitly. Finally, we introduce the notion of indecomposable blocks in B∗

k , which also
define a 2-design, and for which we give a characterization in terms of linear independence,
and, independently, in terms of solutions in P∗ of suitable algebraic equations. Any block
in B∗

k is either indecomposable, or the disjoint union of indecomposable blocks of smaller
sizes.

In Sect. 3 we characterize the permutations of P , and P∗, that induce permutations of the
families Bk , and B∗

k , respectively, finding a somewhat analogue of the fundamental theorem
of affine geometry. This allows us to describe the automorphism groups of the designsDk and
D∗
k introduced in Sect. 2. Moreover, this characterization allows one to relax the definitions

of the permutation automorphism groups of the binary Hamming code and of the extended
binary Hamming code as the groups of permutations preserving just the codewords of a given
Hamming weight (except in the trivial case where the weight equals the length of the code),
the former case being somehow known, although never explicitly stated.

2 Boolean designs

Let P be the n-dimensional vector space GF(2)n and let P∗ be the set of non-zero vectors
of P . For any positive integer k, we consider the family Bk of all the k-subsets of P whose
elements sum up to zero, and the family B∗

k of all the k-subsets of P∗ whose elements sum
up to zero. These two families appear at the crossroads between additive combinatorics and
algebraic coding theory. Indeed, on the one hand, the k-sets in Bk and B∗

k are precisely the
solutions of two instances of the well-known subset sum problem over finite fields, which
arises from a number of relevant applications in combinatorics, coding theory, and graph
theory. On the other hand, as we will explain below, the k-sets in B∗

k (respectively, in Bk)
can be seen as codewords of weight k in the binary Hamming code C of length m = 2n − 1
(resp., in the extended binary Hamming code C̄ of length 2n). In this section we will instead
look at Bk and B∗

k from the point of view of design theory, that is, by taking them as the
families of blocks of two Boolean combinatorial designs Dk and D∗

k with point-sets P and
P∗, respectively, for suitable values of k.

Let C be the binary Hamming code of length m = 2n − 1 (n ≥ 3), and let H be a parity
check matrix for C , that is, an n × m matrix whose columns are the elements of P∗. Thus
C is the kernel of the linear map X �→ HX (seen as column vectors) from GF(2)m onto
GF(2)n . If we denote, as usual, the i-th column of H by Hi , and if {i1, i2, . . . , ih} is the
support of a generic codeword X = (x1, x2, . . . , xm) in C of weight h, that is, i1, . . . , ih are
those coordinates i such that xi �= 0, with 3 ≤ h ≤ 2n − 4, then the map

θ : (x1, x2, . . . , xm) �→ {Hi1 , Hi2 , . . . , Hih } (1)

defines a one-to-one correspondence between the codewords of a given weight k in C and
the k-sets in B∗

k . In particular, the problem of the so-called weight distribution of C reduces
to the computation of the cardinalities of the families B∗

k . It must be noted that for p-ary
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1264 G. Falcone, M. Pavone

Hamming codes (p an odd prime) the one-to-one correspondence fails to exist in general,
with the only exception of the cases where p ∈ {3, 5} and k = 3.

Similarly, the extended binary Hamming code C̄ is the code of length 2n = m + 1
obtained from C by adding to each codeword (x1, x2, . . . , xm) an extra “parity bit” x0, with
x0 = x1 + x2 + . . . + xm, so that all m + 1 digits sum up to 0, whence all the codewords
(x0, x1, . . . , xm) in C̄ have even weights. If 0 denotes the zero vector in GF(2)n, then the
map

θ̄ : (x0, x1, . . . , xm) �→
⎧⎨
⎩

θ(x1, x2, . . . , xm) if x0 = 0

{0} ∪ θ(x1, x2, . . . , xm) if x0 = 1
(2)

defines a one-to-one correspondence between the codewords of a given weight k in C̄ and
the k-sets in Bk .

In the more general context of a 1-error perfect binary code C of length m, Etzion and
Vardy [14, Proposition 4.1] found a closed-form expression for the weight distribution of C,

starting from the well-known doubly-recursive relation

(m − i + 1)Ai−1 + Ai + (i + 1)Ai+1 =
(
m

i

)
(3)

[24, p. 129] (see also [26]), where Ai denotes the number of codewords of weight i inC .Note
that the equation (3) has only two possible solutions, depending on whether C contains the
zero vector (A0 = 1, A1 = 0) or not (A0 = 0, A1 = 1). If e1, . . . , em are the vectors of the
canonical basis of GF(2)m, then, C being a 1-error perfect code, GF(2)m can be partitioned
as the disjoint union of the (1-error perfect) codes C,C + e1, . . . ,C + em . If C contains the
zero vector, then the codes C + e1, . . . ,C + em do not contain it, hence they all share the
same weight distribution. Therefore, if Bi denotes the common number of words of weight i
in any of the codes C + e1, . . . ,C + em, one obtains that Ai +mBi = (m

i

)
, which, together

with the relation (m− i +1)Ai−1+ Ai + (i +1)Ai+1 = (m− i +1)Bi−1+ Bi + (i +1)Bi+1,

produces by induction an explicit expression for Ai .

Independently, in the context of the subset sum problem, the cardinalities of Bk and B∗
k

were computed in closed form by Li and Wan [22] in the general case of a finite field P of
characteristic p ≥ 2. For any b in P, they let M(k, b, D) be the number of ordered k-tuples
(x1, x2, . . . , xk) satisfying x1 + x2 + . . . + xk = b, where D was either P or P∗ (note that
M(k, 0,P) = k! |Bk | and M(k, 0,P∗) = k! |B∗

k |). They found several recursive relations
among the values of M(k, 0,P), M(k, 0,P∗), M(k, 1,P), and M(k, 1,P∗), 1 being the
identity element of the multiplicative group of the field P, also by considering the p-rank of
the coefficient matrix of a suitable system of equations.

In this section, first of all, we give an alternative proof of the formulas for the cardinalities
of the families Bk and B∗

k , which is more immediate than the above mentioned proofs.
Subsequently, we show that, for any n ≥ 3 and any even integer k, with 4 ≤ k ≤ 2n − 4,
Bk is not empty, and give an elementary proof that Dk = (P,Bk) is a 3-(2n, k, λ3) design.
Moreover, we give an explicit expression for λ3 and determine the automorphism group of
Dk . Also, we prove that, for any n ≥ 3 and any integer k, with 3 ≤ k ≤ 2n − 4, B∗

k is not
empty, and give an elementary proof thatD∗

k = (P∗,B∗
k ) is a 2-(2

n − 1, k, λ) design. Again,
we compute λ and determine the automorphism group ofD∗

k . Finally, we show that any block
in B∗

k can be partitioned into the disjoint union of indecomposable blocks, which turn out to
be precisely the k-sets of vectors in P∗, k − 1 of which are linearly independent.

Remarks 2.1 (i) The set P∗ under consideration is a projective space over the field GF(2)
and, in particular, D3 is isomorphic to the point-line design of PG(n − 1, 2).
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(ii) In the affine space P = GF(2)n a necessary and sufficient condition for four distinct
points to be an affine plane is that their sum is zero. Hence the 4-sets in B4 are precisely
the blocks of the classical point-plane design of the affine geometryAG(n, 2) overGF(2),
that is, of the Boolean quadruple system of order 2n . These have been studied e.g. in [1],
[6], [17, Example 2.3], [20] and [29]. For this reason, we will call Boolean designs, by
extension, the block designs defined in this section, with block-sets Bk and B∗

k .

We now give a new proof of the closed-form expressions for |Bk | and |B∗
k |. The idea is

very simple, and relies on the immediate observation that Bk consists of all the k-subsets
{x1, . . . , xk−1, x1 + · · · + xk−1} of P for which x1, . . . , xk−1 are pairwise different, and
x1 + · · · + xk−1 is different from all the preceding vectors, that is, {x1, . . . , xk−1} does
not contain any (k − 2)-subset belonging to Bk−2. This allows us to get a simply-recursive
relation between |Bk | and |Bk−2|, which, by induction, produces the explicit expression for
|Bk |. Finally, the expression for |B∗

k | is also obtained by induction, starting from the trivial
observation that |B∗

k | = |Bk | − |B∗
k−1|.

Theorem 2.2 [22, Theorem 1.2] LetP be an n-dimensional vector space overGF(2), n ≥ 1.
For any integer k, with 1 ≤ k ≤ 2n, let Bk be the family of all the subsets of P of size k
whose elements sum up to zero. If we denote |Bk | by bk, then

bk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2n

(
2n

k

)
if k is odd

1

2n

(
2n

k

)
+ (−1)k/2

2n − 1

2n

(
2n−1

k/2

)
if k is even.

(4)

Proof For k = 1, Bk = {(0, . . . , 0)} and bk = 1, whereas, for k = 2, Bk = ∅ and bk = 0. In
either case, the equality (4) is satisfied. We may then assume that k ≥ 3. Let A be the family
of (k − 1)-subsets of P defined by

A =
⎧⎨
⎩{x1, x2, . . . , xk−1} ∈

( P
k − 1

)∣∣ ∑
i �= j

xi �= (0, . . . , 0) for all j = 1, 2, . . . , k − 1

⎫⎬
⎭ ,

and let τ : A → Bk be the map defined by

τ({x1, x2, . . . , xk−1}) = {x1, x2, . . . , xk−1, x1 + x2 + . . . + xk−1}.
Now τ is surjective and

τ−1({y1, . . . , yk}) = {{y1, . . . , yk} \ {yi }| i = 1, 2, . . . , k
}

for all {y1, . . . , yk} ∈ Bk, hence

bk = 1

k
|A|. (5)

On the other hand,

A =
( P
k − 1

)
\

⎧⎨
⎩{x1, x2, . . . , xk−1}∈

( P
k − 1

)∣∣ ∑
i �= j

xi = (0, . . . , 0) for some 1 ≤ j ≤ k − 1

⎫⎬
⎭ ,

hence, by (5),

bk = 1

k

((
2n

k − 1

)
− (

2n − (k − 2)
)
bk−2

)
. (6)
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We can now proceed by induction. If k is odd, then k − 2 is also odd, hence, by (6) and
(4) (with subscript k − 2),

bk = 1

k

((
2n

k − 1

)
− (

2n − (k − 2)
) 1

2n

(
2n

k − 2

))

= 1

k

((
2n

k − 1

)
− k − 1

2n

(
2n

k − 1

))

= 1

k

(
2n

k − 1

)
2n − (k − 1)

2n

= 1

2n

(
2n

k

)
.

If k is even, say k = 2m, then k − 2 = 2(m − 1), hence, by (6) and (4) (with subscript
k − 2),

bk = 1

k

(
2n

k − 1

)
− 2n − (k − 2)

k

(
1

2n

(
2n

k − 2

)
+ (−1)m−1 2n − 1

2n

(
2n−1

m − 1

))

= 1

k

(
2n

k − 1

)
− k − 1

k 2n

(
2n

k − 1

)
+ (−1)m

2n−1 − (m − 1)

m

2n − 1

2n

(
2n−1

m − 1

)

= 2n − (k − 1)

k 2n

(
2n

k − 1

)
+ (−1)m

2n − 1

2n

(
2n−1

m

)

= 1

2n

(
2n

k

)
+ (−1)m

2n − 1

2n

(
2n−1

m

)
.

Alternatively, the equality bk = 1
2n

(2n
k

)
for k odd can be immediately obtained by noting

that
(P
k

)
=

⋃
x∈P

{
{x1, x2, . . . , xk} ∈

(P
k

)∣∣ k∑
i=1

xi = x

}
,

and that, for each x ∈ P, the map {x1, x2, . . . , xk} �→ {x1 + x, x2 + x, . . . , xk + x} is a one-
to-one correspondence between Bk and the family

{{x1, x2, . . . , xk} ∈ (P
k

)| ∑k
i=1 xi = x

}
.

This completes the proof of the theorem. ��
Lemma 2.3 LetP be an n-dimensional vector space overGF(2), n ≥ 1, and letP∗ = P\{0}.
For any integer k, let Bk (respectively, B∗

k ) be the family of all the subsets of P (resp., of P∗)
of size k whose elements sum up to zero. If we denote |Bk | by bk, and |B∗

k | by b∗
k , then, for

any k = 2, . . . , 2n − 1,
b∗
k = bk − b∗

k−1. (7)

Proof For any k = 2, . . . , 2n − 1, Bk is the (possibly empty) disjoint union of B∗
k with the

family of all the subsets of P of size k containing zero, whose elements sum up to zero. As
the latter family is in one-to-one correspondence with B∗

k−1, the equality follows. ��
In the following result we derive an explicit expression for the cardinality of the family

B∗
k ,which, because of the correspondence (1), also gives the weight distribution of the binary

Hamming code.

Corollary 2.4 [14, Proposition 4.1][22, Theorem1.2] LetP be an n-dimensional vector space
over GF(2), n ≥ 1, and let P∗ = P \ {0}. For any integer k = 1, . . . , 2n − 1, let B∗

k be the
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family of all the subsets of P∗ of size k whose elements sum up to zero. If we denote |B∗
k | by

b∗
k , then, for any k = 1, . . . , 2n − 1,

b∗
k = 1

2n

(
2n − 1

k

)
+ (−1)k+k/2� 2n − 1

2n

(
2n−1 − 1

k/2�
)

, (8)

where ·� is the floor function.
Proof For k = 1, the equality is trivial. For 2 ≤ k ≤ 2n − 1, we can proceed by induction.
If k is odd, say k = 2m + 1, then k/2� = m, k − 1 = 2m and, by (7), (4), and (8) (with
subscript k − 1),

b∗
k = 1

2n

(
2n

k

)
−

(
1

2n

(
2n − 1

k − 1

)
+ (−1)3m

2n − 1

2n

(
2n−1 − 1

m

))

= 1

2n

(
2n − 1

k

)
+ (−1)3m+1 2n − 1

2n

(
2n−1 − 1

m

)
,

that is, (8) holds. If k is even, say k = 2m, then k/2� = m, k − 1 = 2m − 1, (k − 1)/2� =
m − 1, and, by (7), (4), and (8) (with subscript k − 1),

b∗
k = 1

2n

(
2n

k

)
+ (−1)m

2n − 1

2n

(
2n−1

m

)
−

(
1

2n

(
2n − 1

k − 1

)
+ (−1)3m

2n − 1

2n

(
2n−1 − 1

m − 1

))

= 1

2n

(
2n − 1

k

)
+ (−1)3m

2n − 1

2n

(
2n−1 − 1

m

)
,

that is, (8) holds. The proof is now complete. ��
In [3, Theorem 3], the authors prove that for any extended 1-perfect code containing 0, the

codewords of a given weight form a (d−s+1)-design, where d is the minimal distance and s
is the covering radius. In particular, when the code is an extended binary Hamming code, this
yields that the codewords of a given weight form a 3-design. In what follows, after providing
an elementary proof of the previous statement, we find the value of the parameter λ3, and
the isomorphism Aut(Dk) � Aff(n, 2),which, in the light of the subsequent Theorem 3.2.ii,
also gives an alternative proof of the permutation automorphisms of the extended binary
Hamming code as the invertible affine mappings on P over GF(2).

Proposition 2.5 Let P be an n-dimensional vector space over GF(2), n ≥ 3. For any even
k = 2m, with 4 ≤ k ≤ 2n − 4, let Bk be the family of all the subsets of P of size k whose
elements sum up to zero. Then Bk is not empty, and Dk = (P,Bk) is a 3-(2n, k, λ3) design,
with

λ3 = 1

2n

(
2n − 3

k − 3

)
+ (−1)k/2

k − 1

2n

(
2n−1 − 2

k
2 − 2

)
.

Moreover, the group of automorphisms of Dk is (isomorphic to) the group of invertible
affine mappings on P over GF(2), that is,

Aut(Dk) � Aff(n, 2).

Proof Let us first show that the family Bk is not empty. Even though this can be settled
by use of the formula (4) for the cardinality of Bk, we will now give a direct proof in a
few lines. As the sum of all the 2n elements of P is equal to zero, we may assume, up to
taking complements, that k ≤ 2n−1. Note that each plane S = {a, a + x, a + y, a + x + y}
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1268 G. Falcone, M. Pavone

in P has the property that the sum of its elements is zero. If m is even, say m = 2h,

then k = 4h, and any disjoint union of h planes is in Bk . If m is odd, say m = 2h + 1,
1 ≤ h ≤ 2n−3 − 1, then k = 6 + 4(h − 1). If {e1, e2, . . . , en} is the canonical basis of P,

then the linear span V of e1, e2, . . . , en−1 is the disjoint union of 2n−3 planes. Hence the

union
(⋃h−1

i=1 (Si + en)
) ⋃{e1, e2, e3, e4, e1 + e2, e3 + e4}, where S1, . . . , Sh−1 are disjoint

planes in V , is a k-set in Bk .

Let {P1, P2, P3} and {Q1, Q2, Q3} be two 3-subsets of P. Since the group of affinities of
P acts 3-transitively on P, there exists an affinity ρ : X �→ AX + B such that ρ(Pi ) = Qi ,

i = 1, 2, 3. For any given b ∈ Bk ,∑
Q∈ρ(b)

Q =
∑
X∈b

(AX + B) = k B = 0,

since k is even, thus ρ(b) is in Bk . Hence ρ induces a one-to-one correspondence between
the k-sets in Bk containing P1, P2, P3 and the k-sets in Bk containing Q1, Q2, Q3. Therefore
Dk is a 3-(2n, k, λ3) design. In particular, Dk is also a 2-design with λ2 = λ3

2n−2
k−2 . On the

other hand, λ2(2n − 1) = r(k − 1), where r = k bk/2n, with bk = |Bk |. By Theorem 2.2,
we may conclude that

λ3 = k

2n
k − 1

2n − 1

k − 2

2n − 2
bk

= k

2n
k − 1

2n − 1

k − 2

2n − 2

(
1

2n

(
2n

k

)
+ (−1)m

2n − 1

2n

(
2n−1

m

))

= 1

2n

(
2n − 3

k − 3

)
+ (−1)m

k

2n
k − 1

2n − 1

k − 2

2n − 2

2n − 1

2n
2n−1

m

2n−1 − 1

m − 1

(
2n−1 − 2

m − 2

)

= 1

2n

(
2n − 3

k − 3

)
+ (−1)m

k − 1

2n

(
2n−1 − 2

m − 2

)
.

The final statement on the automorphisms is a consequence of the subsequent Theorem 3.2.ii.
This completes the proof. ��
In [13, Theorem 5.7], the author proves that for any 1-perfect code containing 0, the

codewords of a given weight form a (d − s)-design, where d is the minimal distance and s is
the covering radius. In particular, when the code is a binary Hamming code, this yields that
the codewords of a given weight form a 2-design. In what follows, we give an elementary
proof of the previous statement and find the value of the parameter λ and the isomorphism
Aut(D∗

k ) � GL(n, 2), which, in the light of the subsequent Theorem 3.1, also provides an
independent proof of the permutation automorphisms of the binary Hamming code as the
invertible linear mappings on P over GF(2).

Proposition 2.6 Let P be an n-dimensional vector space overGF(2), n ≥ 3. For any integer
k, with 3 ≤ k ≤ 2n − 4, let B∗

k be the family of all the subsets of P∗ of size k whose elements
sum up to zero. Then B∗

k is not empty, and D∗
k = (P∗,B∗

k ) is a 2-(2
n − 1, k, λ) design, with

λ = 1

2n

(
2n − 3

k − 2

)
+ (−1)k+k/2� 1

2n
(k − 1)k

2k/2�
(
2n−1 − 2

k/2� − 1

)
.

Moreover, the group of automorphisms of D∗
k is (isomorphic to) the group of invertible

linear mappings on P over GF(2), that is,

Aut(D∗
k ) � GL(n, 2).

123



Binary Hamming codes and Boolean designs 1269

Proof Let us first show that the family B∗
k is not empty. Again, we will give a direct proof,

independently of the equality (8). If k is odd, with 3 ≤ k ≤ 2n − 5, then k + 1 is even,
and 4 ≤ k + 1 ≤ 2n − 4, whence Bk+1 is not empty by Proposition 2.5. Thus B∗

k is not
empty, as (P∗,B∗

k ) is the derived design at 0 of the design (P,Bk+1). If k is even, with
4 ≤ k ≤ 2n − 4, then let r be the replication number of the 3-(2n, k, λ3) design (P,Bk),

where Bk is not empty by Proposition 2.5. Now 2n r = k bk and k < 2n, hence r < bk . Since
B∗
k = Bk \ {b ∈ Bk | 0 ∈ b}, we conclude that |B∗

k | = bk − r > 0, as claimed.
Let {P1, P2} and {Q1, Q2}be two2-subsets ofP∗.Then P1 and P2 are linearly independent

over GF(2), as well as Q1 and Q2. Hence there exists an invertible linear map ρ on P over
GF(2) such that ρ(Pi ) = Qi , i = 1, 2. For any given b ∈ B∗

k , ρ(b) is trivially in B∗
k , hence

ρ induces a one-to-one correspondence between the k-sets in B∗
k containing P1, P2 and the

k-sets in B∗
k containing Q1, Q2. Therefore D∗

k is a 2-(2n − 1, k, λ) design.
By the basic relations on the parameters of a 2-design, λ(2n − 2) = r(k − 1), where

r = k b∗
k/(2

n − 1), with b∗
k = |B∗

k |. By Corollary 2.4, we may conclude that

λ = k − 1

2n − 2

k

2n − 1
b∗
k

= k − 1

2n − 2

k

2n − 1

(
1

2n

(
2n − 1

k

)
+ (−1)k+k/2� 2n − 1

2n

(
2n−1 − 1

k/2�
))

= 1

2n

(
2n − 3

k − 2

)
+ (−1)k+k/2� k − 1

2n − 2

k

2n
2n−1 − 1

k/2�
(
2n−1 − 2

k/2� − 1

)

= 1

2n

(
2n − 3

k − 2

)
+ (−1)k+k/2� 1

2n
(k − 1)k

2k/2�
(
2n−1 − 2

k/2� − 1

)
.

An alternative way to prove this formula can be obtained by resorting again to the fact that
(P∗,B∗

k ) is the derived design at 0 of the design (P,Bk+1). If k is odd, then k + 1 is even,
and for any pair of distinct points x, y in P∗, the number of blocks in B∗

k through x and y
is equal to the number of blocks in Bk+1 through 0, x, and y in the 3-(2n, k + 1, λ3) design
(P,Bk+1), hence λ = λ3 can be computed by means of Proposition 2.5.

If k is even, then note that the design D∗
k is the point residue of Dk with respect to 0 [4,

Remark 1.8, p. 64]. Let λ2 be the constant number of blocks through any two distinct points
in the 3-(2n, k, λ3) design (P,Bk).Now, for any pair of distinct points x, y in P∗, the family
of blocks in Bk through x and y is the disjoint union of the family of blocks in Bk through 0,
x, and y and the family of blocks in Bk through x and y not containing 0, where, in turn, the
latter family has the same cardinality as the family of blocks in B∗

k through x and y. Hence
λ = λ2 − λ3, and, again, λ can be computed by means of Proposition 2.5. The reader may
check that, in either case, the formula for λ coincides with that given above.

The final statement on the automorphisms is a consequence of the subsequent Theorem
3.1. This completes the proof. ��
Remarks 2.7 (1) For k odd, 1 ≤ k ≤ 2n − 1, Dk = (P,Bk) is not even a 1-design. Indeed,

let x be a point in P, and let rk(x) be the cardinality of the family of all the k-sets in
Bk containing x . Now, the map {x, x2, . . . , xk} �→ {x2 + x, . . . , xk + x} is a one-to-one
correspondence between the latter family and the family of all the (k − 1)-subsets of P∗
whose elements sum up to x . Hence, following the notation used in [22],

rk(x) = N (k − 1, x,P∗).

Therefore, by Theorem 1.2 in [22], rk(y) �= rk(0) for all y �= 0. Hence rk(x) is not
constant in x, that is, Dk is not a 1-design.
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1270 G. Falcone, M. Pavone

(2) For k even, the 3-(2n, k, λ3) design Dk = (P,Bk) is not, in general, a 4-design. As
mentioned above in Remark 2.1(ii), for k = 4 the blocks of D4 are precisely the affine
planes ofP, thus there exists exactly one block through any four coplanar distinct points,
whereas there is no block through four distinct points not in a plane. For k = 6, there
exists no block through four coplanar distinct points (as their sum is zero), whereas any
four linearly independent vectors in P can be completed to a block of D6 by adding 0
and their sum. The general case of an even k ≥ 8 appears hard enough not to be settled
here. Similarly, the 2-(2n − 1, k, λ)-design D∗

k is not necessarily a 3-design.
(3) By construction, the block designsDk andD∗

k have the property that they canbe embedded
in a commutative group (G,+) in such a way that a sufficient and necessary condition
for a k-subset of the point-set to be a block is that the sum of its elements is zero in G.

The same is true for all the designs found in [10,11,25]. In particular, they are additive in
the sense of the definition given in [10], and it is an open problem whether the property
above is sufficient for any additive 2-design [11, 3.10].

(4) It is worth noting that a class of (additive) subdesigns of the Boolean design D∗
2k−1

is

given by the 2-(v, k, λ) designs over GF(2), when seen as 2-(2v − 1, 2k − 1, λ) designs.
(5) For n = 3 and k = 3 (respectively, k = 4) the design in Proposition 2.6 is a 2-(7, 3, 1)

design (resp. a 2-(7, 4, 2) design), that is, it is the Fano plane (resp. the unique biplane
of order 2). The two designs are the complementary design of one another, and it is well
known that the automorphism group of the two designs is (isomorphic to) GL(3, 2),
consistently with Proposition 2.6. More generally, for k = 3, the design (P∗,B∗

3) is a
2-(2n − 1, 3, 1) design, that is, a Steiner triple system of order 2n − 1, which, as we
noted at the beginning of this section, is isomorphic to the Steiner triple system of all the
codewords of weight 3 in the binary Hamming code of length 2n − 1.

(6) As we mentioned earlier in this section, for k = 4 the designD4 in the above Proposition
2.5 is the Boolean quadruple system of order 2n [17, Example 2.3], that is, the classical
point-plane design of the affine geometry AG(n, 2) over GF(2), which is a 3-(2n, 4, 1)
Steiner quadruple system. In this case, the action of the group of affinities of P on the
4-subsets ofP has precisely two orbits,B4 and

(P
4

)\B4, henceD4 and its complementary
design are special cases of the t-designs constructed in [12, Remark 4.29]. As the blocks
of B4 are exactly the affine planes of P , one may ask whether in general, for k even,
any block of Bk consists of the disjoint union of affine subspaces. For k = 6 (hence
n ≥ 4) we see that a block, e.g. the 6-set consisting of the zero vector, four vectors of the
canonical basis, and the sum of all of them, cannot be either an affine subspace nor the
disjoint union of a plane and a line. On the other hand, each pair of distinct points being
a line, a block is (in 15 different ways) the disjoint union of three lines (but, clearly, not
any disjoint union of three lines is a block). Consider now the case where k = 8 (and
n ≥ 4). It is easy to see that, in the affine spaces GF(2)4 and GF(2)5, a necessary and
sufficient condition for eight distinct points to lie in two disjoint planes is that their sum
is zero. Hence the design we get for k = 8, and n = 4, 5, is the design of disjoint pairs
of two-dimensional (affine) subspaces of an affine space over GF(2). Things change for
GF(2)6, because the 8-set consisting of the zero vector, the six vectors of the canonical
basis, and the sum of all of them, cannot be described as the disjoint union of two affine
subplanes.

The last remark above suggests the followingdefinition,which concerns necessarily blocks
in B∗

k , since the zero vector would make decomposable any block containing it.

Definition 2.8 Let (P∗,B∗
k ) be the above 2-(2

n − 1, k, λ) design, with n ≥ 3 and 3 ≤ k ≤
2n − 4. We say that a block b ∈ B∗

k is decomposable if it is the union of two disjoint blocks
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b1 ∈ B∗
k1
, b2 ∈ B∗

k2
of the designs (P∗,B∗

k1
), (P∗,B∗

k2
), where k1 + k2 = k. We say that a

block b ∈ B∗
k is indecomposable if it is not decomposable.

Theorem 2.9 Let (P∗,B∗
k ) be the above 2-(2

n − 1, k, λ) design, with n ≥ 3 and 3 ≤ k ≤
2n −4. A block b ∈ B∗

k is indecomposable if and only if b contains k−1 linearly independent
vectors, i.e., if and only if 3 ≤ k ≤ n + 1 and b is contained in the orbit of

ck = {e1, . . . , ek−1, e1 + e2 + · · · + ek−1}
under GL(n, 2), where {e1, . . . , en} is the canonical basis of P = GF(2)n.

Also, for3 ≤ k ≤ n+1, the family of indecomposable blocks inB∗
k defines a2-(2

n−1, k, λ̃)

design, where

λ̃ =
⎧⎨
⎩
1 if k = 3
(2n − 4)(2n − 8) · · · (2n − 2k−2)

(k − 2)! if 4 ≤ k ≤ n + 1.

Moreover, the group of automorphisms of the design of indecomposable blocks is (iso-
morphic to) the group GL(n, 2) of invertible linear mappings on P over GF(2).

Finally, for n ≥ 4 and 6 ≤ k ≤ 2n − 4, the family of decomposable blocks in B∗
k defines

a 2-(2n − 1, k, λ̄) design, where

λ̄ =
{

λ if k > n + 1
λ − λ̃ if 6 ≤ k ≤ n + 1.

Proof Let b = {P1, . . . , Pk−1, Pk = ∑k−1
j=1 Pj } be an indecomposable block inB∗

k .We claim
that P1, . . . , Pk−1 are linearly independent. By contradiction, we may assume without loss
of generality that Pk−1 = ∑k−2

j=1 α j Pj , with α j = 0, 1, but not all zero. If each α j = 1,
then Pk = 0, against the hypothesis that b ∈ B∗

k . Therefore some α j = 0, whence b is
decomposable, a contradiction. Conversely, if b contains k − 1 linearly independent vectors,
then all their possible sums are not zero, hence b is indecomposable.

The formula for λ̃ follows then directly from a standard counting argument, or equiva-
lently, it can be obtained from the fact that GL(n, 2) is 2-transitive on P∗, and the family of
indecomposable blocks in B∗

k consists of one single orbit under the action of GL(n, 2) on the
k-subsets of P∗.

As to the automorphism group, let ϕ be a permutation of P∗. If ϕ is (the restriction to
P∗ of) an invertible linear mapping on P over GF(2), then it is immediate that ϕ maps the
family of all indecomposable blocks in B∗

k onto itself. Conversely, assume that ϕ permutes
the family of the indecomposable blocks in B∗

k , and define ϕ(0) = 0. In order to prove that
ϕ is a linear mapping on P over GF(2), it suffices to prove that

ϕ(x + y) = ϕ(x) + ϕ(y)

for all x, y inP∗,with x �= y.For k = 3, this is immediate, since {x, y, x+y} is a (necessarily
indecomposable) block in B∗

3, hence so is {ϕ(x), ϕ(y), ϕ(x + y)}.
Let k ≥ 4, and suppose, by contradiction, that there exist two distinct elements x, y inP∗,

such that ϕ(x+ y) �= ϕ(x)+ϕ(y).Then the set {ϕ(x), ϕ(y), ϕ(x+ y)} contains three linearly
independent vectors in P, hence it is contained in a set {w1, w2, . . . , wk−1} consisting of
k − 1 linearly independent vectors. Thus b = {w1, w2, . . . , wk−1, w1 + · · · + wk−1} is an
indecomposable block in B∗

k , and therefore so is ϕ−1(b) by hypothesis, against the fact that
the latter block contains x, y, x + y, which sum up to zero. This proves that ϕ is linear.

Finally, let n ≥ 4 and 6 ≤ k ≤ 2n−4. If k > n+1, then all blocks inB∗
k are decomposable,

since no block can contain k − 1 > n linearly independent vectors. For 6 ≤ k ≤ n + 1, the
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family of decomposable blocks and the family of indecomposable blocks are both nonempty,
and their union is all of B∗

k . Hence the former family defines a 2-(2n − 1, k, λ̄) design, with
λ̄ = λ − λ̃. ��

Remark 2.10 In [10,11]we foundmany additive 2-(v, k, λ)designswhich could be embedded
in a finite vector space V , in such a way that the blocks were characterized not only as the k-
subsets {x1, . . . , xk} of the point-set satisfying x1+· · ·+xk = 0, but also as the intersections
of the point-set of the design with suitable hyperplanes of V .Also in the present case we wish
to find algebraic equations that describe the indecomposable blocks in the design (P∗,B∗

k ).

This can be done because such blocks consist of a single orbit of the action of GL(n, 2) on(P∗
k

)
. Let us start with the base block ck defined in Theorem 2.9.

Consider the sum σ(x1, . . . , xi ) of the (nonconstant) elementary symmetric polynomials
in x1, . . . , xi , where each variable ranges in the field GF(2). Equivalently, σ(x1, . . . , xi ) =
(1+ x1) · · · (1+ xi ) − 1, thus σ(x1, . . . , xi ) = 0 if and only if x1 = . . . = xi = 0. Also, let
σ̌ j (x1, . . . , xi ) = σ(x1, . . . , x j−1, x j+1, . . . , xi ). Then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 · · · xk−1 + σ
(
x1σ̌1(x1, . . . , xk−1), x2 σ̌2(x1, . . . , xk−1), . . . , xk−1σ̌k−1(x1, . . . , xk−1)

)
= 0

xk = 0
.
.
.

xn = 0

are algebraic equations whose set of solutions in P∗ is precisely the k-set ck . Indeed, let
(x1, . . . , xn) be a solution in P∗, say xi = 1 for some 1 ≤ i ≤ k − 1. Thus

x1 · · · xi−1 xi+1 · · · xk−1

+σ
(
x1, . . . , xi−1, σ (x1, . . . , xi−1, xi+1, . . . , xk−1), xi+1, . . . , xk−1

)
= 0,

whence either x1 = . . . = xi−1 = xi+1 = . . . = xk−1 = 0 or x1 = . . . = xi−1 = xi+1 =
. . . = xk−1 = 1, as claimed.

Also, for any matrix M in GL(n, 2), the set of all (x1, . . . , xn) ∈ P∗, such that
M−1(x1, . . . , xn)′ is a solution of the above system of equations, forms an indecompos-
able block in B∗

k , and vice versa.

Remark 2.11 For 2 ≤ k ≤ n, the family B(k) of all the k-sets of linearly independent vectors
of P∗ defines a 2-(2n − 1, k, λ) design, and it is readily seen directly that

λ =
⎧⎨
⎩
1 if k = 2
(2n − 4)(2n − 8) · · · (2n − 2k−1)

(k − 2)! if 3 ≤ k ≤ n

(this again can be obtained from the fact that GL(n, 2) is 2-transitive onP∗, andB(k) consists
of one single orbit under the action of GL(n, 2) on the k-subsets of P∗). Equivalently, B(k)
consists of all the k-sets of elements of P∗ that do not contain any subset belonging to B∗

h for
any h ≤ k.Moreover, the group of automorphisms of the 2-design (P∗,B(k)) is (isomorphic
to) the group GL(n, 2) of invertible linear mappings onP over GF(2). The proof is similar to
that given in the proof of Theorem 2.9 in the case of the 2-design of indecomposable blocks
in B∗

k .
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3 Permutation automorphisms

In this final sectionwe characterize the group of permutations ofP (respectively,P∗) inducing
permutations of the “zero-sum subsets” ofP (respectively,P∗) of size k, essentially as a group
of invertible linear mappings, and we apply these results to the cases of the automorphism
groups of the binary Hamming code and of the extended binary Hamming code. Moreover,
the permutation groups that we find in this section are also the automorphism groups of the
block designs introduced in Sect. 2.

We first consider the case of the permutations of P∗ inducing permutations of B∗
k , for

a given k, with purely combinatorial arguments. As we point out below in Remark 3.5, in
the different context of coding theory our result is (only implicitly) equivalent to the well
known isomorphism between the permutation automorphism group of the binary Hamming
code of length m = 2n − 1 and the group GL(n, 2), by virtue of some general results
concerning perfect binary single-error correcting codes, which, in particular, are valid for
binary Hamming codes.

Theorem 3.1 Let P be an n-dimensional vector space over GF(2), n ≥ 3, and, for a given
3 ≤ k ≤ 2n − 4, let B∗

k be the family of all the k-sets of elements of P∗ adding up to zero. A
permutation ϕ of P∗ induces a permutation of B∗

k if and only if ϕ is (the restriction to P∗ of)
an invertible linear mapping on P over GF(2).

Proof Note first that B∗
k is not empty by Proposition 2.6. If ϕ is the restriction to P∗ of an

invertible linear mapping on P over GF(2), then∑
x∈B

ϕ(x) = 0 ⇐⇒
∑
x∈B

x = 0

for any k-set B ⊆ P∗, that is, ϕ induces a permutation of B∗
k .

Conversely, let ϕ be a permutation of P∗ that induces a permutation of B∗
k , and let us

define ϕ(0) = 0. In order to prove that ϕ is a linear mapping on P over GF(2), it suffices to
prove that

ϕ(x + y) = ϕ(x) + ϕ(y) (9)

for all x, y in P∗, with x �= y. Up to taking complements, we can assume that k < 2n−1.

If k = 3, then, for any x �= y in P∗, the 3-set {x, y, x + y} in B∗
3 is mapped onto a 3-set of

elements adding up to zero, that is,ϕ(x)+ϕ(y)+ϕ(x+y) = 0, henceϕ(x+y) = ϕ(x)+ϕ(y),
as claimed.

If k = 4, then, for any x �= y in P∗, the 4-set {0, x, y, x + y} is a plane in P, and P can
be partitioned as

P =
⋃
a∈S

{a, a + x, a + y, a + x + y},

for a suitable set S ⊆ P. Since each 4-set {a, a + x, a + y, a + x + y} different from
{0, x, y, x + y} belongs to B∗

4 , and since the sum of all the elements of P∗ is equal to zero,
we find that the set {ϕ(x), ϕ(y), ϕ(x + y)} is complementary in P∗ to a set of elements
adding up to zero, that is, its elements add up to zero, as well, and it follows again that
ϕ(x + y) = ϕ(x) + ϕ(y).

Finally, assume that
4 < k < 2n−1. (10)

We claim that ϕ induces a permutation also on B∗
4 , thus the equality (9) follows from the

case k = 4 above. Indeed, let {a, b, c, d} ∈ B∗
4 , and assume that there exist pairwise distinct
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elementsw1, . . . , wk−2 inP∗, different from a, b, c, and d , such thatw1+· · ·+wk−2 = b+c
(= a + d). Therefore {b, c, w1, . . . , wk−2} and {a, d, w1, . . . , wk−2} are in B∗

k , hence

ϕ(b) + ϕ(c) + ϕ(w1) + · · · + ϕ(wk−2) = 0 = ϕ(a) + ϕ(d) + ϕ(w1) + · · · + ϕ(wk−2),

thus ϕ(a)+ϕ(b)+ϕ(c)+ϕ(d) = 0, hence ϕ induces a permutation also on B∗
4, as claimed.

In order to settle the existence of such vectorsw1, . . . , wk−2, we first notice that a+b+c �=
0, thus a, b, c are linearly independent. Hence, up to an invertible linear mapping, we can
assume that a = e1, b = e2, c = e3, where e1, e2, e3 are the first three vectors of the
canonical basis of P. Let w3, . . . , wk−2 be any k − 4 pairwise distinct vectors in P∗ \ {b, c},
with the property that their first coordinate is 0 and that the vector

w = b + c + w3 + · · · + wk−2

is not equal to zero. Such vectors exist, since 2n−1 − 3 > k − 4 by (10). Now, let w1 be any
vector not in {a, d, a + w, d + w}, with the property that its first coordinate be equal to 1
(the number of possible choices for w1 is 2n−1 − 4, which is positive by (10)). Finally, if
we let w2 = w1 + w, then, by construction, w1, . . . , wk−2 are pairwise distinct elements in
P∗ \ {a, b, c, d}, and w1 + · · · + wk−2 = w1 + w2 + (w + b + c) = b + c, as required.

The proof is now complete. ��
Next we consider the case of the permutations of P inducing permutations of Bk . For

k odd, the following result does not have an equivalent rephrasing in the frame of coding
theory, since all codewords of the extended binary Hamming code have only even weights.
For k even, an application to coding theory will be given in the subsequent Theorem 3.4.

Theorem 3.2 Let P be an n-dimensional vector space over GF(2) and, for a given 3 ≤ k ≤
2n − 3, let Bk be the family of all the k-sets of elements of P adding up to zero. If ϕ is a
permutation of P, then the following hold.

(i) In the case that k is odd, ϕ induces a permutation of Bk if and only if ϕ is an invertible
linear map on P over GF(2).

(ii) In the case that k is even, ϕ induces a permutation of Bk if and only if ϕ is an invertible
affinity of the affine space P over the ground field GF(2), that is, if and only if ϕ(x) =
ϕ0(x) + ϕ(0), where ϕ0 is an invertible linear map on P over GF(2).

Proof Note first that Bk is not empty by Theorem 2.2 and Proposition 2.5. Every invertible
linear map on P permutes the elements of P and the k-sets in Bk, and the same is true for
invertible affinities, under the additional assumption that k is even.

Conversely, assume that ϕ induces a permutation of Bk . We first show that we can reduce
to the case where

ϕ(0) = 0.

If k is even, then it suffices to compose ϕ with the translation by ϕ(0). If k is odd, then,
as we noticed in the Remark 2.7.1 above, the number of k-sets in Bk containing 0 is different
from the number of k-sets in Bk containing any other element y of P. Since ϕ maps the
k-sets in Bk containing 0 onto the k-sets in Bk containing ϕ(0), it follows that ϕ(0) = 0, as
claimed.

Mapping 0 to 0, ϕ induces a permutation of P∗ which permutes the k-sets in B∗
k , thus ϕ

is linear, by Theorem 3.1, for all 3 ≤ k ≤ 2n − 4. If k = 2n − 3, and ϕ permutes the k-sets in
Bk, then, by complementation, ϕ permutes also the 3-sets in B3; mapping 0 to 0, ϕ induces
a permutation of P∗ which permutes the 3-sets in B∗

3, thus ϕ is linear by Theorem 3.1.
This completes the proof of the theorem. ��
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Last, but not least, we now derive, as another consequence of Theorems 3.1 and 3.2, one
of the main results of this paper, that is, a characterization of the permutation automorphisms
of the binary Hamming codes and of the extended binary Hamming codes.

Let us recall that a permutation automorphism of a code C is any permutation of the
coordinate positions that maps codewords to codewords [19]. A permutation automorphism
thus preserves each weight class of C . We will now prove that the converse is also true
for just a given weight class in the case of binary Hamming codes: if the code has length
2n − 1, n ≥ 3, and if k is a given weight different from 2n − 1 (hence necessarily such that
3 ≤ k ≤ 2n − 4), then any permutation of the coordinate positions that maps codewords
of weight k to codewords of weight k actually maps all codewords to codewords, hence
is a permutation automorphism of the code. This allows one to relax the requirement in the
definition of permutation automorphism of a binary Hamming code. Moreover, the following
Theorem 3.3, together with Theorem 3.1, provides an alternative proof of the well known
isomorphism between the permutation automorphism group of the binary Hamming code of
length m = 2n − 1 and the group GL(n, 2).

Theorem 3.3 (Characterization of the permutation automorphisms of binary Hamming
codes) Let C be a binary Hamming code of length m = 2n − 1, n ≥ 3, and let k be a
given weight, with 3 ≤ k ≤ 2n − 4. If σ is a permutation of the m coordinate positions, then
the following are equivalent.

(i) σ maps codewords to codewords, that is, σ is a permutation automorphism of C .

(ii) σ maps codewords of weight k to codewords of weight k.

Proof It suffices to prove that i i) ⇒ i). Let 3 ≤ k ≤ 2n − 4 be a given weight, let Ck be the
set of all codewords of weight k, and let σ be a given permutation in the symmetric group
Sm, which acts on GF(2)m by

σ(x1, x2, . . . , xm) := (xσ−1(1), xσ−1(2), . . . , xσ−1(m)).

Suppose that σ X ∈ Ck for all X in Ck . Let H be a parity check matrix for C, as at the
beginning of Section 2, and recall that P∗ is equal to the set {H1, H2, . . . , Hm} of the
columns of H . Hence σ induces also a permutation σ̃ of P∗ by

σ̃Hi = Hσ(i),

i = 1, . . . ,m. Finally, let θ : Ck → B∗
k be the invertible map defined in (1) (in particular, Ck

is not empty by Proposition 2.6). Then θσθ−1 maps B∗
k onto B∗

k , and, by construction,

θσθ−1{Hi1 , Hi2 , . . . , Hik } = {σ̃Hi1 , σ̃Hi2 , . . . , σ̃Hik }
for all {Hi1 , Hi2 , . . . , Hik } in B∗

k . Equivalently, the induced action of σ̃ on B∗
k maps B∗

k
onto B∗

k , whence σ̃ is linear by Theorem 3.1. Therefore σ̃ maps B∗
h onto B∗

h for all weights
3 ≤ h ≤ 2n − 4, whence, by reversing the previous argument, σ maps Ch onto Ch for all
weights 3 ≤ h ≤ 2n − 4. On the other hand, σ fixes trivially the zero codeword and the
codeword of weight 2n −1, hence σ maps all codewords inC to codewords inC, as claimed.

This completes the proof of the theorem. ��
Similarly, by using the one-to-one correspondence θ̄ in (2) instead of θ, one proves the

following result for the permutation automorphisms of the extended code, thereby providing,
together with Theorem 3.2.ii, an alternative proof of the well-known isomorphism between
the permutation automorphism group of the extended binary Hamming code of length 2n and
the group Aff(n, 2) of invertible affine mappings on P over GF(2) (see, e.g., [24, Chapter
8]).
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Theorem 3.4 (Characterization of the permutation automorphisms of extended binary Ham-
ming codes) Let C̄ be an extended binary Hamming code of length 2n, n ≥ 3, and let k be
a given (necessarily even) weight, with 4 ≤ k ≤ 2n − 4. If σ is a permutation of the 2n

coordinate positions, then the following are equivalent.

(i) σ maps codewords to codewords, that is, σ is a permutation automorphism of C̄ .

(ii) σ maps codewords of weight k to codewords of weight k.

Remark 3.5 An alternative proof of Theorem 3.3 can be given by means of some general
results concerning perfect binary single-error correcting codes, which, in particular, are valid
for binary Hamming codes. Let us denote by PAut(C) (respectively, PAut(Ch)) the set of all
permutations of the m coordinate positions (m = 2n − 1) that map codewords in C (resp.,
Ch) to codewords in C (resp., Ch), where h is any given weight. Then, by Corollary 1 in [2],

PAut(C) ⊆ PAut(Ck) ⊆ PAut(C3), (11)

where 3 ≤ k ≤ 2n − 4 is a fixed weight. On the other hand, the set C3 of codewords of
weight 3 is a Steiner triple system, and

|PAut(C3)| ≤ |GL(n, 2)| (12)

by [27, Theorem 1]. Finally, it is well known that PAut(C) is isomorphic to GL(n, 2) (see
e.g. [24]; see [18] for the case of the general q-ary Hamming code), whence, by (11) and
(12), PAut(C) = PAut(Ck), as claimed.
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7. Buratti M., Nakić A.: Designs over finite fields by difference methods. Finite Fields Appl. 57, 128–138

(2019).
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