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Quadratic Residue codes, rank three groups
and PBIBDs

Minjia Shi∗, Shukai Wang†, Tor Helleseth‡, Patrick Solé§¶

Abstract

The automorphism group of the Zetterberg code Z of length 17
(also a quadratic residue code) is a rank three group whose orbits on
the coordinate pairs determine two strongly regular graphs equivalent
to the Paley graph attached to the prime 17. As a consequence, code-
words of a given weight of Z are the characteristic vectors of the blocks
of a PBIBD with two associate classes of cyclic type. More generally,
this construction of PBIBDs is extended to quadratic residue codes
of length ≡ 1 (mod 8), to the adjacency codes of triangular and lat-
tice graphs, and to the adjacency codes of various rank three graphs.
A remarkable fact is the existence of 2-designs held by the quadratic
residue code of length 41 for code weights 9 and 10.
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1 Introduction

There is an old and well-known connection between codes and designs [7].
Many classical codes hold 2-designs, and some of them, like the Golay codes,
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5-designs. The relations between Partially Balanced Incomplete Block de-
signs (PBIBD for short) and codes, have been documented in several publi-
cations [6, 14, 15, 16, 18].

PBIBDs are of practical use in statistics [1, 4], and at the origin of the
study of association schemes in algebraic combinatorics.

In this note, we give an example of a classical code that constructs eight
such designs, the parameters of which are not all in the tables of [4]. The
corresponding two-class association scheme is the metric scheme of the Paley
strongly regular graph (SRG) [5] on 17 vertices. The proof relies on the fact
that the automorphism group of the Zetterberg code of length 17 is a rank
three group. These groups were historically involved in the classification of
finite simple groups [8]. They were also employed to construct SRG’s [5].
Chapter 11 of [5] is dedicated to them.

This symmetry argument is generalized in the following way. Any binary
code left invariant under a rank three group holds PBIBDs. An infinite class
of examples is obtained by considering quadratic residue codes of length ≡ 1
(mod 8). This requires the determination of their automorphism group from
[13, Chap. 17]. Of special interest is the quadratic residue code of length
41, whose codewords of length 9 hold a 2− (41, 9, 18) design; the codewords
of length 10 holding a 2− (41, 10, 72) design. The existence of these designs
cannot be explained by the Assmus-Mattson theorem, nor by the direct group
action argument of [13, p. 308]. It can however, be given a proof by using
the techniques of [16, §3.5].

Examples of rank three graphs of combinatorial interest include the tri-
angular and lattice graphs. These graphs are diameter two instances of the
Johnson and Hamming graphs, respectively. The 2-designs arising in these
graphs can be used to construct unequal error protection codes [15, 16]. More
examples are found by combining the information in [5, §11.5], and in [12].

The material is arranged in the following way. The next section collects
the definitions and notions required to understand the following sections.
Section 3 studies the example of the Zetterberg code of length 17 in great
detail. Section 4 generalizes this example to quadratic residue codes, adja-
cency codes of triangular codes, lattice codes and other rank three graphs.
Section 5 addresses the adjacency codes of various SRGs. Section 6 concludes
the article.
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2 Background material

2.1 Permutation groups

Let G be a permutation group acting on a finite set X. We will denote by xG

the unique orbit under the group G that contains x ∈ X. The group G will be
called a rank three group if and only if it is transitive on X and any one point
stabilizer has three orbits on X including the trivial one. In other words, it
has three orbits (classical called orbitals) on the cartesian product X × X
including the diagonal. The transposition induces a pairing on orbitals. If
an orbital O is self-paired then the graph (X,O) is symmetric and strongly
regular.

2.2 Association schemes

An association scheme on a set X with s classes is a partition of the cartesian
product X ×X = ∪si=0Ri with the following properties.

1. R0 = {(x, x) | x ∈ X};

2. (x, y) ∈ Rk if and only if (y, x) ∈ Rk;

3. If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and (z, y) ∈
Rj, is an integer pkij that depends on i, j, k but not on the special choice
of x and y.

A consequence of axiom 3 is that each graph Ri is regular of degree vi, say. In
this note, we will restrict ourselves to two-class association schemes that is to
say the case of s = 2. In that case the graph (X,R1) is called strongly regular
(shortly SRG). An association scheme is cyclic if it is translation invariant
under a cyclic group. In other words, X is the additive group of a residue
class ring Zv for some integer v, and the relations are of the form

(x, y) ∈ Rk ⇔ x− y ∈ Ek

for some Ek ⊂ X.

2.3 Designs

A PBIBD with two associate classes of parameters (b, v, k, r, λ1, λ2) is an
incidence structure (P ,B, I) satisfying the following axioms.
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1. The set P has v points;

2. The set B has b blocks;

3. Each block is incident to k points;

4. Each point is incident to r blocks;

5. There is a two-class association scheme on P such that two i-associate
points are both incident to exactly λi blocks for i = 1, 2.

A similar definition exists for s associates but in this note we will focus on
the case s = 2. Note that the case λ1 = λ2 = λ is that of a 2−(v, k, λ) design.
There is a classification of PBIBD into types depending if the association
scheme is

1. group divisible;

2. triangular;

3. Latin square type;

4. cyclic;

5. partial geometry type;

6. miscellaneous.

2.4 Codes

Let F2 = {0, 1} denote the finite field of order 2. A binary code of length
n is a F2-subspace of Fn

2 . The weight of a vector of Fn
2 is the number of its

nonzero coordinates. The weight distribution of a code C is the sequence Aw

of number of codewords of C of weight w. It is written in Magma [20] notation
as the list with generic element 〈w,Aw〉 where w ranges over the weights of
C. A binary code is cyclic if it is invariant under the cyclic shift. Cyclic
codes are in one to one correspondence with ideals of the residue class ring
F2[x]/(xn− 1). The generator polynomial of a cyclic code is the generator of
the corresponding ideal. The Quadratic residue codes are the cyclic codes of
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length p, which is an odd prime defined for p ≡ ±1 (mod 8) by the generator
polynomial of degree p−1

2
p−1
2∏

r=1

(x− α2r),

where α is a primitive root of order p. Since 2 is a quadratic residue modulo
an odd prime p, this polynomial is indeed in F2[x]. See [11, Chap.16] for
background.

The automorphism group of a binary code of length n is a subgroup of the
symmetric group on n coordinate places that leave the code wholly invariant.

3 The Zetterberg code

3.1 Construction

Let q = 16, and K = Fq2 . Define U = {x ∈ K | xq+1 = 1} = 〈α〉, where α is a
primitive root of order 17 in the multiplicative group of K. The coordinates
of the codewords of the binary Zetterberg code Z are naturally indexed by
U. The columns of its parity-check matrix can be identified with elements of
U under the standard isomorphism K ∼= (F2)

8. Thus H = [1, α, α2, . . . , α16].
The Zetterberg code is in fact a classical cyclic code [11, p. 206], [2, p. 161].
Its parameters are [17, 9, 5] and its weight distribution is computed in Magma
[20] as

[〈0, 1〉, 〈5, 34〉, 〈6, 68〉, 〈7, 68〉, 〈8, 85〉,

〈9, 85〉, 〈10, 68〉, 〈11, 68〉, 〈12, 34〉, 〈17, 1〉].

3.2 Symmetry

The permutation group G of Z is of order 23 × 17 generated by the shift
x 7→ αx and the squaring x 7→ x2. Consider the group action on the set P
of pairs of indices. Define the sets

• A = {1, 2}G,

• B = {1, 8}G.
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It can be checked that A and B are disjoint, and both with size 68 =
(
17
2

)
/2.

Thus their union is P = A
⋃
B.

Theorem 1 For every weight w ∈ {5, 6, . . . , 12} of Z, there are two con-
stants λ and µ such that each pair in A (resp. B) is covered by λ (resp. µ)
codewords of Z of weight w. Further 68(λ+ µ) = Aw

(
w
2

)
.

Proof. The first statement is immediate by group action. The second
statement is immediate by double counting.

The constants can be computed in Magma and are listed in the following
table.

Table 1: The value of λ, µ

w 5 6 7 8 9 10 11 12
λ 2 7 9 16 21 21 27 16
µ 3 8 12 19 24 24 28 17

Theorem 2 The graph on [1..17] with edge set A (resp. B) is strongly reg-
ular, and isomorphic to the Paley graph attached to the prime 17.

Proof. Write A′ = (1, 2)G and B′ = (1, 8)G. It can be checked exhaustively
that

{{x, y} | (x, y) ∈ A′} = A,

and likewise,
{{x, y} | (x, y) ∈ B′} = B.

This means that G is a rank three group and therefore the said graphs form
a pair of complementary SRGs by [5, §1.1.5]. By [19], there is a unique SRG
on 17 vertices. It is the Cayley graph on the cyclic group Z17 with generating
set the quadratic residues.

We conclude this section with the following result.

Theorem 3 For any weight w of Z, the codewords of weight w hold a PBIBD
of cyclic type with two associates of parameters

v = 17, b = Aw, r =
Aww

17
, λ, µ,

6



where the constants λ, µ, depend on w and are given in Table 1.

Proof. The design property follows by Theorem 1. The two-class associ-
ation scheme is the one attached to the SRG of Theorem 2. Since this graph
is circulant, the scheme is cyclic. Since G is transitive the replication number
r is well-defined, and obtained from the fact that each block has size w.

Remark 1 The parameters for w 6= 5, 8, 9 do not appear in Table VII-A of
[4, p. 448].

4 Generalizations

The following result is immediate. Its proof is omitted.

Theorem 4 If C is a binary code with automorphism group G that is a rank
three group, then codewords of given weight hold a PBIBD.

A case of application would be the code spanned by the adjacency matrix
of the SRG attached to such a group. See Table 10 A in [8].

In the following examples, the groups of the codes involved are either
rank three or doubly transitive.

4.1 Quadratic residue codes

Observing that Z is nothing else than the quadratic residue code of length
17, we generalize the observation that the group G is rank three to some
quadratic residue codes.

Theorem 5 If C is a binary quadratic residue code of length which is a
prime p 6= 7, 23, then the permutation group of C is a rank three group.

Proof. (sketch) By [13, chap. 17, Th. 6.7 (v) a.], the automorphism group
of the extended quadratic residue code of length p + 1 is, under that hy-
pothesis, isomorphic to PSL(2, p). By [11, chap. 16, Th. 10], that group is
generated by S, V, T where S is the cyclic shift. The other two generators
V, T are given by V : x 7→ ρ2x (where F×p = 〈ρ〉) and T : x 7→ − 1

x
.

We see that they fix the origin. Hence they generate the automorphism
group of C. It can be checked that the two non-trivial orbits are, respectively,
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the set of quadratic residues, and the set of non-residues.

What happens when p = 7 or p = 23 is that the permutation group of C
is 2-transitive. In particular, when p = 23 that group is the Matthieu group
M23, which is even four-transitive.

Note that when p ≡ −1 (mod 8), the quadratic residues do not lead to a
Paley graph, but give a symmetric Paley-Hadamard design. Thus the result
in this paragraph can be used to generate PBIBDs only when p ≡ 1 (mod 8).

For n = 41 we find 2-designs in weights 9, 10 and their complements 31 =
41− 10, 32 = 41− 9. None of these designs can be explained by the standard
group action argument of [13, p. 308], or by the Assmus-Mattson theorem [11,
Chap. 6, Th. 29]. It can be explained by the theorems of [16, §3.5], in partic-
ular Theorem 3.5.1 for weight 9, and Theorem 3.5.3 for weight 10. By similar
arguments the codes invariant under Higman-Sims, or Hoffman Singleton in
[17] can be shown to hold 2-designs. It would be interesting to know if the 3-
design of [3] can be explained in the same way. The weight distribution of the
code is [〈0, 1〉, 〈9, 410〉, 〈10, 1312〉, 〈11, 3034〉, 〈12, 7585〉, 〈13, 16605〉, 〈14, 33210〉,
〈15, 60024〉, 〈16, 97539〉, 〈17, 146370〉, 〈18, 195160〉, 〈19, 232060〉, 〈20, 255266〉,
〈21, 255266〉, 〈22, 232060〉, 〈23, 195160〉, 〈24, 146370〉, 〈25, 97539〉, 〈26, 60024〉,
〈27, 33210〉, 〈28, 16605〉, 〈29, 7585〉, 〈30, 3034〉, 〈31, 1312〉, 〈32, 410〉, 〈41, 1〉].

The parameters of the PBIBD are as follows.

w 9 10 11 12 13 14 15 16 17
λ 18 72 203 610 1575 3681 7668 14256 24234
µ 18 72 204 611 1584 3690 7704 14292 24318

w 18 19 20 21 22 23 24
λ 36372 48330 59084 65310 65310 60172 49224
µ 36456 48456 59210 65436 65436 60256 49308

w 25 26 27 28 29 30 31 32
λ 35667 23772 14211 7650 3755 1609 744 248
µ 35703 23808 14220 7659 3756 1610 744 248

4.2 Triangular graphs

The triangular graph, of order
(
n
2

)
, is the line graph of the complete graph

Kn. The graph is distance transitive as being the Johnson graph J(n, 2) as
by [5, 1.2.2]. The adjacency code has parameters [

(
n
2

)
, n − 1], by [9, §4.1],
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or by [16, Lemma 3.6.6]. For n = 5 to 12, the automorphism groups of
the adjacency codes are all rank three except for n = 6, where the group is
2-transitive and we obtain 2-designs.

• n = 5, [〈0, 1〉, 〈4, 5〉, 〈6, 10〉]
w 4 6
λ 0 3
µ 1 4

• n = 6, [〈0, 1〉, 〈8, 15〉]
The code is the [15, 4, 8] Simplex code. We obtain a 2−(15, 8, 4) design.

• n = 7, [〈0, 1〉, 〈6, 7〉, 〈10, 21〉, 〈12, 35〉]
w 6 10 12
λ 0 4 10
µ 1 5 12

• n = 8, [〈0, 1〉, 〈12, 28〉, 〈16, 35〉]
w 12 16
λ 4 10
µ 6 12

• n = 9, [〈0, 1〉, 〈8, 9〉, 〈14, 36〉, 〈18, 84〉, 〈20, 126〉]
w 8 14 18 20
λ 0 4 20 35
µ 1 7 21 40

• n = 10, [〈0, 1〉, 〈16, 45〉, 〈24, 210〉]
w 16 24
λ 4 56
µ 8 60

• n = 11, [〈0, 1〉, 〈10, 11〉, 〈18, 55〉, 〈24, 165〉, 〈28, 330〉, 〈30, 462〉]
w 10 18 24 28 30
λ 0 4 28 84 126
µ 1 9 36 84 140
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• n = 12, [〈0, 1〉, 〈20, 66〉, 〈32, 495〉, 〈36, 462〉]
w 20 32 36
λ 4 112 126
µ 10 120 140

• n = 13, [〈0, 1〉, 〈12, 13〉, 〈22, 78〉, 〈30, 286〉, 〈36, 715〉, 〈40, 1287〉, 〈42, 1716〉]
w 12 22 30 36 40 42
λ 0 4 36 144 330 462
µ 1 11 55 165 336 504

• n = 14, [〈0, 1〉, 〈24, 91〉, 〈40, 1001〉, 〈48, 3003〉]
w 24 40 48
λ 4 180 792
µ 12 220 840

• n = 15, [〈0, 1〉, 〈14, 15〉, 〈26, 105〉, 〈36, 455〉, 〈44, 1365〉, 〈50, 3003〉,
〈54, 5005〉, 〈56, 6435〉]
w 14 26 36 44 50 54 56
λ 0 4 44 220 660 1287 1716
µ 1 13 78 286 715 1320 1848

• n = 16, [〈0, 1〉, 〈28, 120〉, 〈48, 1820〉, 〈60, 8008〉, 〈64, 6435〉]
w 28 48 60 64
λ 4 264 1980 1716
µ 14 364 2002 1848

• n = 17, [〈0, 1〉, 〈16, 17〉, 〈30, 136〉, 〈42, 680〉, 〈52, 2380〉, 〈60, 6188〉,
〈66, 12376〉, 〈70, 19448〉, 〈72, 24310〉]
w 16 30 42 52 60 66 70 72
λ 0 4 52 312 1144 2860 5005 6435
µ 1 15 105 455 1365 3003 5148 6864

• n = 18, [〈0, 1〉, 〈32, 153〉, 〈56, 3060〉, 〈72, 18564〉, 〈80, 43758〉]
w 32 56 72 80
λ 4 364 4004 11440
µ 16 560 4368 12012
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• n = 19, [〈0, 1〉, 〈18, 19〉, 〈34, 171〉, 〈48, 969〉, 〈60, 3876〉,
〈70, 11628〉, 〈78, 27132〉, 〈84, 50388〉, 〈88, 75582〉, 〈90, 92378〉]
w 18 34 48 60 70 78 84 88 90
λ 0 4 60 420 1820 5460 12012 19448 24310
µ 1 17 136 680 2380 6188 12376 20020 25740

• n = 20, [〈0, 1〉, 〈36, 190〉, 〈64, 4845〉, 〈84, 38760〉, 〈96, 125970〉, 〈100, 92378〉]
w 36 64 84 96 100
λ 4 480 7280 31824 24310
µ 18 846 8568 32032 25740

• n = 21, [〈0, 1〉, 〈20, 21〉, 〈38, 210〉, 〈54, 1330〉, 〈68, 5985〉, 〈80, 20349〉,
〈90, 54264〉, 〈98, 116280〉, 〈104, 203490〉, 〈108, 293930〉, 〈110, 352716〉]
w 20 38 54 68 80 90 98 104 108 110
λ 0 4 68 544 2720 9520 24752 49504 75582 92378
µ 1 19 171 969 3876 11628 27132 50388 77792 97240

• n = 22, [〈0, 1〉, 〈40, 231〉, 〈72, 7315〉, 〈96, 74613〉, 〈112, 319770〉, 〈120, 646646〉]
w 40 72 96 112 120
λ 4 612 12240 74256 167960
µ 20 1140 15504 77520 175032

• n = 23, [〈0, 1〉, 〈22, 23〉, 〈42, 253〉, 〈60, 1771〉, 〈76, 8855〉, 〈90, 33649〉,
〈102, 100947〉, 〈112, 245157〉, 〈120, 490314〉, 〈126, 817190〉,
〈130, 1144066〉, 〈132, 1352078〉]
w 22 42 60 76 90 102 112 120 126 130 132
λ 0 4 76 684 3876 15504 46512 108528 201552 293930 352716
µ 1 21 210 1330 5985 20349 54264 116280 203490 302328 369512

4.3 Lattice graphs

The lattice graph of order m2 is the line graph of the complete bipartite graph
Km,m. It can be seen to be the same as the Hamming graphH(2,m). Thus it is
distance transitive [5, 1.2.3]. The code has parameters [m2, 2(m−1), 2(m−1)]
by [10].

Proposition 1 The minimum weight codewords hold a 2−(m2, 2(m−1),m−
2, 2) PBIBD.
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Proof. The minimum weight vectors are the m2 row vectors of the adja-
cency matrix. The support s(z) of the row r(z) indexed by z are the graph
vertices at distance 1 from z. Given a pair of position {x, y}, the number of
z such that {x, y} ⊂ s(z) is equal to the number of z’s at distance 1 from
both x and y. This number in turn by strong regularity depend only on the
distance of x to y. Thus it equals m− 2 or 2.

• m = 5, [〈0, 1〉, 〈8, 25〉, 〈10, 20〉, 〈12, 100〉, 〈14, 100〉, 〈20, 10〉]
w 8 10 12 14 20
λ 2 2 18 30 6
µ 3 5 24 31 7

• m = 6, [〈0, 1〉, 〈10, 36〉, 〈12, 30〉, 〈16, 225〉, 〈18, 440〉, 〈20, 225〉,
〈24, 30〉, 〈26, 36〉, 〈36, 1〉]
w 10 12 16 18 20 24 26 36
λ 2 2 40 104 65 12 18 1
µ 4 6 44 108 69 16 20 1

• m = 7, [〈0, 1〉, 〈12, 49〉, 〈14, 42〉, 〈20, 441〉, 〈22, 490〉, 〈24, 1225〉,
〈26, 1470〉, 〈28, 70〉, 〈32, 294〉, 〈42, 14〉]
w 12 14 20 22 24 26 28 32 42
λ 2 2 70 90 250 395 20 120 10
µ 5 7 75 115 300 410 30 136 11

• m = 8, [〈0, 1〉, 〈14, 64〉, 〈16, 56〉, 〈24, 784〉, 〈26, 896〉, 〈30, 3136〉,
〈32, 6510〉, 〈34, 3136〉, 〈38, 896〉, 〈40, 784〉, 〈48, 56〉, 〈50, 64〉, 〈64, 1〉]
w 14 16 24 26 30 32 34 38 40 48 50 64
λ 2 2 102 132 630 1555 826 300 298 30 38 1
µ 6 8 126 188 690 1615 886 356 322 36 42 1

• m = 9, [〈0, 1〉, 〈16, 81〉, 〈18, 72〉, 〈28, 1296〉, 〈30, 1512〉, 〈36, 7308〉,
〈38, 9072〉, 〈40, 15876〉, 〈42, 21168〉, 〈44, 2268〉, 〈48, 6048〉, 〈54, 168〉,
〈58, 648〉, 〈72, 18〉]
w 16 18 28 30 36 38 40 42 44 48 54 58 72
λ 2 2 140 182 1414 1932 3430 5390 630 2072 70 322 14
µ 7 9 196 287 1449 2114 3920 5684 791 2240 91 365 15
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• m = 10, [〈0, 1〉, 〈18, 100〉, 〈20, 90〉, 〈32, 2025〉, 〈34, 2400〉, 〈40, 420〉,
〈42, 14400〉, 〈44, 18900〉, 〈48, 44100〉, 〈50, 97272〉, 〈52, 44100〉, 〈56, 18900〉,
〈58, 14400〉, 〈60, 420〉, 〈66, 2400〉, 〈68, 2025〉, 〈80, 90〉, 〈82, 100〉, 〈100, 1〉]
w 18 20 32 34 40 42 44 48 50
λ 2 2 184 240 56 2464 3500 9408 23408
µ 8 10 288 416 112 2688 4116 10192 24220

w 52 56 58 60 66 68 80 82 100
λ, µ 11172 5768 4768 140 1008 913 56 66 1
λ, µ 11956 6384 4992 196 1184 1017 64 72 1

5 Various SRGs

In the following examples, we have proceeded as follows. We have computed
the F2-linear span of various SRGs from [12]. If the automorphism group of
that code is a rank three group, then we have computed the parameters of
the attached PBIBD. Some information on the graphs can be inferred from
[5, §11.5].

• n = 9, [〈0, 1〉, 〈4, 9〉, 〈6, 6〉]
The SRG is a lattice graph, equivalent to the Paley graph with the
same parameters.

w 4 6
λ 1 2
µ 2 3

• n = 10, [〈0, 1〉, 〈3, 10〉, 〈4, 15〉, 〈5, 12〉, 〈6, 15〉, 〈7, 10〉, 〈10, 1〉]
The SRG is the celebrated Petersen graph.

w 3 4 5 6 7
λ 0 2 2 5 4
µ 1 2 4 5 5

• n = 16, [〈0, 1〉, 〈6, 16〉, 〈8, 30〉, 〈10, 16〉, 〈16, 1〉]
The two SRGs (16, 6, 2, 2) have equivalent adjacency codes, both with
a doubly transitive automorphism group of order 11520.

• n = 17, [〈0, 1〉, 〈6, 68〉, 〈8, 85〉, 〈10, 68〉, 〈12, 34〉]
The SRG is a Paley graph. The [17, 8, 6] adjacency code is actually the
dual of the quadratic residue code [17, 9, 5].
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w 6 8 10 12
λ 7 16 21 16
µ 8 19 24 17

• n = 21, [〈0, 1〉, 〈4, 105〉, 〈6, 805〉, 〈8, 3255〉, 〈10, 5481〉, 〈12, 4515〉,
〈14, 1935〉, 〈16, 252〉, 〈18, 35〉]
The SRG is a triangle graph.

w 4 6 8 10 12 14 16 18
λ 2 57 424 1159 1412 838 144 25
µ 4 58 444 1190 1426 839 144 26

From now on, we indicate the parameters of the SRG as (v− k− λ− µ).

• (27− 10− 1− 5), [〈0, 1〉, 〈2, 351〉, 〈4, 17550〉, 〈6, 296010〉, 〈8, 2220075〉,
〈10, 8436285〉, 〈12, 17383860〉, 〈14, 20058300〉, 〈16, 13037895〉, 〈18, 4686825〉,
〈20, 888030〉, 〈22, 80730〉, 〈24, 2925〉, 〈26, 27〉]
w 2 4 6 8 10 12 14
λ 1 300 12650 177100 1081575 3268760 5200300

w 16 18 20 22 24 26
λ 4457400 2042975 480700 53130 2300 25

• (36−14−4−6), [〈0, 1〉, 〈14, 36〉, 〈16, 63〉, 〈18, 56〉, 〈20, 63〉, 〈22, 36〉, 〈36, 1〉]
Here is the 180-th SRG with v = 36 in [12].

w 14 16 18 20 22
λ 4 12 12 19 12
µ 6 12 16 19 14

• (40−12−2−4), [〈0, 1〉, 〈12, 40〉, 〈16, 135〉, 〈20, 672〉, 〈24, 135〉, 〈28, 40〉, 〈40, 1〉]
Here is the 6-th SRG with v = 40 in [12].

w 12 16 20 24 28
λ 2 18 160 45 18
µ 4 22 172 49 20

• (40− 12− 2− 4), [〈0, 1〉, 〈8, 45〉, 〈12, 1120〉, 〈16, 15570〉, 〈20, 32064〉,
〈24, 15570〉, 〈28, 1120〉, 〈32, 45〉, 〈40, 1〉]
Here is the 26-th SRG with v = 40 in [12].

w 8 12 16 20 24 28 32
λ 1 92 2394 7808 5508 540 28
µ 3 96 2396 7816 5510 544 30
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6 Conclusion

In this work, we have constructed more than a thousand examples of PBIBDs
with two associate classes held by binary codes with a rank three automor-
phism group. We could have constructed twice as many PBIBDs by simply
considering the dual code, which has a different weight distribution in general.
One possible extension would be to consider codes over other fields or rings.
In another direction, allowing for more than two orbits on pairs of coordi-
nates could lead to more examples of PBIBDs. For instance, the Zetterberg
code of length 65 can be shown to hold PBIBDs with three associate classes.

References

[1] R. A. Bailey, Association Schemes: designed experiments, algebra and
combinatorics, Cambridge studies in advanced math 84, Cambridge Uni-
versity Press, (2004), Cambridge.

[2] J. Bierbrauer, Introduction to Coding Theory, 2nd edition, CRC Press,
(2017), Boca Raton, FL, USA.
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