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Abstract

The hull of a linear code over finite fields is the intersection of the code and its

dual, which was introduced by Assmus and Key. In this paper, we develop a method

to construct linear codes with trivial hull ( LCD codes) and one-dimensional hull by

employing the positive characteristic analogues of Gauss sums. These codes are quasi-

abelian, and sometimes doubly circulant. Some sufficient conditions for a linear code

to be an LCD code (resp. a linear code with one-dimensional hull) are presented. It

is worth mentioning that we present a lower bound on the minimum distances of the

constructed linear codes. As an application, using these conditions, we obtain some

optimal or almost optimal LCD codes (resp. linear codes with one-dimensional hull)

with respect to the online Database of Grassl.
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1 Introduction

The hull of a linear code C over a finite field is defined to be

Hull(C) := C ∩ C⊥.
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It is clear that Hull(C) is also linear. It is easy to see that a linear code C is self-orthogonal

if and only if the dimension of Hull(C) is the dimension of C, i.e., Hull(C) = C, and it

is Linear Complementary Dual (LCD) if and only if the dimension of Hull(C) is zero, i.e.,

Hull(C) = {0}. Specifically, a linear code C is self-dual if and only if the dimension of

Hull(C) is n
2 for even n, where n is the length of C.

Hulls of linear codes have been introduced to classify finite projective planes in [1]. Later,

it turned out that hulls of linear codes play a vital role in determining the complexity of

some algorithms for checking permutation equivalence of two linear codes and computing

the automorphism group of a linear code [12, 13, 22, 25]. It has been shown that these

algorithms are always effective when the dimension of the hull is small. Due to their wide

applications, some families of linear codes with special hulls such as LCD codes and linear

codes with one-dimensional hull have been of interest and extensively studied [4, 14, 15, 16,

18, 23, 24]. It is worth noting that the equivalence of many types of codes with LCD codes

has been extensively studied. Jin and Xing [10] showed that an algebraic geometry code over

F2m(m ≥ 7) is equivalent to an LCD code. Moreover, a celebrated result was presented in

[5], which proved that any linear code over Fq (q > 3) is equivalent to an LCD code. These

codes are practically useful in communications systems, various applications, and link with

other objects as shown in [3, 5, 6, 7, 9] and references therein. Consequently, it is of interest

to study hulls, families of linear codes with small hulls. What needs to be emphasized

is that Li and Zeng [18] constructed linear codes with one-dimensional hull by utilizing

quadratic Gaussian sums from quadratic number fields and Carlet, Li and Mesnager [4]

constructed LCD codes and linear codes with one-dimensional hull by employing character

sums in semi-primitive case from cyclotomic fields and multiplicative subgroups of finite

fields. They have made a lot of contributions in this regard.

Inspired by the above research work, we construct LCD codes and codes with one-

dimensional hull dimension, by using an analogue of Gauss sums where both the corre-

sponding additive and multiplicative character take their values in a finite field instead of

the complex numbers. This method generalizes previous work [18, 20, 21]. Moreover, we

consider the order N ≥ 2 of the homomorphism, while [18] only considers N = 2. It turns

out that our constructions are more general and direct than previous work on small hulls

of linear codes. It is worth observing that we obtain some optimal or almost optimal LCD

codes and linear codes with one-dimensional hull from our constructions. Compared with

[18], the linear codes we constructed may be new when N > 2 in the sense. Furthermore,

we also present a lower bound on the minimum distances of the codes presented in this

paper. These codes have a lot of built-in symmetry: they are quasi-abelian of index 2 in

general [11], and double circulant in many cases.

The rest of this paper is organized as follows. Section 2 gives the preliminaries. In

2



Section 3, we give two concrete homomorphisms from a finite field into a finite field and

present the idea of constructing linear codes determined by a special generator matrix. In

Sections 4 and 5, we investigate LCD codes and linear codes with one-dimensional hull by

employing these two homomorphisms from a finite field to a finite field, respectively. In

addition, we present some examples of optimal or almost optimal LCD codes and linear

codes with one-dimensional hull. In Section 6, we present a lower bound on the minimum

distances of the constructed linear codes. Section 7 concludes the article.

2 Preliminaries

In this section, we introduce some notation and results in order for the exposition in this

paper to be self-contained, which will be useful later.

2.1 Codes

Let q be a power of a prime p and Fq denote the finite field with q elements. For a positive

integer n, a linear code of length n over Fq is defined to be a subspace of the Fq-vector

spaces Fn
q . A linear code C of length n over Fq is called an [n, k, d]q code if its Fq-dimension

is k and the minimum Hamming distance of C is d. If C is an [n, k, d] code, then from the

Singleton bound, its minimum distance is bounded above by d ≤ n−k+1. A code meeting

the above bound is called Maximum Distance Separable (MDS). A code is called almost

MDS if its minimum distance is one less than the MDS case. For u := (u1, u2, · · · , un) and

v := (v1, v2, · · · , vn) in F
n
q , the inner product of u and v is defined to be 〈u,v〉 :=

n
∑

i=1
uivi.

The dual C⊥ of a linear code C of length n over Fq is defined to be the set C⊥ = {v ∈

F
n
q |〈c,v〉 = 0 for all c ∈ C}. A linear code C is said to be self-orthogonal if C ⊆ C⊥ and it

is said to be self-dual if C = C⊥. A linear code C is said to be linear complementary dual

(LCD) code if C ∩C⊥ = {0}.

2.2 Homomorphisms

Starting from this subsection till the end of this paper, we let Frm denote the finite field of

order rm, where r is a prime number and m is a positive integer. Let F∗
rm = Frm\{0}. Let

Fq be the algebraic closure of the finite field Fq.

Let ϕ be a homomorphism from F
∗
rm into F

∗
q, that is, a mapping from F

∗
rm into F

∗
q

with ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ F
∗
rm. Define ϕ(x) := ϕ(x−1). Let ϕ0 be the trivial

homomorphism, which is defined by ϕ0(x) = 1 for all x ∈ F
∗
rm.

The following lemma gives the orthogonality relations of the homomorphism ϕ.
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Lemma 2.1. Let ϕ be defined as above. Then we have

∑

x∈F∗
rm

ϕ(x) =







rm − 1, if ϕ = ϕ0;

0, if ϕ 6= ϕ0.

Proof. The proof is similar to that of [17, Theorem 5.4] and omitted here.

Let χ be a homomorphism from Frm into F
∗
q, that is, a mapping from Frm into F

∗
q

with χ(x + y) = χ(x)χ(y) for all x, y ∈ Frm. Define χ(x) := χ(−x). Let χ0 be the trivial

homomorphism, which is defined by χ0(x) = 1 for all x ∈ Frm.

We also have the following lemma, which presents the orthogonality relations of the

homomorphism χ.

Lemma 2.2. Let χ be defined as above. Then we have

∑

x∈Frm

χ(x) =







rm, if χ = χ0;

0, if χ 6= χ0.

Proof. The proof is similar to that of [17, Theorem 5.4] and omitted here.

2.3 Some results for the sum g(ϕ, χ)

Let ϕ and χ be defined as Subsection 2.1. Then we define the sums

g(ϕ,χ) =
∑

x∈F∗
rm

ϕ(x)χ(x)

and

g(ϕ,χ) = g(ϕ,χ) =
∑

x∈F∗
rm

ϕ(x−1)χ(−x).

The following results show the value of the sum g(ϕ,χ).

Lemma 2.3. Let ϕ and χ be defined as Subsection 2.1. Then the sum g(ϕ,χ) satisfies

g(ϕ,χ) =



















rm − 1, if ϕ = ϕ0 and χ = χ0;

− 1, if ϕ = ϕ0 and χ 6= χ0;

0, if ϕ 6= ϕ0 and χ = χ0.

Proof. The conclusion follows directly from Lemmas 2.1 and 2.2.

Lemma 2.4. Let ϕ and χ be defined as Subsection 2.1. If ϕ 6= ϕ0 and χ 6= χ0, then

g(ϕ,χ)g(ϕ,χ) = rm ∈ Fp.
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Proof. For ϕ 6= ϕ0 and χ 6= χ0, we get

g(ϕ,χ)g(ϕ,χ) =
∑

x∈F∗
rm

ϕ(x)χ(x)
∑

y∈F∗
rm

ϕ(y−1)χ(−y)

=
∑

x,y∈F∗
rm

ϕ(xy−1)χ(x− y)

x−→xy
======

∑

x,y∈F∗
rm

ϕ(x)χ(y(x − 1))

=
∑

x∈F∗
rm

ϕ(x)
∑

y∈F∗
rm

χ(y(x− 1))

= ϕ(1)
∑

y∈F∗
rm

χ(0) +
∑

x∈F∗
rm

\{1}

ϕ(x)
∑

y∈F∗
rm

χ(y(x− 1))

= rm − 1−
∑

x∈F∗
rm

\{1}

ϕ(x)

= rm −
∑

x∈F∗
rm

ϕ(x)

= rm.

This completes the proof of this lemma.

The study of the behavior of the sum g(ϕ,χ) under various transformations of the ϕ or

χ leads to a number of useful identities.

Lemma 2.5. Let ϕ and χ be defined as Subsection 2.1. Then we have the following results.

(1) g(ϕ,χ) = ϕ(−1)g(ϕ,χ);

(2) g(ϕ,χ) = ϕ(−1)g(ϕ,χ);

(3) g(ϕ,χ)g(ϕ,χ) = ϕ(−1)rm for ϕ 6= ϕ0 and χ 6= χ0;

(4) (g(ϕ,χ))p
s
= g(ϕps , χps), where p is the characteristic of Fq and s is a positive integer.

Proof. The results of (1)-(3) are obvious by the definition g(ϕ,χ) and Lemma 2.4. Next,

we prove the result of (4). Combined with the definitions of ϕ and χ, we have

(g(ϕ,χ))p
s

=

(

∑

x∈F∗
rm

ϕ(x)χ(x)

)ps

=
∑

x∈F∗
rm

(ϕ(x))p
s

(χ(x))p
s

=
∑

x∈F∗
rm

ϕps(x)χps(x) =

g(ϕps , χps).

Remark 2.6. The ϕ and χ in Section 2.1 are not the usual multiplicative and additive

characters, respectively. Moreover, the g(ϕ,χ) is also not the usual Gauss sums. However,
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we can prove that the sum g(ϕ,χ) has similar properties to Gauss sums (see Lemmas 2.3 and

2.5(1-3)). The definition of the sum g(ϕ,χ) may have been studied before, but we haven’t

found any relevant references.

2.4 On characterizations of LCD codes and codes having one-dimensional

hull

In this paper, we consider the constructions of linear codes with small hull, mainly refer

to LCD codes and linear codes with one-dimensional hull. We will characterize when a

linear code is an LCD code or a linear code with one-dimensional hull. We next present

two lemmas for this purpose.

A complete characterization of LCD codes via the nonsingularity of their generator

matrices was employed in [3, 19], which provides a sufficient and necessary condition for a

linear code to be an LCD code.

Lemma 2.7. [3, 19] Let C be an [n, k] linear code over Fq with generator matrix G = [Ik, P ].

Then the code C is LCD if and only if Ik+PP T is nonsingular, i.e., −1 is not an eigenvalue

of the matrix PP T , where P T denotes the transpose of P.

We also have the following lemma on a linear code having one-dimensional hull, which

provides an idea to construct linear codes with one-dimensional hull by using the eigenvalues

of the generator matrices.

Lemma 2.8. [4, 18] Let C be an [n, k] linear code over Fq with generator matrix G = [Ik, P ].

Then the code C has one-dimensional hull if the matrix PP T has an eigenvalue −1 with

(algebraic) multiplicity 1.

3 Linear codes associated with homomorphisms

In this section, we construct the linear codes by using the two homomorphisms in Section

2.1.

Let r be a prime number and m a positive integer. Frm denotes the finite field of order

rm. Let F
∗
rm = Frm\{0} and F

∗
rm = 〈α〉, where α is a fixed primitive element of F

∗
rm.

Assume that N > 1 is a positive integer and N |(rm−1). Let q be a power of p, where p is a

prime number. Assume that N |(q − 1). Let F∗
q = 〈β〉, where β is a fixed primitive element

of F∗
q. For the sake of convenience, we let u = β

q−1
N . Define the function

ϕ : F∗
rm −→ F

∗
q, ϕ(α

k) = uk, (1)
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where 0 ≤ k ≤ rm− 2. It is easy to know that ϕ is a homomorphism of order N . Define the

kernel of the homomorphism ϕ is the set

ker(ϕ) := {αk, 0 ≤ k ≤ rm − 2 : ϕ(αk) = 1} = 〈αN 〉.

Assume that (p, r) = 1. Then there exists a positive integer t such that r|(qt − 1). Let

F
∗
qt

= 〈γ〉 and ζ = γ
qt−1

r , where γ is a fixed primitive element of F∗
qt
. For any a ∈ Frm , we

define

χa : Frm −→ F
∗
q, χa(x) = ζTr

rm

r (ax), x ∈ Frm , (2)

where Trr
m

r denotes the trace function from Frm onto Fr. It is easy to know that χa is a

homomorphism. It follows from the definition of χa that

g(ϕ,χab) = ϕ(b)g(ϕ,χa) (3)

for a ∈ Frm and b ∈ F
∗
rm.

Fix v ∈ Fq. Let Frm = {xi : 1 ≤ i ≤ rm}. Define the rm×rm matrix P = (pij) ∈ Mrm(Fq)

by setting pij = ρ(xj − xi), where

ρ(xj − xi) =







ϕ(xj − xi), if i 6= j;

v, if i = j.
(4)

For any a ∈ Frm, set ηa := (χa(x1), χa(x2), · · · , χa(xrm))
T , where “T” denotes the transpose

operator. Then the ith component of Pηa is

rm
∑

j=1

ρ(xj−xi)χa(xj) =
∑

x∈Frm

ρ(x−xi)χa(x)
y:=x−xi
=======

∑

y∈Frm

ρ(y)χa(y+xi) =
∑

y∈Frm

ρ(y)χa(y)χa(xi).

Hence, Pηa =

(

∑

y∈Frm

ρ(y)χa(y)

)

ηa and ηa is an eigenvector of P .

Similarly, the ith component of P T ηa is

rm
∑

j=1

ρ(xi−xj)χa(xj) =
∑

x∈Frm

ρ(xi−x)χ(x)
y:=xi−x
=======

∑

y∈Frm

ρ(y)χa(xi−y) =
∑

y∈Frm

ρ(y)χa(−y)χa(xi).

Hence, P T ηa =

(

∑

y∈Frm

ρ(y)χa(−y)

)

ηa and ηa is also an eigenvector of P T .

Next, we will prove that the rm vectors {ηa := (χa(x1), χa(x2), · · · , χa(xrm))
T : a ∈ Frm}

are linearly independent over Fq.
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Suppose that
∑

a∈Frm

kaηa = 0, where ka ∈ Fq. Then we have

∑

a∈Frm

ka(χa(x1), χa(x2), · · · , χa(xrm))
T = 0,

=⇒





∑

a∈Frm

kaχa(x1),
∑

a∈Frm

kaχa(x2), · · · ,
∑

a∈Frm

kaχa(xrm)





T

= 0.

Hence,
∑

a∈Frm

kaχa(xi) = 0 for any 1 ≤ i ≤ rm.

Given an element a0 ∈ Frm, we have

∑

a∈Frm

kaχa(xi)χa0(−xi) = 0 for any 1 ≤ i ≤ rm,

=⇒
∑

a∈Frm

kaχ1((a− a0)xi) = 0 for any 1 ≤ i ≤ rm,

=⇒
∑

x∈Frm

∑

a∈Frm

kaχ1((a− a0)x) = 0,

=⇒
∑

a∈Frm

ka
∑

x∈Frm

χ1((a− a0)x) = 0.

By Lemma 2.2, we obtain ka0r
m = 0 and then ka0 = 0 by (r, p) = 1. Because a0 is arbitrary,

we have ka = 0 for any a ∈ Frm. Hence, the r
m vectors {ηa := (χa(x1), χa(x2), · · · , χa(xrm))

T :

a ∈ Frm} are linearly independent over Fq.

Therefore, the multisets

{

∑

y∈Frm

ρ(y)χa(y) : a ∈ Frm

}

and

{

∑

y∈Frm

ρ(y)χa(−y) : a ∈ Frm

}

present all eigenvalues of the matrix P and P T , respectively.

To sum up, PP T ηa = P

(

∑

y∈Frm

ρ(y)χa(−y)

)

ηa =

(

∑

y∈Frm

ρ(y)χa(y)
∑

y∈Frm

ρ(y)χa(−y)

)

ηa.

Then the multiset

{

λa :=
∑

y∈Frm

ρ(y)χa(y)
∑

y∈Frm

ρ(y)χa(−y) : a ∈ Frm

}

presents all eigen-

values of the matrix PP T and {ηa : a ∈ Frm} presents all eigenvectors of PP T .
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Let the symbols be the same as above. According to Lemma 2.5(1), we obtain

λa =
∑

y∈Frm

ρ(y)χa(y)
∑

y∈Frm

ρ(y)χa(−y)

=



v +
∑

y∈F∗
rm

ϕ(y)χa(y)







v +
∑

y∈F∗
rm

ϕ(y)χa(−y)





= (v + g(ϕ,χa))(v + g(ϕ,χa))

= v2 + vg(ϕ,χa) + vg(ϕ,χa) + g(ϕ,χa)g(ϕ,χa)

= v2 + vg(ϕ,χa) + ϕ(−1)vg(ϕ,χa) + ϕ(−1)(g(ϕ,χa))
2

= v2 + (1 + ϕ(−1))vg(ϕ,χa) + ϕ(−1)(g(ϕ,χa))
2.

Hence, all eigenvalues of PP T are given by the multiset

{λa := v2 + (1 + ϕ(−1))vg(ϕ,χa) + ϕ(−1)(g(ϕ,χa))
2 : a ∈ Frm}. (5)

Let C := C(ϕ,v) be a linear code over Fq with generator matrix G = [Irm , P ]. Then C is

a [2rm, rm] linear code over Fq. In Section 4, we construct LCD codes according to Lemma

2.7. In Section 5, we construct linear codes with one-dimensional hull by Lemma 2.8.

4 The constructions of LCD codes

In this section, we present two simple constructions of LCD codes by using the two homo-

morphisms (1) and (2). When m = 1 these codes are double circulant. In general, they are

quasi-abelian of index 2 as Fq[H]−submodules of Fq[H]2 with H the additive group of Frm

[11].

Construction A. Define ρ(0) = v = 0. We then obtain a rm × rm matrix P = (pij) by

pij = ρ(xj − xi),

which is defined as (4). It follows from (5) that all eigenvalues of PP T are given by

λa =







0, if a = 0;

ϕ(−1)(g(ϕ,χa))
2, if a ∈ F

∗
rm.

(6)

The following theorem gives the sufficient conditions for linear codes to be LCD codes

by Construction A.

Theorem 4.1. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N |(rm − 1). Let q be a power of prime p and (p, r) = 1. Assume

that N |(q − 1). Let C := C(ϕ,0) be the linear code over Fq with generator matrix [Irm, P ].

Then we have the following.
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(1) If there exists a positive integer s such that N |(ps − 1) and ϕ(p2s) 6= 1, then C is a

[2rm, rm] LCD code over Fq. In particular, if ϕ(q2) 6= 1, then C is an [2rm, rm] LCD

code over Fq.

(2) If there exists a positive integer s such that N |(ps + 1) and ϕ(p−2s) 6= r2m, then C is

an [2rm, rm] LCD code over Fq.

Proof. It follows from (6) that all eigenvalues of PP T are 0 when a = 0 and ϕ(−1)(g(ϕ,χa))
2

when a ∈ F
∗
rm. According to Lemma 2.7, we just have to prove that ϕ(−1)(g(ϕ,χa))

2 6= −1

for any a ∈ F
∗
rm.Assume on the contrary that there exists a ∈ F

∗
rm such that ϕ(−1)(g(ϕ,χa))

2

= −1.

(1) If there exists a positive integer s such that N |(ps − 1), we get ϕps = ϕ. Then

(ϕ(−1)(g(ϕ,χa))
2)p

s

= (−1)p
s

= −1

=⇒ (ϕ(−1))p
s

(g(ϕ,χa))
ps)2 = −1

=⇒ ϕps(−1)(g(ϕps , χaps))
2 = −1

=⇒ ϕ(−1)(g(ϕ,χaps ))
2 = −1

=⇒ ϕ(−1)(ϕ(ps)g(ϕ,χa))
2 = −1

=⇒ ϕ(−1)(g(ϕ,χa))
2 = −(ϕ(ps))−2 = −ϕ(p2s).

Combined ϕ(−1)(g(ϕ,χa))
2 = −1 with ϕ(−1)(g(ϕ,χa))

2 = −ϕ(p2s), we get ϕ(p2s) = 1

which is a contradiction. Hence, ϕ(−1)(g(ϕ,χa))
2 6= −1 for any a ∈ F

∗
rm .

(2) If there exists a positive integer s such that N |(ps + 1), we get ϕps = ϕ−1. Then

(ϕ(−1)(g(ϕ,χa))
2)p

s

= (−1)p
s

= −1

=⇒ ϕps(−1)(g(ϕps , χaps))
2 = −1

=⇒ ϕ−1(−1)(g(ϕ−1, χaps))
2 = −1

=⇒ ϕ−1(−1)(ϕ−1(ps)ϕ−1(−1)g(ϕ−1, χ−a))
2 = −1

=⇒ ϕ−1(−1)(g(ϕ−1, χ−a))
2 = −(ϕ−1(p−s)ϕ−1(−1))−2 = −ϕ(p−2s)

=⇒ ϕ−1(−1)(g(ϕ,χa))
2 = −ϕ(p−2s).

Combined ϕ(−1)(g(ϕ,χa))
2 = −1 with ϕ−1(−1)(g(ϕ,χa))

2 = −ϕ(p−2s), we get

ϕ(−1)(g(ϕ,χa))
2ϕ−1(−1)(g(ϕ,χa))

2 = ϕ(p−2s)

=⇒ (g(ϕ,χa)g(ϕ,χa))
2 = ϕ(p−2s)

=⇒ r2m = ϕ(p−2s) by Lemma 2.4,

which is a contradiction. Therefore, ϕ(−1)(g(ϕ,χa))
2 6= −1 for any a ∈ F

∗
rm.
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To sum up, −1 is not an eigenvalue of the matrix PP T . By Lemma 2.7, C is an [2rm, rm]

LCD code over Fq. This finishes the proof of the theorem.

Two concrete examples with respect to Theorem 4.1 are given as follows.

Example 4.2. Let r = 7,m = 1, N = 3, p = 2 and q = 4. Let F∗
4 = 〈β〉, where β is a fixed

primitive element of F∗
4. It is easy to check that q, r,N satisfy the conditions in Theorem

4.1(1)(2). Then C is a quaternary [14, 7, 5] LCD code with generator matrix [I7, P ], where

P =



























0 1 β2 β β β2 1

1 0 1 β2 β β β2

β2 1 0 1 β2 β β

β β2 1 0 1 β2 β

β β β2 1 0 1 β2

β2 β β β2 1 0 1

1 β2 β β β2 1 0



























,

which is almost optimal in the sense that the minimum distance of the optimal quaternary

linear code with the length 14 and the dimension 7 is 6 by the online Database [8]. Moreover,

the dual code of C has parameters [14, 7, 5], which is also almost optimal.

Example 4.3. Let r = 3,m = 1, N = 2 and q = p = 5. It is easy to check that q, r,N

satisfy the conditions in Theorem 4.1(2). Then C is an [6, 3, 3] LCD code over F5 with

generator matrix [I3, P ], where

P =







0 1 −1

−1 0 1

1 −1 0






,

which is almost optimal in the sense that the minimum distance of the optimal 5-ary linear

code with the length 6 and the dimension 3 is 4 by the online Database [8]. Moreover, the

dual code of C has parameters [6, 3, 3], which is also almost optimal.

In view of Theorem 4.1, since the sufficient condition is abstract for a linear code to be

an LCD code, we present a concrete result as corollary in the following.

Corollary 4.4. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N |(rm − 1). Let q be a power of prime p and (p, r) = 1. Assume

that N |(q − 1). Let C := C(ϕ,0) be the linear code over Fq with generator matrix [Irm, P ].

Then we have the following.

(1) If there exists a positive integer s such that N |(ps − 1) and p
2s(rm−1)

N 6≡ 1 (mod r),

then C is an [2rm, rm] LCD code over Fq.

11



(2) If there exists a positive integer s such that N |(ps + 1) and r2mN 6≡ 1 (mod p), then

C is an [2rm, rm] LCD code over Fq.

Proof. Compared with the conditions of Theorem 4.1, we just have to prove that (1) if

p
2s(rm−1)

N 6≡ 1 (mod r), then ϕ(p2s) 6= 1 and (2) if r2mN 6≡ 1 (mod p), then ϕ(p−2s) 6= r2m,

respectively.

(1) Assume on the contrary that ϕ(p2s) = 1, then p2s ∈ ker(ϕ). Hence, p2s ∈ 〈αN 〉.

Since ord(αN ) = rm−1
N

, we have p2s·
rm−1

N ≡ 1 (mod r), it is a contradiction.

(2) Assume on the contrary that ϕ(p−2s) = r2m, then (ϕ(p−2s))N = r2mN . Hence,

r2mN ≡ 1 (mod p), it is a contradiction. This completes the proof.

Construction B. Define ρ(0) = v. We then obtain a rm × rm matrix P = (pij) by

pij = ρ(xj − xi),

which is defined as (4). For any a ∈ Frm, we define fa : Fq −→ Fq by

fa(x) =







x2, if a = 0;

x2 + (1 + ϕ(−1))ϕ(a)g(ϕ,χ1)x+ ϕ(−1)(ϕ(a)g(ϕ,χ1))
2, if a ∈ F

∗
rm.

(7)

It follows from (5) that all eigenvalues of PP T are given by

λa := fa(v)

for all a ∈ Frm .

In order to construct LCD codes over Fq, we hope that there exists v ∈ Fq satisfying

fa(v) 6= −1 for any a ∈ Frm . Hence, we present a lemma as follows.

Lemma 4.5. Let the symbols be the same as above. If q > 2(N + 1), then there exists

v ∈ Fq satisfying λa := fa(v) 6= −1 for any a ∈ Frm.

Proof. Since the order of ϕ is N , the set {fa(x) : a ∈ Frm} has at most N + 1 distinct

polynomials. For any a ∈ Frm, fa(x) = −1 has at most two solutions in Fq. Theorefore, all

these equations in {fa(x) = −1 : a ∈ Frm} have at most 2(N + 1) solutions over Fq. Since

q > 2(N + 1), there exists an element v ∈ Fq such that v is not a solution of any equation

fa(x) = −1, i.e., there exists v ∈ Fq satisfying λa = fa(v) 6= −1 for any a ∈ Frm .

Based on the discussion above, we can easily get the following theorem.

Theorem 4.6. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N |(rm − 1). Let q be a power of prime p and (p, r) = 1. Assume

that N |(q − 1). Let C := C(ϕ,v) be the linear code over Fq with generator matrix [Irm, P ].

If q > 2(N + 1), then there exists v ∈ Fq such that C is an [2rm, rm] LCD code over Fq.

12



Proof. By Lemmas 2.7 and 4.5, we can easily obtain the desired results. So we omit the

detail here.

Next, we present an example to explain the result of Theorem 4.6.

Example 4.7. Let r = 2,m = 2, N = 3, p = 5 and q = 25. Let F∗
25 = 〈β〉, where β is a

fixed primitive element of F∗
25. Taking v = β2. It is easy to check that q, r,N satisfy the

conditions in Theorem 4.6. Then C is an [8, 4, 4] LCD code over F25 with generator matrix

[I4, P ], where

P =













β2 β16 β8 1

β16 β2 1 β8

β8 1 β2 β16

1 β8 β16 β2













,

which is an almost MDS code. Moreover, the dual code of C has parameters [8, 4, 4], which

is also an almost MDS code.

5 The constructions of linear codes with one-dimensional

hull

In this section, we present the constructions of linear codes with one-dimensional hull by

using the two homomorphisms (1) and (2). In order to construct linear codes with one-

dimensional hull over Fq, we hope that there exists v ∈ Fq satisfying λ0 = v2 = −1 and

λa 6= −1 for any a ∈ Frm by Lemma 2.8. Let q be a power of a prime p. In what follows,

we shall consider the construction dividing into two cases p = 2 and p ≥ 3.

5.1 The case p = 2

Define ρ(0) = v = 1. Then v2 = 1 = −1. We then obtain a rm × rm matrix P = (pij) by

pij = ρ(xj − xi),

which is defined as (4). It follows from (5) that all eigenvalues of PP T are given by

λa =







− 1, if a = 0;

− 1 + (g(ϕ,χa))
2, if a ∈ F

∗
rm.

(8)

Therefore, we present the following theorem.

Theorem 5.1. Let r be an odd prime number and m be a positive integer. Assume that

N > 1 is a positive integer and N |(rm − 1). Let q be a power of p = 2 and N |(q − 1). Let

13



C := C(ϕ,1) be the linear code over Fq with generator matrix [Irm , P ]. Then C is a [2rm, rm]

linear code over Fq with one-dimensional hull.

Proof. It follows from (8) that all eigenvalues of PP T are−1 when a = 0 and−1+(g(ϕ,χa))
2

when a ∈ F
∗
rm. By using Lemma 2.8, we just have to prove that −1 + (g(ϕ,χa))

2 6= −1

for any a ∈ F
∗
rm. Note that the result g(ϕ,χa)g(ϕ,χa) = rm for any a ∈ F

∗
rm from Lemma

2.4. Then g(ϕ,χa) 6= 0 and g(ϕ,χa) 6= 0 for any a ∈ F
∗
rm . Hence, (g(ϕ,χa))

2 6= 0 and

−1 + (g(ϕ,χa))
2 6= −1 for any a ∈ F

∗
rm . The desired conclusion then follows.

Here, we give a concrete example as follows.

Example 5.2. Let r = 13,m = 1, N = 3, p = 2 and q = 4. Let F∗
4 = 〈β〉, where β is a fixed

primitive element of F∗
4. It is easy to check that q, r,N satisfy the conditions in Theorem

5.1. Then C is a [26, 13, 8] linear code over F4 with one-dimensional hull and its generator

matrix [I13, P ], where

P =

























































1 1 β β β2 1 β2 β2 1 β2 β β 1

1 1 1 β β β2 1 β2 β2 1 β2 β β

β 1 1 1 β β β2 1 β2 β2 1 β2 β

β β 1 1 1 β β β2 1 β2 β2 1 β2

β2 β β 1 1 1 β β β2 1 β2 β2 1

1 β2 β β 1 1 1 β β β2 1 β2 β2

β2 1 β2 β β 1 1 1 β β β2 1 β2

β2 β2 1 β2 β β 1 1 1 β β β2 1

1 β2 β2 1 β2 β β 1 1 1 β β β2

β2 1 β2 β2 1 β2 β β 1 1 1 β β

β β2 1 β2 β2 1 β2 β β 1 1 1 β

β β β2 1 β2 β2 1 β2 β β 1 1 1

1 β β β2 1 β2 β2 1 β2 β β 1 1

























































.

Moreover, the hull of C is a [26, 1, 26] cyclic code over F4 with generator matrix
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
)

.

5.2 The case p ≥ 3

In this subsection, we let F∗
q = 〈β〉, where β is a fixed primitive element of F∗

q. Assume that

4|(q − 1).

Define ρ(0) = v = β
q−1
4 . Then v2 = (β

q−1
4 )2 = β

q−1
2 = −1. We then obtain a rm × rm

matrix P = (pij) by

pij = ρ(xj − xi),
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which is defined as (4). In addition, ϕ(−1) = ϕ(α
rm−1

2 ) = u
rm−1

2 = (β
q−1
N )

rm−1
2 =

(β
q−1
2 )

rm−1
N = (−1)

rm−1
N . When rm−1

N
is odd, ϕ(−1) = −1; when rm−1

N
is even, ϕ(−1) = 1.

Combined with (5), when rm−1
N

is odd, we have

λa =







− 1, if a = 0;

− 1− (g(ϕ,χa))
2, if a ∈ F

∗
rm ;

(9)

when rm−1
N

is even, we get

λa =







− 1, if a = 0;

− 1 + (2v + g(ϕ,χa))g(ϕ,χa), if a ∈ F
∗
rm .

(10)

Collecting all discussions above, we first present the sufficient conditions for constructing

linear codes with one-dimensional hull when rm−1
N

is odd.

Theorem 5.3. Let r be a prime number and m be a positive integer. Assume that N > 1 is

a positive integer and N |(rm − 1). Let q be a power of prime p and (p, r) = 1. Assume that

N |(q−1) and 4|(q−1). Let C := C
(ϕ,β

q−1
4 )

be the linear code over Fq with generator matrix

[Irm , P ]. When rm−1
N

is odd, C is a [2rm, rm] linear code over Fq with one-dimensional hull.

Proof. The proof is similar to that of Theorem 5.1 and omitted here.

Example 5.4. Let r = 3,m = 2, N = 8, p = 7 and q = 49. Let F∗
49 = 〈β〉, where β is a fixed

primitive element of F∗
49. It is easy to check that q, r,N satisfy the conditions in Theorem

5.3. Then C is a [18, 9, 8] linear code over F49 with one-dimensional hull and its generator

matrix [I9, P ], where

P =





































β12 β42 β6 β30 1 β36 β18 β12 6

β18 β12 1 β12 β36 β6 β42 6 β30

β30 6 β12 β6 β18 β42 β12 1 β36

β6 β36 β30 β12 β12 6 1 β18 β42

6 β12 β42 β36 β12 β18 β30 β6 1

β12 β30 β18 1 β42 β12 6 β36 β6

β42 β18 β36 6 β6 1 β12 β30 β12

β36 1 6 β42 β30 β12 β6 β12 β18

1 β6 β12 β18 6 β30 β36 β42 β12





































.

Moreover, the hull of C is a [18, 1, 18] quasi-cyclic code of index 2 over F49 with generator

matrix
(

1 1 1 1 1 1 1 1 1 β12 β12 β12 β12 β12 β12 β12 β12 β12
)

.
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Compared with Example 2(2) in [18], the linear code C over F49 with one-dimensional hull

we obtained has better parameters than its parameters. In other words, the linear code C

of the length 18 with the dimension 9 has the minimal distance 8, while the linear code C

of the length 18 with the dimension 9 in [18, Example 2(2)] has the minimal distance 7.

That is to say, the linear code C over F49 with one-dimensional hull we obtained is also

considered new.

Example 5.5. Let r = 7,m = 1, N = 6, p = 5 and q = 25. Let F∗
25 = 〈β〉, where β is a fixed

primitive element of F∗
25. It is easy to check that q, r,N satisfy the conditions in Theorem

5.3. Then C is a [14, 7, 7] linear code over F25 with one-dimensional hull and its generator

matrix [I7, P ], where

P =



























2 1 β8 β4 β16 β20 4

4 2 1 β8 β4 β16 β20

β20 4 2 1 β8 β4 β16

β16 β20 4 2 1 β8 β4

β4 β16 β20 4 2 1 β8

β8 β4 β16 β20 4 2 1

1 β8 β4 β16 β20 4 2



























,

which is an almost MDS code. Moreover, the hull of C is a [14, 1, 14] quasi-cyclic code of

index 2 over F25 with generator matrix

(

1 1 1 1 1 1 1 2 2 2 2 2 2 2
)

.

Next, we turn to the sufficient conditions for constructing linear codes with one-dimensional

hull when rm−1
N

is even.

Theorem 5.6. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N |(rm − 1). Let q be a power of prime p and (p, r) = 1. Assume

that N |(q − 1) and 4|(q − 1). Let C := C
(ϕ,β

q−1
4 )

be the linear code over Fq with generator

matrix [Irm , P ]. When rm−1
N

is even and 2v+ g(ϕ,χa) 6= 0 for all a ∈ F
∗
rm, C is a [2rm, rm]

linear code over Fq with one-dimensional hull.

Proof. It follows from (10) that all eigenvalues of PP T are −1 when a = 0 and −1 +

(2v+ g(ϕ,χa))g(ϕ,χa) when a ∈ F
∗
rm. According to Lemma 2.8, we just have to prove that

−1 + (2v + g(ϕ,χa))g(ϕ,χa) 6= −1 for all a ∈ F
∗
rm .

By utilizing Lemma 2.4 and the proof of Theorem 5.1, we obtain that g(ϕ,χa) 6= 0 for any

a ∈ F
∗
rm. When 2v+g(ϕ,χa) 6= 0 for all a ∈ F

∗
rm , we have −1+(2v+g(ϕ,χa))g(ϕ,χa) 6= −1

for all a ∈ F
∗
rm.
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Therefore, the matrix PP T has an eigenvalue −1 with multiplicity 1. It then follows

from Lemma 2.8 that C is a [2rm, rm] linear code over Fq with one-dimensional hull.

In Theorem 5.6, the condition “2v + g(ϕ,χa) 6= 0 for all a ∈ F
∗
rm” is not very straight-

forward. Hence, we will present the following corollary as a concrete result.

Corollary 5.7. Let r be a prime number and m be a positive integer. Assume that N > 1

is a positive integer and N |(rm−1). Let q be a power of odd prime p and (p, r) = 1. Assume

that N |(q − 1) and 4|(q − 1). Let C := C
(ϕ,β

q−1
4 )

be the linear code over Fq with generator

matrix [Irm , P ]. Let rm−1
N

be even. If ϕ(q) 6= 1, then C is a [2rm, rm] linear code over Fq

with one-dimensional hull.

Proof. Since rm−1
N

is even and it follows from (10) that all eigenvalues of PP T are −1 when

a = 0 and −1 + (2v + g(ϕ,χa))g(ϕ,χa) when a ∈ F
∗
rm . Suppose that 2v + g(ϕ,χa) = 0 for

some a ∈ F
∗
rm . Then g(ϕ,χa) = −2v ∈ Fp when p ≡ 1 (mod 4) and g(ϕ,χa) = −2v ∈ Fp2

when p ≡ 3 (mod 4). In addition,

(g(ϕ,χa))
q =





∑

x∈F∗
rm

ϕ(x)χa(x)





q

= g(ϕq, χaq)

= g(ϕ,χaq)

= ϕ(q−1)g(ϕ,χa)

= ϕ(q)−1g(ϕ,χa)

by N |(q − 1) and Section 3(3). If ϕ(q) 6= 1, then (g(ϕ,χa))
q 6= g(ϕ,χa), i.e., g(ϕ,χa) /∈ Fq.

When p ≡ 1 (mod 4), Fp ⊆ Fq, which implies that g(ϕ,χa) /∈ Fp. It is a contradiction.

When p ≡ 3 (mod 4), Fp2 ⊆ Fq by 4|(q − 1), which implies that g(ϕ,χa) /∈ Fp2. It is a

contradiction.

Hence, 2v+ g(ϕ,χa) 6= 0. By using Lemma 2.4, we obtain that g(ϕ,χa) 6= 0. Then −1+

(2v + g(ϕ,χa))g(ϕ,χa) 6= −1 for all a ∈ F
∗
rm . Thus the matrix PP T has an eigenvalue −1

with multiplicity 1. It then follows from Lemma 2.8 that the desired result then follows.

We now employ Corollary 5.7 to present a example as follows.

Example 5.8. Let r = 7,m = 1, N = 3, p = 5 and q = 25. Let F∗
25 = 〈β〉, where β is a fixed

primitive element of F∗
25. It is easy to check that q, r,N satisfy the conditions in Corollary

5.7. Then C is a [14, 7, 6] linear code over F25 with one-dimensional hull and its generator
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matrix [I7, P ], where

P =



























2 1 β16 β8 β8 β16 1

1 2 1 β16 β8 β8 β16

β16 1 2 1 β16 β8 β8

β8 β16 1 2 1 β16 β8

β8 β8 β16 1 2 1 β16

β16 β8 β8 β16 1 2 1

1 β16 β8 β8 β16 1 2



























.

Moreover, the hull of C is a [14, 1, 14] quasi-cyclic code of index 2 over F25 with generator

matrix
(

1 1 1 1 1 1 1 2 2 2 2 2 2 2
)

.

Furthermore, some optimal or almost optimal LCD codes (resp. linear codes with one-

dimensional hull) derived from Theorems 4.1 and 4.6 (resp. Theorems 5.1, 5.3 and Corollary

5.7) are listed in Table 1 by Magma [2].

Remark 5.9. In Table 1, optimal linear codes with one-dimensional hull in [18, Section

A] can also be obtained by our construction methods when N = 2 (see the first row, fourth

row and fifth row of Table 1), which implies that our results contain partial results in [18,

Section A]. When N > 2, the linear codes are different from those in [18, Section A]. In

addition, although the second and third low parameters of Table 1 are the same, we verified

by Magma that the two codes are not equivalent.

6 The minimum distance of the linear code C(ϕ,v)

In this section, we discuss the lower bound on the minimum distance of linear code C :=

C(ϕ,v) with generator matrix G = [Irm , P ] defined in Section 3.

Assume that q is a power of odd prime p and N = 2. Let Frm = {xi : 1 ≤ i ≤ rm}, where

x1, · · · , x rm−1
2

are non-zero squares in Frm , x rm+1
2

, · · · , xrm−1 are non-squares in Frm and

xrm = 0. From Section 3, we have Pηa = θaηa for any a ∈ Frm , where θa :=
∑

y∈Frm

ρ(y)χa(y)

and ηa := (χa(x1), χa(x2), · · · , χa(xrm))
T . Let Q := (ηx1 , ηx2 , · · · , ηxrm

). Then

PQ = (Pηx1 , Pηx2 , · · · , Pηxrm
)

= (θx1ηx1 , θx2ηx2 , · · · , θxrm
ηxrm

)

= (ηx1 , ηx2 , · · · , ηxrm
)Λ

= QΛ,
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where

Λ =













θx1

θx2

. . .

θxrm













is a diagonal matrix.

Note that when v = 0,

θa =







0, if a = 0;

ϕ(a−1)g(ϕ,χ1), if a ∈ F
∗
rm .

Let’s just say g := g(ϕ,χ1) for convenience.

It is easy to know that

Λ = g(ϕ,χ1)





























1
. . .

1

−1
. . .

−1

0





























. (11)

It follows the definition of the linear code C that C can be expressed in the following

form:

C = {c(k) = kG,k ∈ F
rm

q },where k = (k1, k2, · · · , krm).

For any codeword c(k) in C, we have

c(k) = kG

= k(Irm, P )

= (k,kP )

= (k, l),where l := l(k) = kP

= (k1, k2, · · · , krm , l1, l2, · · · , lrm).

Multiply both sides of the equation l = kP by the matrix Q, we obtain

lQ = kPQ = kQΛ.

Based on the above discussion and combined with Eq. (11), we have the following three

equations:

(l1 − gk1, · · · , lrm − gkrm)(ηx1 , · · · , ηx rm−1
2

) = 0; (12)
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(l1 + gk1, · · · , lrm + gkrm)(ηx rm+1
2

, · · · , ηxrm−1
) = 0; (13)

l1 + · · · + lrm = 0.

In view of the above three equations, we present the following theorem. Before we do that,

let’s give some definitions. We define









µx1

...

µxrm









:= (ηx1 , · · · , ηx rm−1
2

) and









νx1

...

νxrm









:=

(ηx rm+1
2

, · · · , ηxrm−1
).

Theorem 6.1. Let C := C(ϕ,0) be a linear code over Fq with generator matrix G =

[Irm , P ] defined by Section 3. Let A be a positive integer. Assume that any A vectors

in {µx1 , · · · , µxrm
} are linearly independent and any A vectors in {νx1 , · · · , νxrm

} are also

linearly independent. Then dmin(C) ≥ A+ 1.

Proof. Suppose that c(k) is any codeword in C which satisfies that wt(c(k)) < A+1. Note

that c(k) = (k,kP ) = (k, l) = (k1, · · · , krm , l1, · · · , lrm). Set Ω := {(l1, k1), · · · , (lrm , krm)}.

Let x = #{(li, ki) ∈ Ω | (li, ki) = (0, 0)}, y = #{(li, ki) ∈ Ω | Only one of li and ki is 0}

and z = #{(li, ki) ∈ Ω | li 6= 0 and ki 6= 0}. Then we have







x+ y + z = rm

2x+ y > 2rm −A− 1.
(14)

From (14), we obtain

x > rm −A− 1. (15)

Let ui = li − gki and wi = li + gki, where 1 ≤ i ≤ rm. It follows Eqs. (12) and (13) that

(u1, · · · , urm)









µx1

...

µxrm









= u1µx1 + · · ·+ urmµxrm
= 0 (16)

and

(w1, · · · , wrm)









νx1

...

νxrm









= w1νx1 + · · ·+ wrmνxrm
= 0. (17)

According to (15), it is easy to know that there are at least rm − A zeros in u1, · · · , urm .

Similarly, there are also at least rm − A zeros in w1, · · · , wrm . Without loss of generality,

let’s assume that uA+1 = · · · = urm = 0. Combined Eq. (16) and µx1 , · · · , µxA
are linearly

independent, then we have u1 = · · · = uA = 0. Hence, we obtain u1 = · · · = urm = 0.
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Similarly, we also deduce w1 = · · · = wrm = 0. Therefore, we get l1 = · · · = lrm = 0 and

k1 = · · · = krm = 0. Then c(k) is a zero codeword. That is to say, for any nonzero codeword

c in C, we have wt(c) ≥ A+ 1. So dmin(C) ≥ A+ 1. This completes the proof.

Remark 6.2. According to Theorem 6.1, we expect to find the largest A that satisfies the

assumption of Theorem 6.1. It is trivial that A = 1 satisfies the assumption of Theorem

6.1. When rm−1
2 ≥ 2 and m = 1, it is easy to prove that A = 2 satisfies the assumption

of Theorem 6.1. Based on the a lot of examples we have tried by Magma, we guess that

A = rm−1
2 satisfies the assumption of Theorem 6.1. If this conjecture is correct, then

dmin(C) ≥ rm+1
2 . But we fail to prove it. Thus we would like to put it here as an open

problem.

Conjecture 6.3. Let p > 3, r be two distinct prime numbers and m a positive integer.

Assume that N = 2. Let C := C(ϕ,v) be a linear code over Fq with generator matrix

G = [Irm , P ], where P is defined by Section 3. Then

(1) When v = 0, we have

dmin(C) =







3, if rm = 3;

rm+5
2 , if rm 6= 3.

(2) When v 6= 0 and rm ≡ 1 (mod 4), we have

dmin(C) =







rm+1
2 , if v = ±1;

rm+5
2 , if v 6= ±1.

Remark 6.4. Example 4.3 and some examples in Table 1 can illustrate the validity of the

above results. In fact, we have tried a lot of examples by Magma, the conjecture is also

correct. But we fail to prove it. Thus we would like to put it here as a conjecture.

7 Conclusion

In this paper, we propose a general method to construct LCD codes and linear codes with

one-dimensional hull, by using an analogue of Gauss sums where both the corresponding

additive and multiplicative character take their values in a finite field instead of the complex

numbers. Based on the eigenvalues of the matrix PP T , some sufficient conditions for a linear

code to be an LCD code (resp. a linear code with one-dimensional hull) have been presented

in this paper. With these conditions, we obtain some optimal and almost optimal LCD codes

(resp. linear codes with one-dimensional hull) by Magma [2], which are exhibited in Table
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1. Additionally, we also obtain several almost MDS LCD codes (resp. almost MDS codes

with one-dimensional hull) (see Examples 4.7 and 5.5).

Compared with [18], their construction methods are specific and special, while our meth-

ods are more general and direct. It is mainly reflected in three aspects:

1. In [18], the matrix P studied by the authors satisfies the symmetry property, while

the matrix P we employed in this paper is a general matrix whose eigenvalues are

completely determined;

2. In [18], the authors constructed linear codes with one-dimensional hull over finite fields

by using the generator matrix over quadratic number fields, while we construct them

directly by utilizing the generator matrix over finite fields;

3. Taking N = 2, we obtain that [18, Theorem 5] is a special of our results in Theorem

5.3 by comparing the constraints. The results of Theorem 5.6 contain [18, Theorems 3

and 4]. In some sense, some of linear codes with one-dimensional hull we constructed

may be new when N > 2 by comparing with [18] (see Example 5.4). In addition,

we present a lower bound on the minimum distance of linear code C over Fq with

generator matrix G = [Irm , P ] when N = 2.

We should emphasize that our results apply to (p, r) = 1. It would be interesting to

extend the results of the present work to p = r. The main open problem is Conjecture 6.3.

In addition, although there are many LCD codes and linear codes with one-dimensional

hull, it seems to be difficult to determine the minimum distances of the codes presented

in this paper when N > 2. It will be of interest to find other constructions such that the

minimum distances of these codes can be determined.
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Table 1: The list of optimal or almost optimal linear codes over small fields

r,m,N Fq [n, k, d] Theorems

r = 13,m = 1, N = 3 F7 [26, 13, 9]⋆ Theorem 4.1(1)

r = 13,m = 1, N = 4 F5 [26, 13, 9]⋆ Theorem 4.1(1)

r = 17,m = 1, N = 8 F9 [34, 17, 12]∗ Theorem 4.1(1)

r = 17,m = 1, N = 4 F5 [34, 17, 11]∗ Theorem 4.1(1)

r = 5,m = 1, N = 2 F7 [10, 5, 5]⋆ Theorem 4.1(2)

r = 7,m = 1, N = 2 F5 [14, 7, 6]∗ Theorem 4.1(2)

LCD codes r = 11,m = 1, N = 2 F7 [22, 11, 8]⋆ Theorem 4.1(2)

r = 13,m = 1, N = 2 F5 [26, 13, 9]⋆ Theorem 4.1(2)

r = 17,m = 1, N = 2 F7 [34, 17, 11]⋆ Theorem 4.1(2)

r = 17,m = 1, N = 4 F9 [34, 17, 11]⋆ Theorem 4.1(2)

r = 17,m = 1, N = 2 F5 [34, 17, 11]∗ Theorem 4.1(2)

r = 3,m = 1, N = 2 F7 [6, 3, 3]⋆ Theorem 4.6

r = 3,m = 2, N = 2 F7 [18, 9, 7]⋆ Theorem 4.6

r = 5,m = 1, N = 2 F7 [10, 5, 5]∗ Theorem 4.6

r = 11,m = 1, N = 2 F7 [22, 11, 8]⋆ Theorem 4.6

r = 7,m = 1, N = 3 F4 [14, 7, 6]∗ Theorem 5.1

Linear codes with r = 3,m = 1, N = 2 F5 [6, 3, 3]⋆ Theorem 5.3

one-dimensional hull r = 7,m = 1, N = 2 F5 [14, 7, 6]∗ Theorem 5.3

r = 11,m = 1, N = 2 F9 [22, 11, 8]⋆ Theorem 5.3

r = 17,m = 1, N = 4 F9 [34, 17, 11]⋆ Corollary 5.7

r = 17,m = 1, N = 8 F9 [34, 17, 11]⋆ Corollary 5.7

r = 17,m = 1, N = 2 F5 [34, 17, 11]∗ Corollary 5.7

The codes with asterisk (∗) have the property that linear codes are best known q-ary linear

codes in [2], which is optimal. The codes with asterisk (⋆) have the property that linear

codes have better parameters according to the Database [2], which is almost optimal in the

sense. For example, the linear code over F9 of the length n = 10 with the dimension k = 5

has the minimum distance 5, while the code in the Database [2] has the minimum distance

6.
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