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A CONSTRUCTION OF MAXIMALLY RECOVERABLE CODES

ALEXANDER BARG, ZITAN CHEN, AND ITZHAK TAMO

ABSTRACT. We construct a family of linear maximally recoverable codes with locality r and dimension r+1. For

codes of length n with r ≈ n
α
, 0 ≤ α ≤ 1 the code alphabet is of the order n1+3α

, which improves upon the

previously known constructions of maximally recoverable codes.

1. INTRODUCTION

Consider a linear code C over a finite field F = Fq of length n and dimension k, and let r be a number such

that r+1 divides n. We will write [n] = {(i, j), j = 1, . . . , r+1; i = 1, . . . , n
r+1}, and for i = 1, . . . , n

r+1 we

will call the subset of indices Ri = {(i, j), j = 1, . . . , r+1} a repair group. Call a set T ⊂ [n] a transversal of

the set of repair groups R = (Ri)i if |T ∩Ri| = 1 for all i. For a subset X ⊂ [n] denote by C|X the puncturing

of C in the coordinates in X , i.e., a coordinate projection of C on the complement of X in [n].

Definition 1. The code C is called maximally recoverable (MR) with locality r if the following two properties

hold:

(i) For any repair group Ri the code C|Rc
i

has distance at least 2;

(ii) For any transversal T of R the code C|T is maximum distance separable.

We write the parameters of the code C as (n, k, r) = (length,dimension,locality).

This definition is a particular case of a more general notion of MR codes introduced in [5]. Namely, one

assumes that (i), any repair group is capable of correcting any a ≥ 1 erasures, and (ii), upon puncturing any a
coordinates from each of the repair groups, the punctured code is maximum distance separable that can correct

h erasures. Thus, Definition 1 corresponds to the case of a = 1 and h = nr
r+1 − k.

The main problems related to MR codes are: the minimum field size q required to construct an MR code

with a given set of parameters, and finding explicit constructions of MR codes, with sizeable literature devoted

to them over the last decade. In this note we prove the following result.

Theorem 1. There exists a family of (n, k = r + 1, r) MR codes over Fq, where r = Θ(nα), 0 ≤ α ≤ 1, with

q = Θ(n1+3α+o(1)).

To establish it, we develop an idea behind one construction in [6] that gave codes with locality r = 3 and

large k relying on Behrend’s classic result on sets of integers with no 3-term arithmetic progressions [2]. To

address the case of general r we use Alon’s extension of Behrend’s construction [1].

For the context we include a sample of the known results on the construction and parameters of MR codes,

focusing on the regime of large h relevant to us. Among the known families of MR codes we note constructions

with q = O((r + 1)n2h−1) [4], q = O((r + 1)
nr
r+1 ) [9], q = O(max(r + 1, n

r+1 ))
h [3], as well as a number

of constructions in [7] with comparable parameters. We refer the reader to the introduction of [6, 7], or [3],

Table 1, for a more detailed overview which also covers the entire range of possible parameters a, r, and h. As

remarked in [7], most of the known constructions require alphabets of size q that depend exponentially on h.

One exception where the minimum alphabet size is independent of h is the construction of [8] which requires

q = O(max(n/(r+1), r+1))r. This is larger than the result in Theorem 1 above both for fixed and growing r.

In summary, the code family constructed in this paper improves upon the known results in terms of the required

field size.

To address the question of lower bounds (impossibility), we observe that the known nontrivial results [6]

assume that h is a fixed constant. At the same time, in our setting h is clearly increasing with n, and the only
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known constraints on q are general bounds of the form q = Ω(n) (for instance, part (ii) of Definition 1 implies

that q ≥ k + 1, see [5, Theorem 19]).

2. THE CONSTRUCTION

Let γ be a primitive element of F and let N = q − 1 be the size of its multiplicative group. We will define

a linear code over F by specifying its generator matrix G = (gℓ,(i,j)) of dimensions (r + 1) × n where the

length n will be determined later. Let

A =

n
r+1
⋃

i=1

Ai ⊂ ZN

be a subset of size n formed as a union of pairwise disjoint sets Ai, and let {aij , j = 1, . . . , r + 1} be the

elements of Ai, i = 1, . . . , n/(r + 1). Define

gℓ,(i,j) =

{

γℓ·aij 1 ≤ ℓ ≤ r

γ(r+1)·aij + (−1)r+1 ℓ = r + 1.
(1)

The main property of the set A that supports the construction is the following: let {a1, . . . , ar+1} ⊂ A, then

r+1
∑

s=1

as = 0 (modN) if and only if ∃ i ∈ {1, . . . , n
r+1} s.t. Ai = {a1, . . . , ar+1}. (2)

Theorem 2. Let G be the matrix defined above, where the set A satisfies (2). Then the rows of G span an

(n, r + 1, r)-MR code over F .

Next we give a construction of the set A with the required properties. Let λ and δ satisfy 0 < λ < 1
r3 , 0 <

δ < λ
r , and define d = ⌊δN⌋ , l = ⌊λN⌋ . Suppose that D ⊂ {1, . . . , d} is a subset of integers such that for

any d0, . . . , dr ∈ D the equation over Z

d0 + · · ·+ dr−1 = rdr (3)

is satisfied only if d0 = d1 = · · · = dr. Define r + 1 subsets Di ⊂ ZN by letting

Di =

{

il+D 0 ≤ i ≤ r − 1

N −
(

r
2

)

l − r ·D i = r,
(4)

where b+D, b ·D mean adding or multiplying every element of D by b. By the choice of λ and δ one can verify

that the subsets Di are disjoint. Define the set A = ∪r
i=0Di and note that |A| = n := |D|(r + 1). Consider a

partition of A into disjoint transversals Ab for any b ∈ D where

Ab = {ai,b : i = 0, . . . , r} and ai,b =

{

il+ b, 0 ≤ i ≤ r − 1

N −
(

r
2

)

l − rb, i = r.
(5)

Lemma 3. The partition A = ∪b∈DAb satisfies property (2).

Large sets of integers that satisfy (3) exist, namely, the following is true.

Lemma 4. [1, Lemma 3.1] For every r ≥ 2 and every positive integer m, there exists a subset D ⊂
{1, 2, . . . ,m} of size at least

|D| ≥ m

e5
√
logm log r

that has property (3).

This claim is proved by an averaging argument over intersections of a subset of integers with spheres of

varying radii, and this is the only non-explicit part of our construction. We include a short proof at the end of

the next section to make the presentation self-contained.

Putting things together, we have constructed an (n, r + 1, r) MR code C of length

n = |D|(r + 1) ≥ (r + 1)d e−5
√
log d log r,
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where we have used Lemma 4 with m = d. Let us estimate the dependence of the field size q on the parameters

of C, letting n, q → ∞. We have

logn ≥ Ω
(

log q − 3 log r − 5

√

log
q

r4
log r

)

. (6)

where we put d = Θ( q
r4 ) (this appears to be the best choice given our assumption on δ). Suppose that r =

Θ(nα), where 0 ≤ α ≤ 1 and note that this includes the cases of constant r and various rates of increase of r
up to r = Θ(n), i.e., a constant number of repair groups. Now from (6) we obtain the estimate for q stated in

Theorem 1.

3. PROOFS

Proof of Theorem 2: Let S ⊆ [n] be an (r + 1)-subset of indices and let GS be a square submatrix of G of

order r + 1 whose columns are indexed by the elements of S. We begin by showing that the rank of GS is r if

S forms a repair group, otherwise, GS is of full rank. First note that the first r rows of GS form an r× (r+ 1)
Vandermonde submatrix, hence the rank of GS is at least r. The rank is exactly r if and only if there exists a

nonzero vector f = (f1, . . . , fr, fr+1) such that f · GS = 0. Note that fr+1 6= 0 since otherwise, it would

violate the fact that the first r rows of GS are linearly independent. Therefore, assume wlog that fr+1 = 1.

Since the columns of G are defined by elements γβ, β ∈ A, the conditions f ·GS = 0 are alternatively written

as f(γβi) = 0 for i = 1, · · · , r + 1 and some βi ∈ A, where

f(x) := xr+1 + (−1)r+1 +
r

∑

i=1

fix
i.

By assumption, the monic polynomial f(x) has r + 1 zeros γβi , and thus

f(x) =

r+1
∏

i=1

(x − γβi).

By comparing the constant terms in the two expressions of f we have

(−1)r+1 =

r+1
∏

i=1

(−γβi) = (−1)r+1γ
∑r+1

i=1
βi

or
∑r+1

i=1 βi = 0 (modN). Then, by recalling assumption (2), either the subset S forms a repair group, or

otherwise GS is of full rank. Hence property (ii) in Definition 1 holds. Next, assume that S forms a repair

group, and we need to show that C|Sc has distance at least 2. To prove this, note that any (r+1)× r submatrix

of GS has rank r since it contains an r × r Vandermonde submatrix. Since rk(GS) = r, any column of GS is

in the span of the remaining r columns, and thus the code C|Sc corrects a single erasure. �

Proof of Lemma 3: Let B := {b0, b1, . . . , br} ⊂ A. We will show that

r
∑

i=0

bi = 0 (modN). (7)

is satisfied if and only if B coincides with one of the transversals Ab defined in (5). One direction is easy:

namely, the elements in every Ab sum to 0 modulo N . Indeed

r
∑

j=0

ai,b =

r−1
∑

j=0

(il + b) +N −
(

r

2

)

l − rb = 0 (modN).

Conversely, suppose (7) holds. We aim to prove that B = Ab for some b ∈ D. Let t = |B ∩ Dr| and let us

first show that t = 1. Indeed, if t = 0, then each bi /∈ Dr and therefore bi ≤ (r − 1)l + d over Z, and (again

over Z)

0 <

r
∑

i=0

bi ≤ r((r − 1)l+ d) < r2l < N,
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where the last inequality follows by the choice of λ. This contradicts (7), so t ≥ 1. A similar argument applies

in the case of t ≥ 2, namely we will show that in such a case (t− 1)N <
∑r

i=0 bi < tN over Z, which again

will contradict (7). Indeed, we have
r

∑

i=0

bi >
∑

bi∈Dr

bi ≥ tN − t

(

r

2

)

l − trd ≥ (t− 1)N +N
(

1− tλ
(

(

r

2

)

+ 1
))

= (t− 1)N +N
(

1− tλ
r2 − r + 2

2

)

> (t− 1)N,

where the last step follows since λ < r−3, t ≤ r + 1 and r ≥ 2. For the upper bound write

r
∑

i=0

bi =
∑

bi∈Dr

bi +
∑

bi /∈Dr

bi

≤ tN − t

(

r

2

)

l+ (r + 1− t)((r − 1)l + d)

≤ tN − 2

(

r

2

)

l + (r − 1)((r − 1)l + d)

= tN − (r − 1)(l − d) < tN,

again contradicting (7). We conclude that t = 1 and suppose that Dr ∩ B = {br}, where

br = N −
(

r

2

)

l− rz, (8)

for some z ∈ D.
Our next goal is to show that all the other elements in B are of the form bi = ie+ z, i = 0, . . . , r − 1, and

here property (3) comes in handy. We begin with arguing that ti := |B ∩ Di| = 1 for all i = 0, . . . , r − 1.

Note that over Z
r−1
∑

i=0

bi ≤ r((r − 1)l+ d) < r2l < N,

hence from (7) and (8)
r−1
∑

i=0

bi =

(

r

2

)

l + rz,

again over Z. Clearly,
∑r−1

i=0 ti = r, and we will show that

r−1
∑

i=0

iti =

(

r

2

)

. (9)

Indeed, if
∑r−1

i=0 iti ≥
(

r
2

)

+ 1, then

l
(

(

r

2

)

+ 1
)

> l

(

r

2

)

+ rd ≥
(

r

2

)

l + rz =
r−1
∑

i=0

bi

=
r−1
∑

i=0

∑

b∈B∩Di

b ≥
r−1
∑

i=0

∑

b∈B∩Di

il =
r−1
∑

i=0

itil ≥ l
(

(

r

2

)

+ 1
)

, (10)

and we arrive at a contradiction. Similarly, if
∑r−1

i=0 iti ≤
(

r
2

)

− 1, then

(

r

2

)

l <

(

r

2

)

l+ rz =

r−1
∑

i=0

∑

b∈B∩Di

b ≤
r−1
∑

i=0

∑

b∈B∩Di

(il + d)

=

r−1
∑

i=0

ti(il + d) ≤
(

(

r

2

)

− 1
)

l + rd <

(

r

2

)

l, (11)
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and (11) makes no sense, and thus (9) holds.

Finally, recalling (4), let

B ∩Di = {il+ bi,j , 1 ≤ j ≤ ti}

where the bi,j’s are ti distinct elements of D. Then over Z

(

r

2

)

l + rz =

r−1
∑

i=0

bi =

r−1
∑

i=0

ti
∑

j=1

(il + bi,j) =

(

r

2

)

l +

r−1
∑

i=0

ti
∑

j=1

bi,j ,

hence

r−1
∑

i=0

ti
∑

j=1

bi,j = rz.

Now (3) implies that bi,j = z for all i, j. However, the numbers bi were chosen distinct, and thus, ti = 1 for

all i ≤ r. Moreover, bi = il + z, i = 0, 1, . . . , r − 1. On account of (8) and (5) the proof is complete. �

Proof of Lemma 4: We closely follow [1], adding some details. Let h be an integer, to be chosen later. Consider

a set of integer numbersD = (xi)i written in the form xi =
∑t

j=0 xi,jh
j , where 0 ≤ xi,j <

h
r , i = 0, 1, . . . , t,

t = ⌊logh m⌋ − 1, and suppose further that for every xi ∈ D

t
∑

j=0

x2
i,j = B.

If an (r + 1)-tuple x0, x1, . . . , xr+1 satisfies (3), then for every j = 0, 1, . . . , t

x0,j + x1,j + · · ·+ xr−1,j = rxr,j . (12)

By the convexity of the function z 7→ z2 this implies that

x2
0,j + x2

1,j + · · ·+ x2
r−1,j ≥ rx2

r,j ,

with equality if and only if x0,j = x1,j = · · · = xr,j . At the same time,

r−1
∑

i=0

t
∑

j=0

x2
i,j = rB = r

t
∑

j=0

x2
r,j .

The last two relations imply that only identical (r+1)-tuples satisfy (12), and thus only identical (r+1)-tuples

of elements in D satisfy (3).

Clearly, B ≤ (t+ 1)h
2

r2 , so there is a choice of B such that

|D| ≥ ht+1

rt+1(t+ 1)h
2

r2

≥ m

h3rt−1(t+ 1)
.

Take h = ⌊e
√
logm log r⌋, then (t− 1) log r <

√
logm log r and

h3rt−1(t+ 1) ≤ e5
√
logm log r. �
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