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Abstract

Recently, a new concept called multiplicative differential was introduced
by Ellingsen et al. Inspired by this pioneering work, power functions
with low c-differential uniformity were constructed. Wang et al. defined
the c-differential spectrum of a power function [27]. In this paper, we
present some properties of the c-differential spectrum of a power function.
Then we apply these properties to investigate the c-differential spectra
of some power functions. A new class of APcN function is also obtained.
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1 Introduction

Differential cryptanalysis [7, 8] is the first statistical attack to decipher iterative
block ciphers. Substitution boxes (S-boxes for short) play an crucial role in the
field of symmetric block ciphers, which can be seen as cryptographic functions
over finite fields. Let Fq be the finite fields with q elements. For a function F (x)
from Fq to itself, the main tools to handle F regarding the differential attack
are the Difference Distribution Table (DDT for short) and the differential
uniformity ∆F , introduced by Nyberg [25] in 1994. For any a, b ∈ F2n , the
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2 On the c-differential spectrum of power functions over finite fields

DDT entry at point (a, b), denoted by δF (a, b), is defined as

δF (a, b) = |{x ∈ Fq : F (x+ a)− F (x) = b}|,

where |S| denotes the cardinality of a set S. The differential uniformity of the
function F (x), denoted by ∆F , is defined as

∆F = max
a∈F∗

q

max
b∈Fq

δF (a, b),

where F
∗
q = Fq \ {0}. When F is used as an S-box inside a cryptosystem,

the smaller the value ∆F is, the better F to the resistance against differential
attack. When ∆F = 1, F is called perfect nonlinear (PN for short) function.
When ∆F = 2, F is called almost perfect nonlinear (APN for short) function.
Note that PN functions over even characteristic finite fields do not exist. PN
and APN functions play an important role in both theory and applications.
The recent progress can be found in [10, 13, 14, 16, 19, 20, 37, 38] and their
references. Power functions with low differential uniformity serve as good can-
didates for the design of S-boxes not only because of their strong resistance to
differential attacks but also for the usually low implementation cost in hard-
ware. When F (x) is a power function, i.e., F (x) = xd for an integer d, one
can easily see that δF (a, b) = δF (1, b/a

d) for all a ∈ F
∗
q and b ∈ Fq. That is to

say, the differential properties of F (x) is completely determined by the values
of δF (1, b) as b runs through Fq. Therefore, Blondeau, Canteaut and Charpin
first defined the difference spectrum of a power function in [2]. Denote

ωi = |{b ∈ Fq : δF (1, b) = i}|, 0 ≤ i ≤ ∆F ,

where ∆F is the differential uniformity of F . The differential spectrum of F is
defined as the multi-set

DSF = {ωi > 0 : 0 ≤ i ≤ ∆F } .

The distribution of DDT of a power function can be deduced via its dif-
ferential spectrum. Moreover, the differential spectrum is also an important
notion for estimating its resistance against variants of differential cryptanalysis
([2], [1], [12]). However, it is difficult to completely determine the differential
spectrum of a power function. For a known results on differential spectrum of
power functions, the readers are referred to [2–4, 11, 15, 21, 22, 29–31, 34, 35].
The distribution of DDT of a power function can be deduced via its differential
spectrum.

In [9], the authors used a new type of differential, namely multiplicative
differential, that is quite useful from a practical perpective for ciphers that
utilize modular multiplication as a primitive operation. It is an extension of
differential cryptanalysis, and it cryptanalyzes some existing ciphers (like a
variant of the well-known IDEA cipher). The authors argue that one should
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look at other types of differential for a cryptographic function F , not only the
usual (F (x+ a), F (x)) but (F (x+ a), cF (x)). Moreover, they first introduced
the c-Differential Distribution Table (cDDT for short) . For a function F from
Fq to itself and c ∈ Fq, the entry at point (a, b) of the cDDT, denoted by

cδF (a, b), is defined as

cδF (a, b) = #{x ∈ Fq : F (x+ a)− cF (x) = b}.

The corresponding c-differential uniformity is defined as follows.

Definition 1 ([17]) Let Fq denote the finite field with q elements, where q is a prime
power. For a function F : Fq → Fq, and a, b, c ∈ Fq, we call

c∆F = max {cδF (a, b) : a, b ∈ Fq , and a 6= 0 if c = 1}

the c-differential uniformity of F .

If c∆F = δ, then we say that F is differentially (c, δ)-uniform. Similarly, the
smaller the value c∆F is, the better F to the resistance against multiplicative
differential attack. If the c-differential uniformity of F equals 1, then F is called
a perfect c-nonlinear (PcN) function. PcN function over odd characteristic
finite fields are also called c-planar functions. If the c-differential uniformity of
F is 2, then F is called an almost perfect c-nonlinear (APcN) function. It is
easy to conclude, for c = 1 and a 6= 0, the c-differential uniformity becomes the
usual differential uniformity, and the PcN and APcN functions become PN and
APN functions respectively. It is know that APN functions over finite fields
of even characteristic have lowest differential uniformity. However, for the c-
differential uniformity, there exist PcN functions over even characteristic finite
fields. There are a few functions with low c-differential uniformity reported.
The readers can refer to [5, 6, 17, 18, 24, 26–28, 32, 36].

Similarly, when F (x) is a power function, one easily sees that

cδF (a, b)=cδF (1, b/a
d) for all a ∈ F

∗
q and b ∈ Fq. That is to say, the

c-differential spectrum of F (x) is completely determined by the values of

cδF (1, b) as b runs through Fq. Therefore, the c-differential spectrum of a power
function can be defined as follows.

Definition 2 ([27]) Let F (x) = xd be a power function over Fq with c-differential
uniformity c∆F . Denote by cωi = #{b ∈ Fq : cδF (1, b) = i.} for each 0 ≤ i ≤ c∆F .
The c-differential spectrum of F is defined to be the multi-set

S = {cωi : 0 ≤ i ≤ c∆F and cωi > 0}.

When c = 1, the c-differential spectrum becomes the usual differential
spectrum. As far as we know, only two classes of power functions have known
c-differential spectra. In [27], the authors computed the c-differential spectrum
of Gold function. The c-differential spectrum of xd over F24m was determined
in [26], where d = 23m + 22m + 2m − 1. We summarized the known results in
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Table 1 as well as the results obtained in this paper. The rest of this paper is
organized as follows. Section II introduces some notation and useful lemmas.
In Section III, we present the properties of c-differential spectrum. In Section
IV, we calculate the c-differential spectrum of several power functions with low
c-differential uniformity. In Section V, we construct an infinite family of APcN
power mappings over F5n , and determine its c-differential spectrum. Section
VI concludes this paper.

Table 1 Power functions F (x) = xd over Fpn with known c-differential spectrum

p d Condition c∆F Ref.

2 23m + 22m + 2m − 1
n = 4m, 0, 1 6= c ∈ F2n ,

c1+22m = 1
2 [26]

odd pk + 1
1 6= c ∈ F

pgcd(n,k) and n
gcd(n,k)

is odd,

or c /∈ F
pgcd(n,k) , n is even and k = n

2

2 [27]

2 2n − 2 c 6= 0, Trn(c) = Trn(c−1) = 1 2 Thm 7
2 2n − 2 c 6= 0, Trn(c) = 0 or Trn(c−1) = 0 3 Thm 7

odd pn − 2
c = 4, 4−1, or
χ(c2 − 4c) = −1 and χ(1− 4c) = −1

2 Thm 8

odd pn − 2
c 6= 0, 4, 4−1,
χ(c2 − 4c) = 1 or χ(1− 4c) = 1

3 Thm 8

3 3n+3
2

c = −1, n even 2 Thm 9
3 3n − 3 c = −1, n = 0(mod4) 6 Thm 10
3 3n − 3 c = −1, n 6= 0(mod4) 4 Thm 10

odd pk+1
2

c = −1, gcd(n, k) = 1, k odd p+1
2

Thm 11, 12

5 pn−3
2

c = −1 2 Thm 16

Trn (·) denotes the absolute trace mapping from F2n to F2.

χ (·) denotes the quadratic multiplicative character on F∗
pn .

2 Preliminaries

In this section, we first fix some notation and list some facts which will be
used in this paper unless otherwise stated.

• Let Fq denote the finite field with q elements.
• F

∗
q = Fq \ {0}, F

#
q = Fq\{0,−1}.

• ∆c(x) = (x+ 1)d − cxd, where c ∈ Fq.
• δc (b) = # {x ∈ Fq : ∆c (x) = b}.
• χ denotes the quadratic multiplicative character on Fq, i.e.,

χ(x) =











1, if x a square ,

0, if x = 0,

−1, if x a nonsquare .

It is well-known that
∑

x∈Fq
χ(x) = 0.
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• Si,j :=
{

x ∈ F
#
q : χ(x) = i, χ(x+ 1) = j

}

, where i, j ∈ {±1}.
• S1,1 ∪ S−1,−1 ∪ S1,−1 ∪ S−1,1 = F

#
q .

Secondly, we introduce some lemmas which will be used in the sequel. To
determine the greatest common divisor of integers, the following lemma plays
an important role in the rest of this paper.

Lemma 1 let p, k, n be integers greater than or equal to 1. Then

gcd
(

p
k + 1, pn − 1

)

=































2gcd(2k,n) − 1

2gcd(k,n) − 1
, if p = 2,

2, if
n

gcd(n, k)
is odd,

p
gcd(k,n) + 1, if

n

gcd (n, k)
is even.

The following lemma can be used in solving equations over finite fields.

Lemma 2 [23] Let n be a positive integer. We have:
(i) The equation x2 + ax+ b = 0, with a, b ∈ F2n , a 6= 0, has two solutions in F2n if
Trn(

b
a2 ) = 0, and zero solutions otherwise.

(ii) The equation x2+ ax+ b = 0, with a, b ∈ Fpn , p odd, has (two, respectively, one)
solutions in Fpn if and only if the discriminant a2 − 4b is a (nonzero, respectively,
zero) square in Fpn .

At last, we introduce the following result on the quadratic multiplicative
character sums.

Lemma 3 [23, Theorem 5.48] Let f(x) = a2x
2 + a1x + a0 ∈ Fq[x] with q odd and

a2 6= 0. Put d = a21 − 4a0a2 and let χ be the quadratic character of Fq. Then

∑

x∈Fq

χ(f(x)) =

{

−χ(a2), if d 6= 0.
(q − 1)χ(a2), if d = 0.

3 The properties of the c-differential spectrum

The usual differential spectrum of a power function satisfies several identities
(see [2]). It is natural to wonder how it behaves with respect to the c-differential
spectrum of a power function. In this section, we give the following identities
of the c-differential spectrum.

Theorem 4 Let F (x) = xd be a power function over Fq with c-differential unifor-
mity c∆F for some 1 6= c ∈ Fq. Recall that cωi = # {b ∈ Fq : c∆F (1, b) = i.} for
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each 0 ≤ i ≤ c∆F . We have

c∆F
∑

i=0

cωi =
c∆F
∑

i=0

i · cωi = q. (1)

Moreover, we have

c∆F
∑

i=0

i
2 · cωi =

cN4 − 1

q − 1
− gcd(d, q − 1), (2)

where

cN4 = #

{

(x1, x2, x3, x4) ∈ (Fq)
4 :

{

x1 − x2 + x3 − x4 = 0

xd1 − cxd2 + cxd3 − xd4 = 0

}

. (3)

Proof According to the definition of cωi, we have

c∆F
∑

i=0

cωi =
c∆F
∑

i=0

# {b ∈ Fq : c∆F (1, b) = i} =
∑

b∈Fq

1 = q.

and

c∆F
∑

i=0

i · cωi =
c∆F
∑

i=0

i ·# {b ∈ Fq : c∆F (1, b) = i}

=
∑

b∈Fq

#{x ∈ Fq : (x+ 1)d − cx
d = b}

=
∑

x∈Fq

1

= q.

Next we prove the last statement. For c 6= 1, we define

cn(α, β) = #

{

(x, y) ∈ (Fq)
2 :

{

x− y = α

xd − cyd = β

}

.

It is obvious that

cN4 =
∑

α,β∈Fq

(cn(α, β))
2
.

Moreover, one can easily check that cn(0, 0) = 1. For β 6= 0, cn(0, β) is equal to the

number of solutions y ∈ Fq of the equation yd = β
1−c . Let γ be a primitive element

of F∗
q and β

1−c = γk for some integer k. Let e = gcd(d, q − 1). Then cn(0, β) = e if

e | k and cn(0, β) = 0 otherwise. For α, β 6= 0, we have cn(α, β) = cn(1,
β
αd ). We
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immediately obtain the following.

cN4 =
∑

α,β∈Fq

(cn(α, β))
2

= (cn(0, 0))
2 +

∑

β∈F∗

q

(cn(0, β))
2 +

∑

α∈F∗

q

∑

β∈Fq

(cn (α, β))2

= 1 +
∑

1≤k≤q−1,e|k
e
2 +

∑

α∈F∗

q

∑

β∈Fq

(cn(1,
β

αd
))2

= 1 +
q − 1

e
e
2 +

∑

α∈F∗

q

∑

b∈Fq

(cn(1, b))
2

= 1 +
(

q − 1
)

e+
∑

α∈F∗

q

∑

b∈Fq

(

δc(b)
)2

= 1 +
(

q − 1
)

e+ (q − 1)
c∆F
∑

i=0

i
2 · cωi.

The fourth identity holds since for fixed a 6= 0, when β runs through Fq, so does β
αd .

We complete the proof. �

4 The c-differential spectrum of some power
functions

In this section, we investigate the c-differential spectra of some power functions
with low c-differential uniformity.

4.1 The c-differential spectrum of the inverse function

Since there has been quite a bit of effort to investigate the inverse function
over F2n as it is relevant in Rijndael and Advance Encryption Standard, it is
natural to wonder how it behaves with respect to the c-differential uniformity.
In [17], the c-differential uniformity of the inverse function x ∈ Fpn , x 7→ xpn−2

has been studied. We have the following lemmas.

Lemma 5 ([17]) Let n be a positive integer, 1 6= c ∈ F2n and F : F2n → F2n be the

inverse function defined by F (x) = x2
n−2. We have:

(i) If c = 0, then F is PcN ;
(ii) If c 6= 0 and Trn(c) = Trn(

1
c ) = 1, the c-differential uniformity of F is 2;

(iii) If c 6= 0 and Trn(c) = 0 or Trn(
1
c ) = 0, the c-differential uniformity of F is 3.

Lemma 6 ([17]) Let p be an odd prime. n ≥ 1 be a positive integer, 1 6= c ∈ Fpn

and F : Fpn → Fpn be the inverse function defined by F (x) = xp
n−2. We have:

(i) If c = 0, then F is PcN .
(ii) If c 6= 0, 4, 4−1, χ(c2 − 4c) = 1, or χ(1− 4c) = 1, the c-differential uniformity of
F is 3.
(iii) If c = 4, 4−1, the c-differential uniformity of F is 2.
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(iv) If c 6= 0, χ(c2 − 4c) = χ(1− 4c) = −1, the c-differential uniformity of F is 2.

The c-differential spectrum of the inverse function is given in the following
theorem.

Theorem 7 Let F (x) = x2
n−2 be a power function over F2n . When 0, 1 6= c ∈ F2n ,

the inverse function is APcN with c-differential spectrum

S = {cω0 = 2n−1 − 2, cω1 = 4, cω2 = 2n−1 − 2}

if Trn(c) = Trn(
1
c ) = 1. Moreover, the inverse function is differentially (c, 3)-uniform

with c-differential spectrum

S = {cω0 = 2n−1 − 1, cω1 = 3, cω2 = 2n−1 − 3, cω3 = 1}

if Trn(c) = 1, Trn(
1
c ) = 0 or Trn(c) = 0, Trn(

1
c ) = 1, and is differentially (c, 3)-

uniform with c-differential spectrum

S = {cω0 = 2n−1
, cω1 = 2, cω2 = 2n−1 − 4, cω3 = 2}

if Trn(c) = Trn(
1
c ) = 0.

Proof For b ∈ F2n , we consider the c-differential equation

(x+ 1)2
n−2 + cx

2n−2 = b. (4)

In order to calculate the c-differential spectrum, we first determine the values of cω1

and cω3.
Case 1: b = 0. (4) has a unique solution x = c

c+1 .
Case 2: b = 1. Then x = 0 is a solution of (4), and x = 1 is not a solution of (4)

since c 6= 1. Assume that x 6= 0, 1, by multiplying x(x+ 1) on both sides of (4), we
get x2 + cx+ c = 0. By Lemma 2 (i), this equation has two solutions iff Trn(

1
c ) = 0.

Consequently, δc(1) = 3 if Trn(
1
c ) = 0, and δc(1) = 1 if Trn(

1
c ) = 1.

Case 3: b = c. In this case, x = 1 is a solution of (4), while x = 0 is not a solution.
Next we assume that x 6= 0, 1. Similarly, we get x2 + c−1x+1 = 0. By Lemma 2 (i),
this equation has two solutions iff Trn(c) = 0. Consequently, δc(c) = 3 if Trn(c) = 0,
and δc(c) = 1 if Trn(c) = 1.

Case 4: b 6= 0, 1, c. In this case, x 6= 0, 1. Multiplying x(x + 1) on both sides of
(4), we obtain

bx
2 + (1 + b+ c)x+ c = 0. (5)

When b = 1 + c, (5) has unique solution x = ( c
c+1 )

2n−1

. By Lemma 2 (i), (5) has
0 or 2 solutions if 1 + b + c 6= 0. We have δc(1 + c) = 1, and δc(b) = 0 or 2 when
b 6= 0, 1, c, 1 + c.

Summarizing the above, we obtain that

cω1 =



























4, if Trn(c) = Trn(
1

c
) = 1,

3, if Trn(c) = 1,Trn(
1

c
) = 0 or Trn(c) = 0,Trn(

1

c
) = 1,

2, if Trn(c) = Trn(
1

c
) = 0,
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and

cω3 =



























0, if Trn(c) = Trn(
1

c
) = 1,

1, if Trn(c) = 1,Trn(
1

c
) = 0 or Trn(c) = 0,Trn(

1

c
) = 1,

2, if Trn(c) = Trn(
1

c
) = 0.

By solving the equation system (1), the desired result follows.
�

Next, we calculate the c-differential spectrum of the inverse function over
Fpn when p is odd. We have the following results.

Theorem 8 Let p be any odd prime. F (x) = xp
n−2 be a power function over Fpn .

When 0, 1, 4, 4−1 6= c ∈ Fpn , the c-differential spectrum of it is given as the following
six cases:
(i) S = {cω0 = pn−3

2 , cω1 = 3, cω2 = pn−3
2 } if χ(c2 − 4c) = χ(1 − 4c) = −1 and

χ(c) = −1;

(ii) S = {cω0 = pn−5
2 , cω1 = 5, cω2 = pn−5

2 } if χ(c2 − 4c) = χ(1 − 4c) = −1 and
χ(c) = 1;

(iii) S = {cω0 = pn−1
2 , cω1 = 2, cω2 = pn−5

2 , cω3 = 1} if χ(c2 − 4c)χ(1 − 4c) = −1
and χ(c) = −1;

(iv) S = {cω0 = pn−3
2 , cω1 = 4, cω2 = pn−7

2 , cω3 = 1} if χ(c2 − 4c)χ(1 − 4c) = −1
and χ(c) = 1;

(v) S = {cω0 = pn+1
2 , cω1 = 1, cω2 = pn−7

2 , cω3 = 2} if χ(c2 − 4c) = χ(1− 4c) = 1
and χ(c) = −1;

(vi) S = {cω0 = pn−1
2 , cω1 = 3, cω2 = pn−9

2 , cω3 = 2} if χ(c2 − 4c) = χ(1− 4c) = 1
and χ(c) = 1.

Proof For b ∈ Fpn , we consider the c-diffferential equation

(x+ 1)p
n−2 − cx

pn−2 = b. (6)

Similarly, we determine the values of cω1 and cω3.
Case 1: b = 0. It can be easily seen that x = c

1−c is the unique solution of (6),
i.e. δc(0) = 1.

Case 2: b = 1. Then x = 0 is a solution of (6), and x = −1 is not a solution
of (6). Assume that x 6= 0,−1, by multiplying x(x+ 1) on both sides of (6), we get
x2 + cx+ c = 0. The discriminant of this quadratic equation is c2 − 4c, which is not
zero since c 6= 0, 4. By Lemma 2(ii), this equation has two solutions if χ(c2−4c) = 1,
and no solution if χ(c2 − 4c) = −1. We obtain δc(1) = 3 if χ(c2 − 4c) = 1, δc(1) = 1
if χ(c2 − 4c) = −1.

Case 3: b = c. Then x = −1 is a solution of (6), while x = 0 is not a solution.
Next we assume that x 6= 0,−1. By multiplying x(x + 1) on both sides of (6), we
get cx2 + (2c − 1)x + c = 0. The discriminant of this quadratic equation is 1 − 4c,
which is not zero since c 6= 0, 4−1. By Lemma 2(ii), this equation has two solutions if
χ(1−4c) = 1, and no solution if χ(1−4c) = −1. We obtain δc(c) = 1 if χ(1−4c) = −1
and δc(c) = 3 if χ(1− 4c) = 1.
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Case 4: Let b 6= 0, 1, c. Then x 6= 0, 1. By multiplying x(x+ 1) on both sides of
(6), we obtain

bx
2 + (b+ c− 1)x+ c = 0. (7)

The equation (7) has a unique solution if and only if the discriminant (b+ c− 1)2 −
4bc = 0. That is,

b
2 − 2(c+ 1)b+ (c− 1)2 = 0.

The above equation on b is quadratic, and the discriminant is 16c. We assert that, if
χ(c) = 1, there exist two b’s such that (7) has one solution, and if χ(c) = −1, such b

do not exist.
By discussions as above, we summarize the values of cω1 and cω3 in the following

table. By solving the equation system (1), the desired result follows.

Table 2 The values of cω1 and cω3

cω1 cω3 χ(c2 − 4c) χ(1− 4c) χ(c)

3 2 1 1 1
1 2 1 1 −1
2 1 1 −1 −1
4 1 1 −1 1
4 1 −1 1 1
2 1 −1 1 −1
3 0 −1 −1 −1
5 0 −1 −1 1

�

4.2 The (−1)-differential spectra of some power functions

The case that c = −1 is a special case. Sometimes the (−1)-differential uni-
formity of a power function is lower than its c-differential uniformity for other
c. In this subsection, we compute the (−1)-differential spectra of some power
functions. We begin this subsection with a simple result.

In [24], the authors reported that the power function x
3n+3

2 over F3n is
APcN if n is even. We have the following theorem.

Theorem 9 Let G (x) = x
3n+3

2 on F3n , n ≥ 2. The (−1)-differential spectrum of
G(x) is

S =

{

−1ω0 =
3n − 1

2
,−1ω1 = 1,−1ω2 =

3n − 1

2

}

.

Proof To determine the (−1)-differential spectrum of x
3n+3

2 , we consider the
equation

∆−1(x) = (x+ 1)
3n+3

2 + x
3n+3

2 = b (8)
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for b ∈ F3n . Note that x is a solution of (8) if and only if −x− 1 is a solution of (8).
When x = −x− 1, then x = 1 and the corresponding b = −1 satisfies that δ−1(−1)
is odd. Then δ−1(−1) = 1 since F (x) is APcN. We get −1ω1 = 1. Then by solving
the equation (1), we complete the proof. �

It was shown that x3n−3 is an APN power mapping of F3n when n > 1
is odd [19], is differentially 4-uniform when n = 2 (mod4) [31], and is differ-
entially 5-uniform when n = 0 (mod4) [31]. Moreover, [24] showed that this
power function has low (−1)-differential uniformity. In the following theorem,
we determine the (−1)-differential spectrum of x3n−3 over F3n .

Theorem 10 Let H (x) = x3
n−3 be a power function over F3n . When n = 0 (mod4),

H is differentially (−1, 6)-uniform with (−1)-differential spectrum

S =

{

−1ω0 =
5 · 3n − 3

8
,−1ω1 = 1,−1ω2 =

3n + 3

4
,−1ω4 =

3n − 17

8
,−1ω6 = 1

}

.

When n = 2 (mod4), H is differentially (−1, 4)-uniform with (−1)-differential
spectrum

S =

{

−1ω0 =
5 · 3n − 13

8
,−1ω1 = 1,−1ω2 =

3n + 7

4
,−1ω4 =

3n − 9

8

}

.

When n = 1, 3 (mod4), H is differentially (−1, 4)-uniform with (−1)-differential
spectrum

S =

{

−1ω0 =
5 · 3n − 7

8
,−1ω1 = 1,−1ω2 =

3n + 1

4
,−1ω4 =

3n − 3

8

}

.

Proof To determine the (−1)-differential spectrum of this power function, we
consider the equation

∆−1(x) = (x+ 1)3
n−3 + x

3n−3 = b (9)

for b ∈ F3n . Firstly we consider b = 1. Note that x = 0 and x = −1 are both solutions
of (9). For x 6= 0,−1, we multiply both sides of (9) by x2(x+ 1)2 and obtain

x
4 − x

3 − x
2 + x− 1 = 0. (10)

Let y = x− 1, then y 6= −1, 1, and (10) becomes

y
4 − y

2 − 1 = 0. (11)

Next we prove that the solutions of (11) are all in F34 \F32 . Obviously, the solutions
of (11) are in F34 . If y ∈ F32 is a solution of (11), then y 6= 0 and y4 = ±1. If y4 = 1
(respectively, y4 = −1), we can obtain y2 = 0 by (11) (respectively, y2 = 1), which
is a contradiction. By the discussion as above, we conclude that δ−1(1) = 6 when
n = 0 (mod4) and δ−1(1) = 2 otherwise.

For b 6= 1, we know that x = 0 and x = −1 are not solutions of (9). When b = 0,
the equation (9) becomes

x
2 + x− 1 = 0. (12)

It can be similarly proved that the solutions of (12) are in F32 \F3. We conclude that
δ−1(0) = 2 if n is even, and δ−1(0) = 0 if n is odd.
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If b 6= 0, 1, then x 6= 0, 1. The differential equation (9) can be deduced as

bx
4 − bx

3 + (b+ 1)x2 + x− 1 = 0. (13)

Let y = x− 1, then (13) becomes

by
4 + (b+ 1)y2 + b+ 1 = 0. (14)

We consider the solutions of equation (14). Let z = y2, then we have

bz
2 + (b+ 1)z + b+ 1 = 0. (15)

Note that (15) is a quadratic equation on z, and the discriminant of this quadratic
equation is ∆ = b+ 1. We discuss in the following three cases.
Case (i) b = −1. We get z = 0, then y = 0 and x = 1 consequently. So δ−1(−1) = 1.
Case (ii) χ (b+ 1) = 1. Herein, χ denotes the quadratic character on F3n . We know
that (15) has two distinct nonzero solutions, namely z1 and z2. Now we need to
determine whether y2 = zi (i = 1, 2) has solutions over F3n . If χ (z1) = χ (z2) = 1,
then (14) has four solutions. If χ (z1z2) = −1, (14) has two solutions. If χ (z1) =
χ (z2) = −1, (14) has no solution.
Case (iii) χ (b+ 1) = −1. Obviously, (14) has no solution.

Summarizing the discussion as above, (9) cannot have 3 or 5 solutions. We have,

−1ω3 =−1 ω5 = 0. Moreover, −1ω1 = 1, −1ω6 = 1 if n = 0 (mod4) and −1ω6 = 0
otherwise. By (1), we know that −1ω0, −1ω2 and −1ω4 satisfy

{

−1ω0+−1ω2+−1ω4 = 3n − 1−−1ω6,

2−1ω2 + 4−1ω4 = 3n − 1− 6−1ω6.
(16)

Denote by N = #{b ∈ F3n \F3 : χ(b+1) = 1, χ(b) = −1}. Then −1ω2 = N +1
when n = 0, 1, 3 (mod4), −1ω2 = N + 2 when n = 2 (mod4). By Lemma 3, we have

N =
1

4

∑

b∈F3n\F3

(χ(b+ 1) + 1)(1− χ(b))

=
1

4
(
∑

b∈F3n

(χ(b+ 1) + 1)(1− χ(b))− 3 + χ(−1))

=
1

4
(−

∑

b∈F3n

χ(b(b+ 1)) +
∑

b∈F3n

χ(b+ 1)−
∑

b∈F3n

χ(b) +
∑

b∈F3n

1− 3 + χ(−1))

=
3n − 2 + χ(−1)

4
.

Then by solving (16), the desired result follows. �

In [24], the authors studied the (−1)-differential uniformity of the power

mapping x
pk+1

2 , where p is an odd prime. In the following two theorems, we

determine the (−1)-differential spectrum of x
pk+1

2 with some conditions.

Theorem 11 Let F (x) = x
pk+1

2 be a power function over Fpn , where p ≡ 1 (mod 4),
gcd(n, k) = 1, and 2n

gcd(2n,k)
is even. The (−1)-differential spectrum of F (x) is given

by

S =

{

−1ω0 =
(pn + 1)(p− 1)

2(p+ 1)
,−1ω1 =

pn − 3

2
,−1ω p+3

4
= 2,−1ω p+1

2
=

pn − p

p+ 1

}
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when n is odd, and is given by

S =

{

−1ω0 =
(pn − 1)(p− 1)

2(p+ 1)
,−1ω1 =

pn − 1

2
,−1ω p+3

4
= 2,−1ω p+1

2
=

pn − p− 2

p+ 1

}

when n is even.

Proof Since 2n
gcd(2n,k)

is even and gcd(n, k) = 1, then k is odd. We consider the (−1)-

differential function ∆−1 (x) = (x+ 1)d + xd on Fpn . There exist α, β ∈ Fp2n such

that x+ 1 = α2, x = β2. Let α− β = θ ∈ F
∗
p2n , then α+ β = θ−1, α = 1

2 (θ + θ−1),

β = − 1
2 (θ − θ−1), and x = 1

4

(

θ − θ−1
)2

. We can obtain that θ2(p
n+1) = 1 or

θ2(p
n−1) = 1 since x ∈ Fpn . Note that x = 0 if and only if θ2 = 1, and x = −1 if

and only if θ2 = −1. For θ2 6= ±1, we can check that ±θ,±θ−1 are pairwise distinct.
We mention that for x 6= 0,−1, each x corresponds to four distinct θ’s (±θ,±θ−1).
Moreover, we have

∆−1 (x) = α
pk+1 + β

pk+1

=
1

4

(

θ + θ
−1

)pk+1
+

1

4

(

θ − θ
−1

)pk+1

=
1

2
(θp

k+1 + θ
−pk−1).

Although we can choose different θ, ∆−1 (x) = 1
2 (θ

pk+1 + θ−pk−1) always holds,
no matter which θ is chosen. To determine the (−1)-differential spectrum of this
function, we need to investigate the image of the ∆−1(x). Let Im(∆−1) |S denote
the image set of the differential function ∆−1(x) restricted on some set S, i.e.,
Im(∆−1) |S= {∆−1(x) : x = 1

4 (θ − θ−1)2, θ ∈ S}. We define

S1 =
{

θ : θ2(p
n+1) = 1

}

, S2 =
{

θ : θ2(p
n−1) = 1

}

.

Then we have

S1 =

{

γ
i : i =

pn − 1

2
j, 0 ≤ j ≤ 2pn + 1

}

, S2 =

{

γ
i : i =

pn + 1

2
j, 0 ≤ j ≤ 2pn − 3

}

,

where γ is a generator of F∗
p2n . Define

Ci =
{

θ
pk+1 : θ ∈ Si

}

, i = 1, 2.

Then, C1 =

〈

γgcd(
(pn−1)(pk+1)

2 ,p2n−1)

〉

, C2 =

〈

γgcd(
(pn+1)(pk+1)

2 ,p2n−1)

〉

and C1 ∩

C2 = {±1}. Let φ be a mapping defined on C1 ∪ C2 with φ(u) = 1
2 (u+ u−1). It is

easy to see that φ is a 2-to-1 mapping on (C1 ∪ C2) \ {±1}, and

Im(φ) |C1\{±1} ∩Im(φ) |C2\{±1}= ∅.

We consider the following two cases.

Case 1: n is odd. In this case we have gcd(
(pn−1)(pk+1)

2 , p2n − 1) =
(pn−1)(p+1)

2

and gcd(
(pn+1)(pk+1)

2 , p2n−1) = pn+1. Then C1 =

〈

γ
(pn−1)(p+1)

2

〉

, C2 =
〈

γp
n+1

〉

.

Then the function θp
k+1 is (p+ 1)-to-1 on S1 and 2-to-1 on S2.
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For any b ∈ Im(φ) |C1\{±1}, there are two u’s in C1 \ {±1} such that φ(u) = b.
Each u corresponds (p+1) θ’s in S1. Hence the (−1)-differential equation ∆−1(x) = b

has p+1
2 solutions. The number of such b is pn+1

p+1 −1 since #{C1 \ {±1}} = 2(p
n+1
p+1 −

1). For b ∈ Im(φ) |C1\{±1}, we can discuss it similarly.
For b = 1 (respectively, b = −1), there is a unique u = 1 (respectively, u = −1)

such that φ(u) = b. Each u corresponds (p + 1) θ’s in S1 and two θ’s in S2, i.e.
θ ∈ {θp+1 = 1 : θ ∈ S1} ∪ {θ2 = 1 : θ ∈ S2} (respectively, θ ∈ {θp+1 = −1 : θ ∈
S1} ∪ {θ2 = −1 : θ ∈ S2}). Note that four of them satisfy θ2 = 1 (respectively,
θ2 = −1), the other (p − 1) θ’s do not satisfy θ2 = ±1 since p ≡ 1 (mod 4). Based
on the corresponding relation of x and θ, we conclude that ∆−1(x) = 1 has p−1

4 + 1
solutions. Summarizing the discussions as above, we have the following table.

Table 3

Set S # S #{x ∈ Fpn : ∆−1(x) = b.}, b ∈ S

Im(φ) |C1\{±1}
pn−p

p+1
p+1
2

Im(φ) |C2\{±1}
pn−3

2
1

{1} 1 p+3
4

{−1} 1 p+3
4

Fpn\ the above (pn+1)(p−1)
2(p+1)

0

Case 2: n is even. In this case we have gcd(
(pn−1)(pk+1)

2 , p2n − 1) = pn − 1

and gcd(
(pn+1)(pk+1)

2 , p2n − 1) =
(pn+1)(p+1)

2 , then C1 =
〈

γp
n−1

〉

, C2 =
〈

γ
(pn+1)(p+1)

2

〉

. Then the function θp
k+1 is 2-to-1 on S1 and (p+1)-to-1 on S2. By

a similar discussion, we obtain the following table. We finish the proof. �

Table 4

Set S # S #{x ∈ Fpn : ∆−1(x) = b.}, b ∈ S

Im(φ) |C1\{±1}
pn−1

2
1

Im(φ) |C2\{±1}
pn−p−2

p+1
p+1
2

{1} 1 p+3
4

{−1} 1 p+3
4

Fpn\ the above (pn−1)(p−1)
2(p+1)

0

Theorem 12 Let F (x) = x
pk+1

2 be a power function over Fpn , where p > 7, p ≡
3 (mod 4), gcd(n, k) = 1, and 2n

gcd(2n,k) is even. If n is odd, the (−1)-differential
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spectrum of F (x) is

S =

{

−1ω0 =
pn(3p− 1)− (p+ 5)

4(p+ 1)
,−1ω2 =

pn − 3

4
,−1ω p+1

4
= 1,

−1ω p+5
4

= 1,−1ω p+1
2

=
pn − p

p+ 1

}

.

If n is even, the (−1)-differential spectrum of F (x) is

S =

{

−1ω0 =
(pn − 1)(3p− 1)

4(p+ 1)
,−1ω2 =

pn − 1

4
,−1ω p+1

4
= 1,

−1ω p+5
4

= 1,−1ω p+1
2

=
pn − p− 2

p+ 1

}

.

The proof is similar to that of Theorem 11 and we omit it.

5 A new class of APcN power permutations
and their c-differential spectra

Very recently, the usual differential properties of the power permutation

F (x) = x
5n−3

2 over F5n were studied in [33]. In this section, we prove that F (x)
is APcN when c = −1. The (−1)-differential spectrum of F (x) is also given.

First, we investigate the (−1)-differential uniformity of x
5n−3

2 . We introduce
the following lemma. The proof is very similar to that of Lemma 3 in [33] and
we omit it.

Lemma 13 Let b ∈ F5n\ {±1} be a nonzero nonsquare element. If both of the two
quadratic equations x2 + x − b−1 = 0 and y2 + y + b−1 = 0 have solutions in F5n ,
then the solution z ∈ F5n of the quadratic equation

z
2 + (1− 2b−1)z − b

−1 = 0

satisfies χ(z(z + 1)) = −1.

Based on the above lemma, we have the following theorem.

Theorem 14 Denote by −1∆F the (−1)-differential uniformity of F (x) = xd over

F5n , where d = 5n−3
2 . We have −1∆F = 2.

Proof For b ∈ F5n , we consider the (−1)-differential equation

(x+ 1)d + x
d = b (17)

over F5n . It is obvious that when b = 0, (17) has a unique solution x = − 1
2 since d is

odd and gcd(d, 5n−1) = 1. In the following, we may assume that b 6= 0. Recall that χ

denotes the quadratic multiplicative character of F5n . For all x ∈ F
#
pn , (17) becomes

χ(x+ 1)(x+ 1)−1 + χ(x)x−1 = b. (18)
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Table 5 Simplification of (18) in four cases

Case χ (x) χ (x+ 1) Equation x1, x2 x1x2

I 1 1 x2 + (1− 2b−1)x− b−1 = 0 −(1−2b−1)±
√

1−b−2

2
−b−1

II 1 -1 x2 + x− b−1 = 0
−1±

√
1−b−1

2
−b−1

III -1 1 x2 + x+ b−1 = 0
−1±

√
1+b−1

2
−b−1

IV −1 −1 x2 + (1 + 2b−1)x+ b−1 = 0
−(1+2b−1)±

√
1−b−2

2
b−1

Depending on the values of χ(x) and χ(x+1), we have four quadratic equations. By
solving these four equations, we obtain Table 5.

Next we discuss the possible solutions of (18) for a given b 6= ±1. Note that
χ(−1) = 1, if b is a square element, then χ(−b−1) = χ(b−1) = 1. In both Cases
II and III, if x is a solution, then χ(x(x + 1)) = −1. So (18) has no solution in

S1,−1 and S−1,1. Now we consider Cases I and IV. Let x1,2 =
−(1−2b−1)±

√
1−b−2

2

and x3,4 =
−(1+2b−1)±

√
1−b−2

2 be solutions of x2 + (1 − 2b−1)x − b−1 = 0 and

x2 + (1+ 2b−1)x+ b−1 = 0, respectively. Then x3 = −(x2 + 1) and x4 = −(x1 + 1).
We assert that the number of solutions of (18) in Cases I and IV is at most two since
χ(x1 + 1) = χ(x2 + 1) = 1 but χ(x3) = χ(x4) = −1. Then (18) has at most two
solutions when b is a square element.

If b is a nonsquare element, then χ(−b−1) = χ(b−1) = −1. We also consider the
solutions of (18) in each case. In Case I, the product of two solutions of equation
x2 + (1− 2b−1)x− b−1 = 0 is −b−1, which is a nonsquare element, this means (18)
has at most one solution in S1,1. Similarly, we can prove that (18) has at most one
solution in S−1,−1. Now we consider Case II. Let x5 and −x5−1 be the two solutions

of the quadratic equation x2 + x − b−1 = 0. It is easy to check that x5 ∈ S1,−1

if and only if −x5 − 1 ∈ S1,−1. This implies that (18) has at most one solution in
S1,−1. Similarly, we can prove that (18) has at most one solution in S−1,1. If (18)
has solutions in Cases I and III simultaneously, then the discriminates of quadratic
euqations x2+(1−2b−1)x− b−1 = 0 and x2+x+ b−1 = 0 are both square elements,
i.e., χ(1 − b−2) = χ(1 + b−1) = 1. Then χ(1 − b−1) = 1, which implies that the
equation x2+x+b−1 = 0 has two solutions in F5n . This contradicts Lemma 13, since
the solution x in Case I satisfies χ(x(x+1)) = 1. Then (18) cannot have solutions in
Cases I and III simultaneously. Similarly, we can prove that (18) has no solution in
Cases IV and III simultaneously. Since Case II has solutions if and only if Case III
has solutions, we conclude that for b ∈ F5n\ {±1} (17) has solutions in at most two
cases, i.e., δ−1(b) ≤ 2.

For b = 1, one can easy check that x = 0 is a solution of (17). Then we consider
(18) in the four cases. It is obvious that Cases II and III has no solution. In Case I,
(18) becomes x2 − x− 1 = 0. This quadratic equation has a unqiue solution x = −2.
We know that χ(−2) = −1 for odd n and χ(−2) = 1 for even n. Then Case I has one
solution when n is even and no solution when n is odd. In Case IV, (18) becomes
x2 − 2x + 1 = 0. This quadratic equation has a unique solution x = 1. Therefore
(18) has no solution in S−1,−1 when b = 1. We conclude that δ−1(1) = 2 for even n

and δ−1(1) = 1 for odd n. For b = −1, we can similarly obtain that δ−1(−1) = 2 for
even n and δ−1(−1) = 1 for odd n. The proof is finished. �
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Next we will determine the (−1)-differential spectrum of F (x) = x
5n−3

2 .
It is sufficient to determine −1N4, which denotes the number of solutions in
(F5n)

4 of the equation system (3) when c = −1. Moreover, we need the value
of the character sum

Γ5,n =
∑

x∈F5n

χ(x(x − 1)(x+ 1)),

where χ is the quadratic multiplicative character over F5n . It was proved in
[33] that

Γ5,n = (−1)
n+1

⌊n
2 ⌋

∑

k=0

(−1)
k

(

n

2k

)

22k+1, (19)

which is always an integer. We have the following lemma on the value of −1N4,
which is the number of the solutions (x1, x2, x3, x4) ∈ (F5n)

4 of the equation
system

{

x1 − x2 + x3 − x4 = 0
xd
1 + xd

2 − xd
3 − xd

4 = 0
. (20)

Lemma 15 We have

−1N4 =







1 + 4 (5n − 1) + (5n − 1)
(

− 1
4Γ5,n + 7·5n−17

4

)

, if n is even,

1 + 2 (5n − 1) + (5n − 1)
(

− 1
4Γ5,n + 7·5n−17

4

)

, if n is odd,

where Γ5,n was given in (19).

Proof Since d is odd, the number of solutions (x1, x2, x3, x4) ∈ (F5n)
4 of the equation

system
{

x1 + x2 + x3 + x4 = 0

xd1 − xd2 − xd3 + xd4 = 0
(21)

is also −1N4. For a solution (x1, x2, x3, x4) of (21), first we consider that there exists
xi = 0 for some 0 ≤ i ≤ 4. It is easy to see that (0, 0, 0, 0) is a solution of (21),
and (21) has no solution containing only three zeros. If there are only two zeros in
(x1, x2, x3, x4), one can get that (x, 0, 0,−x) and (0, x,−x, 0) are solutions of (21),
where x ∈ F

∗
5n . That is, (21) has 2(5n − 1) solutions containing only two zeros. We

consider that there is only one zero in (x1, x2, x3, x4). If x4 = 0, then x1, x2 and x3
are nonzero and they satisfy

{

x1 + x2 + x3 = 0

xd1 − xd2 − xd3 = 0.

Let yi =
xi

x3
for i = 1, 2, we have y1+ y2+1 = 0 and yd1 − yd2 − 1 = 0 with y1, y2 6= 0.

Then y2 = −y1 − 1 and (y1 + 1)d + yd1 = 1. By the proof of Theorem 14, we know
that equation (y1 + 1)d + yd1 = 1 has δ−1(1)− 1 nonzero solutions in F5n . Similarly,
we can determine the number of solutions of (21) with only xi = 0, i = 1, 2 and 3.
Then (21) has 4(5n −1)(δ−1(1)−1) solutions containing only one zero. We conclude
that (21) has 1 + (5n − 1)(4δ−1(1)− 2) solutions containing zeros.
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Next we consider xi 6= 0 for 1 ≤ i ≤ 4. Let yi =
xi

x4
for i = 1, 2, 3. Then yi 6= 0

and satisfy
{

y1 + y2 + y3 + 1 = 0

yd1 − yd2 − yd3 + 1 = 0.
(22)

We denote by −1n4 the number of solutions of (22). It can be seen that

−1N4 = 1 + (5n − 1)(4δ−1(1)− 2) + (5n − 1)−1n4. (23)

Recall that ydi = χ(yi)y
−1
i , we discuss (22) in the following cases.

Case 1. y1, y2 and y3 are all square elements. Then (22) becomes
{

y1 + y2 + y3 + 1 = 0

y−1
1 − y−1

2 − y−1
3 + 1 = 0.

(24)

We denote by n(1,1,1) the number of solution of (24). Next, we determine n(1,1,1).
If y1 = −1, then y2 = −y3, (−1, y2,−y2) is a solution of (24) when y2 is a square
element. If y1 6= −1, then y2y3 = (y2+y3)(y

−1
2 + y−1

3 )−1 = −(y1+1)(y−1
1 + 1)−1 =

−y1. Combining with the first equation of (24), we obtain y3 = y2+1
y2−1 since y2 6= 1.

Consequently, y1 = − y2(y2+1)
y2−1 . If (y1, y2, y3) is a desired solution, then χ( y2+1

y2−1 ) =

χ(y22 − 1) = 1 and χ(y2) = 1. The number of such y2 is

1
4

∑

y2 6=0,±1
(χ(y2) + 1)(χ(y22 − 1) + 1)

= 1
4 (5

n − 6 +
∑

y2∈F5n

χ(y32 − y2) +
∑

y2∈F5n

χ(y2) +
∑

y2∈F5n

χ(y22 − 1))

= 1
4 (Γ5,n + 5n − 7).

Note that there may exist y2 with χ(y2) = χ(y22−1) = 1, such that y1 = − y2(y2+1)
y2−1 =

−1, i.e., y2 = ±2. Two solutions (−1, 2,−2) and (−1,−2, 2) should be subtracted,
this only occurs when n is even. We obtain

n(1,1,1) =

{

3·5n−9
4 + 1

4Γ5,n, if n is odd.
3·5n−17

4 + 1
4Γ5,n, if n is even.

Case 2. Two of y1, y2 and y3 are square element, the other one is a nonsquare
element. We first assume that χ(y1) = χ(y2) = 1 and χ(y3) = −1. Then (22) becomes

{

y1 + y2 + y3 + 1 = 0

y−1
1 − y−1

2 + y−1
3 + 1 = 0.

(25)

We denote by n(1,1,−1) the number of solution of (25). Next, we determine n(1,1,−1).
Note that (25) has no solution when y2 = ±1. If y2 6= ±1, we can obtain y1 + y3 6=

0, moreover, y1y3 = (y1 + y3)(y
−1
1 + y−1

3 )−1 = (1 + y2)
y2

y2−1 =
y2(y2−1)

y2−1 . It is

mentioned that χ( y2+1
y2−1 ) = −1 since χ(y1) = χ(y2) = 1 and χ(y3) = −1. Moreover,

y1 satisfies the following quadratic equation

y
2
1 + (y2 + 1)y1 +

y2(y2 + 1)

y2 − 1
= 0. (26)

The discriminate of (26) is ∆ = (y2 + 1)2 +
y2(y2+1)
y2−1 =

(y2+1)(y2−2)2

y2−1 . If (26) has

solutions in F5n , then y2 must be 2 since χ( y2+1
y2−1 ) = −1. Consequently, y1 = y3 = 1.

Note that χ(y3) = −1, we conclude that n(1,1,−1) = 0. Next we assume that χ(y1) =
χ(y3) = 1 and χ(y2) = −1. Then (22) becomes

{

y1 + y2 + y3 + 1 = 0

y−1
1 + y−1

2 − y−1
3 + 1 = 0.

(27)
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We denote by n(1,−1,1) the number of solution of (27). Similarly, we can get that
n(1,−1,1) = 0. Next, we assume that χ(y2) = χ(y3) = 1 and χ(y1) = −1. Then (22)
becomes

{

y1 + y2 + y3 + 1 = 0

−y−1
1 − y−1

2 − y−1
3 + 1 = 0.

(28)

We denote by n(−1,1,1) the number of solution of (28). Let z1 = y2

y3
, z2 = y1

y3
and

z3 = 1
y3

. Then χ(z1) = χ(z3) = 1 and χ(z2) = −1. From (28) we obtain

{

z1 + z2 + z3 + 1 = 0

z−1
1 + z−1

2 − z−1
3 + 1 = 0.

(29)

The number of solutions of (29) is n(1,−1,1), i.e., n(−1,1,1) = n(1,−1,1) = 0.
Case 3. Two of y1, y2 and y3 are nonsquare element, the other one is a square

element. We first assume that χ(y1) = 1 and χ(y2) = χ(y3) = −1. Then (22) becomes
{

y1 + y2 + y3 + 1 = 0

y−1
1 + y−1

2 + y−1
3 + 1 = 0.

(30)

We denote by n(1,−1,−1) the number of solution of (30). Next, we determine
n(1,−1,−1). Note that y3 6= −1, since χ(y3) = −1. Then y1 + y2 6= 0, moreover,

y1y2 = (y1 + y2)(y
−1
1 + y−1

2 )−1 = (−y3 − 1)(−y−1
3 − 1)−1 = y3. Then we obtain

(y1+1)(y2+1) = 0 from the first equation of (30). If (30) has solutions in F5n , then
y1 must be −1 since χ(y2) = −1. Equation system (30) has solutions with types

(−1, y2,−y2), where χ(y2) = −1. Then we have n(1,−1,−1) =
5n−1

2 .
Then we assume that χ(y2) = 1 and χ(y1) = χ(y3) = −1. Then (22) becomes

{

y1 + y2 + y3 + 1 = 0

−y−1
1 − y−1

2 + y−1
3 + 1 = 0.

(31)

We denote by n(−1,1,−1) the number of solution of (31). Next, we determine

n(−1,1,−1). It is similar to Case 1. We obtain y1y2 = −y3 and y2 = y1+1
y1−1 since

y1 6= ±1. Consequently, y3 = − y1(y1+1)
y1−1 . If (y1, y2, y3) is a desired solution, then

χ( y1+1
y1−1 ) = χ(y21 − 1) = 1 and χ(y1) = −1. The number of such y1 is

− 1
4

∑

y1 6=0,±1
(χ(y1)− 1)(χ(y21 − 1) + 1)

= − 1
4 (

∑

y1∈F5n

χ(y31 − y1) +
∑

y1∈F5n

χ(y1)−
∑

y1∈F5n

χ(y21 − 1)− 5n + 2)

= − 1
4 (Γ5,n − 5n + 3).

We obtain n(−1,1,−1) = − 1
4Γ5,n + 5n−3

4 . Then we assume that χ(y3) = 1 and
χ(y1) = χ(y2) = −1. Then (22) becomes

{

y1 + y2 + y3 + 1 = 0

y−1
1 − y−1

2 + y−1
3 − 1 = 0.

(32)

We denote by n(−1,−1,1) the number of solution of (32). Similarly, we can get

that n(−1,−1,1) = − 1
4Γ5,n + 5n−3

4 .
Case 4. y1, y2 and y3 are all nonsquare elements, i.e., χ(y1) = χ(y2) = χ(y3) =

−1. Then (22) becomes
{

y1 + y2 + y3 + 1 = 0

−y−1
1 + y−1

2 + y−1
3 + 1 = 0.

(33)
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We denote by n(−1,−1,−1) the number of solution of (33). Next, we determine
n(−1,−1,−1). Note that y1 6= −1, since χ(y1) = −1. It is similar to Case 2. Since
χ(y1) = χ(y2) = χ(y3) = −1, we can get that (33) has no solution in F5n .

By discussions as above, −1n4 =
∑

i,j,k∈{±1}
n(i,j,k) and then −1N4 follows by (23)

and the value of δ−1(1). �

Then we can determine the (−1)-differential spectrum of F (x) = x
5n−3

2 .

Theorem 16 The power function F (x) = x
5n−3

2 over F5n when c = −1 is APcN
with (−1)-differential spectrum

S =

{

−1ω0 = −
1

8
Γ5,n +

3 · 5n − 5

8
,−1ω1 =

1

4
Γ5,n +

5n + 5

4
,

−1ω2 = −
1

8
Γ5,n +

3 · 5n − 5

8

}

.

when n is even, and with (−1)-differential spectrum

S =

{

−1ω0 = −
1

8
Γ5,n +

3 · 5n − 13

8
,−1ω1 =

1

4
Γ5,n +

5n + 13

4
,

−1ω2 = −
1

8
Γ5,n +

3 · 5n − 13

8

}

.

when n is odd, where Γ5,n is determined in (19).

Proof By (2) and Lemma 15, we obtian that the elements in the (−1)-differential
spectrum satisfy

c∆F
∑

i=0

i
2 · −1ωi =

{

− 1
4Γ5,n + 7·5n−5

4 , if n is even.

− 1
4Γ5,n + 7·5n−13

4 , if n is odd.

Then by solving the equation (1) in Lemma 4. The proof is finished. �

6 concluding remarks

In this paper, we mainly studied the c-differential spectra of power functions
over finite fields. Some basic properties of the c-differential spectrum of a
power function were given. The c-differential spectra of some classes of power
functions were determined. Moreover, we proposed a class of APcN function
over F5n with c = −1. Our future work is to find more power functions with
low c-differential uniformity and to determine their c-differential spectra. It is
worth finding applications of these functions in sequences, coding theory and
combinatorial designs.
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