Skip to main content
Log in

Perfect LRCs and k-optimal LRCs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A linear code is called a locally repairable code (LRC) with locality r if one can recover an erased code symbol by accessing at most r other code symbols. Constructions of LRCs have been widely investigated in recent years. In this paper, we give a step forward in this direction. Firstly, we propose a novel concept of perfect LRCs whose size exactly achieves the Hamming-type bound, similar to the perfect codes that achieving the Hamming bound in classical coding theory. By the parity-check matrix approach, we establish some important connections between the existence of LRCs and the existence of some subsets of finite geometry and finite fields with certain properties, respectively. By employing q-Steiner systems and sunflowers in projective geometry and difference sets in finite fields, we obtain two new constructions of perfect LRCs with flexible parameters and present several new constructions of k-optimal LRCs achieving another Hamming-type bound under the integers restriction. Moreover, for fixed q and r, the code lengths of all the q-ary r-LRCs constructed in this paper can be arbitrarily large and the code rates can asymptotically achieve the upper bound \(\frac{r}{r+1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwal A., Barg A., Hu S., Mazumdar A., Tamo I.: Combinatorial alphabet-dependent bounds for locally recoverable codes. IEEE Trans. Inf. Theory 64(5), 3481–3492 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  2. Cadambe V.R., Mazumdar A.: Bounds on the size of locally recoverable codes. IEEE Trans. Inf. Theory 61(11), 5787–5794 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai H., Cheng M., Fan C., Tang X.: Optimal locally repairable systematic codes based on packings. IEEE Trans. Commun. 67(1), 39–49 (2019).

    Article  Google Scholar 

  4. Cai H., Miao Y., Schwartz M., Tang X.: On optimal locally repairable codes with super-linear length. IEEE Trans. Inf. Theory 66(8), 4853–4868 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai H., Schwartz M.: On optimal locally repairable codes and generalized sector-disk codes. IEEE Trans. Inf. Theory 67(2), 686–704 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  6. Casse R.: Projective Geometry: An Introduction. Oxford University Press, New York (2006).

    MATH  Google Scholar 

  7. Charles C.J., Dinitz J.H.: Handbook of Combinatorial Designs. CRC Press, Boca Raton (2006).

    Google Scholar 

  8. Chen B., Fang W., Xia S.-T., Hao J., Fu F.-W.: Improved bounds and Singleton-optimal constructions of locally repairable codes with minimum distance 5 and 6. IEEE Trans. Inf. Theory 67(1), 217–231 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen B., Xia S.-T., Hao J.: Improved bounds and optimal constructions of locally repairable codes with distance 5 and 6. In: Proc. Int. Symp. Inf. Theory (ISIT), pp. 2823–2827 (2019).

  10. Ding C.: Codes from Difference Sets. World Scientific, Singapore (2015).

    Google Scholar 

  11. Etzion T., Raviv N.: Equidistant codes in the Grassmannian. Discret. Appl. Math. 186, 87–97 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. Etzion T., Storme L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78, 311–350 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang W., Chen B., Xia S.-T., Fu F.-W.: Complete characterization of optimal LRCs with minimum distance 6 and locality 2: improved bounds and constructions. In: Proc. Int. Symp. Inf. Theory (ISIT), pp. 595–599 (2020).

  14. Fang W., Chen B., Xia S.-T., Fu F.-W.: Perfect LRCs and \(k\)-optimal LRCs. In: Proc. Int. Symp. Inf. Theory (ISIT), pp. 600–604 (2020).

  15. Gopalan P., Huang C., Simitci H., Yekhanin S.: On the locality of codeword symbols. IEEE Trans. Inf. Theory 58(11), 6925–6934 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  16. Goparaju S., Calderbank R.: Binary cyclic codes that are locally repairable. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 676–680 (2014).

  17. Grezet M., Freij-Hollanti R., Westerback T., Hollanti C.: Alphabet-dependent bounds for linear locally repairable codes based on residual codes. IEEE Trans. Inf. Theory 65(10), 6089–6100 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  18. Guruswami V., Xing C., Yuan C.: How long can optimal locally repairable codes be ? IEEE Trans. Inf. Theory 65(6), 3662–3670 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. Hao J., Xia S.-T., Chen B.: Some results on optimal locally repairable codes. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 440–444 (2016).

  20. Hao J., Xia S.-T., Chen B.: On optimal ternary locally repairable codes. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 171–175 (2017).

  21. Hao J., Xia S.-T., Shum K.W., Chen B., Fu F.-W., Yang Y.: Bounds and constructions of locally repairable codes: Parity-check matrix approach. IEEE Trans. Inf. Theory 66(12), 7465–7474 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford University Press, Oxford (1979).

    MATH  Google Scholar 

  23. Huang P., Yaakobi E., Uchikawa H., Siegel P.H.: Binary linear locally repairable codes. IEEE Trans. Inf. Theory 62(11), 6268–6283 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin L.: Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes. IEEE Trans. Inf. Theory 65(8), 4658–4663 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. Li X., Ma L., Xing C.: Optimal locally repairable codes via elliptic curves. IEEE Trans. Inf. Theory 65(1), 108–117 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo G., Cao X.: Optimal cyclic codes with hierarchical locality. IEEE Trans. Commun. 68(6), 3302–3310 (2020).

    Article  Google Scholar 

  27. Luo G., Cao X.: Constructions of optimal binary locally recoverable codes via a general construction of linear codes. IEEE Trans. Commun. 69(8), 4987–4997 (2021).

    Article  Google Scholar 

  28. Luo Y., Xing C., Yuan C.: Optimal locally repairable codes of distance 3 and 4 via cyclic codes. IEEE Trans. Inf. Theory 65(2), 1048–1053 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  29. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  30. Prakash N., Kamath G.M., Lalitha V., Kumar P.V.: Optimal linear codes with a local-error-correction property. In: Proc. Int. Symp. Inf. Theory (ISIT), pp. 2776–2780 (2012).

  31. Song W., Day S., Yuen C., Li T.: Optimal locally repairable linear codes. IEEE J. Sel. Areas Commun. 32, 6925–6934 (2014).

    Article  Google Scholar 

  32. Tamo I., Papailiopoulos D.S., Dimakis A.G.: Optimal locally repairable codes and connections to matroid theory. IEEE Trans. Inf. Theory 62(12), 6661–6671 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  33. Tebbi A., Chan T., Sung C.: Linear programming bounds for distributed storage codes. Adv. Math. Commun. 14(2), 333–357 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. Tietäväinen A.: On the nonexistence of perfect codes over finite fields. SIAM J. Appl. Math. 24, 88–96 (1973).

    Article  MathSciNet  Google Scholar 

  35. Van Lint J.H.: Nonexistence theorems for perfect error-correcting codes. In: Computers in Algebra and Theory, vol. IV (SIAM-AMS Proceedings) (1971).

  36. Wang A., Zhang Z.: An integer programming-based bound for locally repairable codes. IEEE Trans. Inf. Theory 61(10), 5280–5294 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang A., Zhang Z., Lin D.: Bounds and constructions for linear locally repairable codes over binary fields. IEEE Trans. Inf. Theory 65(7), 4167–4179 (2019).

    Article  MATH  Google Scholar 

  38. Zhang G., Liu H.: Constructions of optimal codes with hierarchical locality. IEEE Trans. Inf. Theory 66(12), 7333–7340 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  39. Zinovév V.A., Leontév V.K.: On perfect codes. Probl. Peredachi Inform. 8, 26–35 (1972) (in Russian).

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported in part by National Key R &D Program of China under Grant Nos. 2021YFA1001000 and 2018YFA0704703, the National Natural Science Foundation of China under Grants 62201322, 62171248, 61971243, 12226336 and 12141108, the Natural Science Foundation of Shandong Province under Grant ZR2022QA031, the PCNL KEY project (PCL2021A07), the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (2022B1212010005), the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110066, the GXWD 20220811172936001, the Fundamental Research Funds for the Central Universities, Nankai University, the Natural Science Foundation of Tianjin (20JCZDJC00610). The authors would like to express their sincere gratefulness to the Associate Editor and the two anonymous reviewers for their valuable suggestions and comments which have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Additional information

Communicated by V. A. Zinoviev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented in part at the 2019 IEEE International Symposium on Information Theory (ISIT) [9], Paris, France and 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, California, USA [14].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Chen, B., Xia, ST. et al. Perfect LRCs and k-optimal LRCs. Des. Codes Cryptogr. 91, 1209–1232 (2023). https://doi.org/10.1007/s10623-022-01148-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01148-7

Keywords

Mathematics Subject Classification

Navigation