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Abstract

Inspired by the connection between ovoids and unitals arising from the
Buekenhout construction in the André/Bruck-Bose representation of trans-
lation planes of dimension at most two over their kernel, and since eggs of
PG(4m − 1, q), m ≥ 1, are a generalization of ovoids, we explore the rela-
tion between eggs and unitals in translation planes of higher dimension over
their kernel. By investigating such a relationship, we construct a unital in the
Dickson semifield plane of order 310, which is represented in PG(20, 3) by a
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cone whose base is a set of points constructed from the dual of the Penttila-
Williams egg in PG(19, 3). This unital is not polar; so, up to the knowledge
of the authors, it seems to be a new unital in such a plane.

Keywords: Unital, Blocking set, Egg, Projective plane

1 Introduction

Field reduction has become a theme of finite geometry which turned out very fruit-
ful in the last few decades. Given a construction of an interesting object from a
configuration in a vector space of dimension r over a field of order qn, the question
is raised as to which objects give rise similar configurations in a vector space of
dimension rn over a field of order q.

The Buekenhout-Metz construction of unitals in finite translation planes [15, 33]
(which gives all known unitals in Desarguesian planes) can be recontextualized in
this fashion, with cones projecting an ovoid as a base in the André/Bruck-Bose
representation of such planes.

It has long been known [14] that unitals are extremal in size among minimal
blocking sets (at the other end than that most studied - large rather than small). The
observation of Lunardon [29] at the turn of the millennium that changing the field
gave access to many more subspaces, some of which were blocking sets, transformed
the theory of blocking sets in the process giving rise to the idea of linear sets. Thus,
the idea of Buekenhout and Metz was taken by Szőnyi et al. [40] and, later, by
Mazzocca and Polverino [31] to provide further minimal blocking sets, using cones
rather than subspaces.

For the construction by Tits of generalized quadrangles from (ovals and) ovoids,
the configurations that arise by applying a field reduction are eggs, and the similar
objects are translation generalized quadrangles. Thus, changing the field for ovoids
and studying eggs gave the possibility of new translation generalized quadrangles,
first realized in work of Kantor [25] from three decades past; the result of field
reduction applied to the concept of an ovoid is an egg.

Motivated by the relationship between ovoids and unitals via the Buekenhout-
Metz construction, and since eggs are generalization of ovoids, we explore possible
relationships between eggs and unitals. Putting all the above ideas together, in this
paper we construct a unital in the Dickson semifield plane of order 310, which is
represented in PG(20, 3) by a cone whose base is a set of points constructed from
the dual of the Penttila-Williams egg in PG(19, 3). This unital does not arise from
a polarity; so it is a new unital, up to the knowledge of the authors.

While field reduction is usually thought of in a projective setting, algebraic di-
mensions are more amenable to an introductory discussion of it, so we will take a
vector space approach along all the paper.

2



2 Definitions and preliminary results

A unital in a finite projective plane π of order n2 is a set U of n3 + 1 points such
that every line of π meets U in 1 or n + 1 points. Therefore, U is equipped with a
family of subsets, each of size n + 1, such that every pair of distinct points of U is
contained in exactly one subset of the family; such subsets are usually called blocks,
and U turns out to be a 2-(n3 + 1, n+ 1, 1) design.

In a computer search, Brouwer [10, 11] found a large number of mutually non-
isomorphic 2-(28, 4, 1) designs. Only a few of these are embeddable in a projective
plane of order 9 as unitals. One of the examples has been generalized by Grüning
[23], who constructed a unital of order q for any odd prime power in both the Hall
plane and dual Hall plane of order q. An infinite family of non-Buekenhout unitals
in the Hall planes of order q2 have been constructed in [19]. Other infinite families
of unitals in various square order planes are known to exist; see e.g. [1], [5], [6], [18],
[36], [37]. The only known 2-(n3 + 1, n + 1, 1) design with n not a prime power is
the one found in [4] and [30] where n = 6. For more on 2-(n3 + 1, n + 1, 1) designs
embeddable as unitals in projective plane, see [8].

In the Desarguesian projective plane PG(2, q2), a unital can arise from a unitary
polarity: the points of the unital are the absolute points, and the blocks are the
intersections of the non-absolute lines of the polarity with U . These unitals are
called classical or Hermitian unitals. By a result of Seib [39], the absolute points
of a unitary polarity in any square order projective plane form the point-set of a
unital. Such unitals are called polar unitals. So, classical unitals of PG(2, q2) are
examples of polar unitals, and Ganley [21] showed that polar unitals exist in any
Dickson commutative semifield plane of odd order.

A finite semifield is a finite set S with two binary operations + and ∗, such that
(S,+) is an abelian group and (S \ {0}, ∗) is a loop such that both distributive laws
hold.

Let π(S) be the point-line geometry whose points are the elements in S × S and
in {(m) : m ∈ S ∪ {∞}}, and the lines are the sets

[m, k] = {(y, x) ∈ S× S : m ∗ x+ y = k} ∪ {(m)},

[z] = {(y, z) : y ∈ S} ∪ {(∞)}
and

[∞] = {(m) : m ∈ S} ∪ {(∞)}.
with m, k, z ∈ S, and ∞ a symbol not in S.

It turns out that π(S) is a translation plane which is called the semifield plane
coordinatized by S. We refer to [9] and [17] for basic information on semifields and
translation planes.
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For any semifield S, the subset Nl = {a ∈ S : a ∗ (x ∗ y) = (a ∗ x) ∗ y, ∀x, y ∈ S} is
called the left nucleus of S. Similarly, the middle nucleus Nm and the right nucleus
Nr are defined. The set K = {a ∈ Nl ∩Nm ∩Nr : a ∗ b = b ∗ a, ∀b ∈ S} is called the
center of S. Each of these four structures is a field, and a finite semifield is a left
vector space over its left nucleus and a two-sided vector space over its center [17].
Here, K is isomorphic to the kernel of the translation plane π(S).

For any element b of the semifield S with center K, the map φb : x ∈ S 7→ xb ∈ S is
a linear map when S is considered over its left nucleus Nl. It turns out that the set
CS = {φb : b ∈ S} is a K-vector subspace of the vector space of the Nl-linear maps
of S. Since S is finite, we may assume K = Fq, Nl = Fqn and S is an t-dimensional
left vector space over Fqn, for some positive integers n and t.

Under the previous indentification, the set CS satisfies the following properties: (i)
CS has qnt elements; (ii) CS contains the zero and the identity maps; (iii) A − B is
non-singular for all distinct A,B ∈ CS. A set of linear maps of V (t, qn) satisfying
the above properties is called a spread set of V (t, qn).

A (t−1)-spread of the (r−1)-dimensional projective space PG(r−1, q) over Fq is
a set S of (t−1)-dimensional projective subspaces such that every point is contained
in exactly one subspace of S. It is known that a (t−1)-spread of PG(r−1, q) exists
if and only if t divides r [17].

Let C be a spread set of V (t, qn) = F
t
qn. In PG(2t− 1, qn) consider the subspaces

Sτ = {((x1, . . . , xt)τ , x1, . . . , xt) : xi ∈ Fqn},

for all τ ∈ C. Then, the set S = {Sτ : τ ∈ C}∪{S∞}, with S∞ = {(x1, . . . , xt, 0, . . . , 0) :
xi ∈ Fqn} forms a (t− 1)-spread of PG(2t− 1, qn).

Conversely, let S be a (t − 1)-spread of PG(2t − 1, qn). Then, it is possible to
choose homogeneus coordinates in PG(2t − 1, qn) such that there is a spread set C
of V (t, qn) from which S is constructed as above. Thanks to the André/Bruck-Bose
construction, the spread S defines a translation plane Π(S) [3, 12, 13]. If the set C
is closed under the sum, then there is a (finite) semifield S that coordinatizes Π(S)
such that C = CS; the left nucleus of S is Fqn and S can be viewed as a t-dimensional
left vector space over Fqn [17]. In addition, if Fq is the largest subfield K of Fqn

such that C is a K-vector subspace of the vector space of the Fqn-linear maps of
V (t, qn), the center of S is Fq. Therefore, there exists a canonical correspondence
between translation planes coordinatized over a semifield S with dimension t over its
left nucleus Fqn and center Fq, and the (t−1)-spreads of PG(2t−1, qn) arising from
a spread set of V (t, qn), that is closed under the sum. Moreover, it is well-known
that the resulting plane is Desarguesian if and only if S is a Desarguesian spread
[13].

Buekenhout [15], and Metz [33] (by refining Buekenhout’s idea), constructed uni-
tals in any translation planes with dimension at most two over their kernel by using
the André/Bruck-Bose representation of such planes. These unitals are cones of
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PG(4, q) projecting an ovoid in a 3-dimensional subspace of PG(4, q) from a point
at infinity. These unitals are called Buekenhout-Metz unitals. Since classical unitals
can be obtained in this way, they fall in the class of Buekenhout-Metz unitals which,
so far, are the only known unitals of PG(2, q2).

Many other authors have used the above representation of PG(2, qn) in PG(2n, q)
to study objects in the Desarguesian plane in order to determine whether this higher
dimensional representation provides additional information about those objects in
the plane. In particular, the projective plane PG(2, q4), modelled in PG(8, q), has
been considered in [7] to study the representation of classical unitals, and the rep-
resentation of PG(2, q2m) in PG(4m, q), for m > 1, have been considered to study
other geometric objects of the plane; see [31, 32, 38, 40] just to cite some.

A blocking set in a projective plane π is a set of points such that every line of π
has a non-empty intersection with the set. A blocking set is said to be minimal if
through any of its points there is a line of π intersecting it precisely in that point.

In the paper [14], Bruen and Thas proved that, when the order of the projective
plane is a square, say n2, then the size of a minimal blocking set is bounded by
n3 + 1. This size is reached if and only if the minimal blocking set is a unital.

In [31] the following geometric setting was introduced to construct large minimal
blocking sets of PG(2, q2m) from cones in its André/Bruck-Bose representation in
PG(4m, q). Let z be a fixed element of a (2m−1)-spread S of Σ∞ and V an (m−1)-
dimensional subspace of z. Let Γ be a (3m−1)-dimensional subspace of Σ∞ disjoint
from V. For every x ∈ S, x 6= z, let I(x) be the (2m − 1)-dimensional subspace
〈x,V〉∩Γ. We denote by I(V) the set of all the subspaces I(x), x ∈ S. Let Γ′ be an
affine 3m-dimensional subspace of PG(4m, q) through Γ, and denote by F(V) the
set of all affine 2m-dimensional subspaces of Γ′ containing an element of I(V).
Let F be a family of 2m-dimensional subspaces of Γ′. An F -blocking set of Γ′ is

a set B of affine points such that every element of F has a non-empty intersection
with B. The blocking set B is said to be minimal if through any point of B there is
an element in F intersecting B precisely in that point.

By keeping the above geometric setting in mind, the following result, which is a
sharpening of Corollary 3.3 in [31], is crucial for our succeeding considerations.

Proposition 2.1. Let B be a set of affine points of Γ′ and

B∗ =
⋃

P∈B

〈V, P 〉 ∪ {z}. (1)

If B is a minimal F(V)-blocking set, then B∗ is a minimal blocking set of size |B∗| =
qm|B|+ 1 in the translation plane Π(S).

Proof. Construction 2 in [31] works perfectly well under the milder hypothesis that
S is any (2m− 1)-spread of Σ∞. The details are left to the reader.
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By combining the above result of Bruen and Thas with Proposition 2.1, we get
the following theorem.

Theorem 2.2. Let B be a minimal F(V)-blocking set of size q2m. Then, the cone
B∗ defined in Proposition 2.1 is a unital in Π(S).

If S is a Desarguesian (2m−1)-spread of Σ∞, then there is a unique Desarguesian
(m−1)-spread, say T , that fills every element of S, i.e., T induces a (m−1)-spread
in each spread element of S [20]. The following result gives a characterization of
Buekenhout-Metz unitals as cones in PG(4m, q).

Proposition 2.3. [31] Let S be a Desarguesian (2m − 1)-spread of Σ∞ and B a
minimal F(V)-blocking set of size q2m. Then, the cone B∗ is a Buekenhout-Metz
unital in PG(2, q2m) if and only if V is an element of the spread T .

3 Unitals from eggs

An egg in PG(4m− 1, q) is a set E of q2m+1 pairwise disjoint (m− 1)−dimensional
subspaces such that any three egg elements span a (3m−1)−dimensional subspace.
When m = 1, this definition recovers indeed the notion of ovoid in PG(3, q). There-
fore, since the notion of an egg, introduced by J.A. Thas in [41], generalizes that of
an ovoid, it make sense to investigate whether it is possible to mimic Buekenhout’s
construction to get unitals in translation planes with dimension over their kernel
greater than two, by using eggs. Apart from the so-called elementary eggs, which
are obtained by applying the field reduction to an ovoid in PG(3, qm), there are few
other known examples of eggs, namely, the Kantor-Knuth eggs, the Cohen-Ganley
eggs and the (sporadic) Penttila-Williams egg; see [27] for an explicit description of
these objects.

Let E be an egg in PG(4m− 1, q). For every egg element E there exists a unique
(3m− 1)-dimensional subspace, denoted by E∗, containing E and disjoint from any
other egg element; it is called the tangent space of E at E. Therefore, the egg E
defines an egg in the dual space of PG(4m − 1, q), called the dual egg of E and
denoted by ED.

The following result is a corollary of Theorem 2.2.

Theorem 3.1. Let E be an egg in PG(4m− 1, q), and E∞ a fixed egg element. Let
Γ′ be a 3m-dimensional subsubspace of PG(4m− 1, q) containing the tangent space
E∗

∞ at E∞. In Γ′ we consider the sets:

BE = {E ∩ Γ′ : E ∈ E , E 6= E∞}

and
IE = {E∗ ∩ E∗

∞ : E ∈ E , E 6= E∞}.
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Let FE be the family of all affine 2m-dimensional subspaces of Γ′ containing an
element of IE , and assume that BE is a minimal FE-blocking set.

Embed Γ′ in PG(4m, q) in such a way that E∗
∞ is a subspace of the hyperplane at

infinity Σ∞ of PG(4m, q), and Γ′ is an affine subspace.

If there exist a (2m − 1)-spread S of Σ∞ and a (m − 1)-dimensional subspace V
disjoint from E∗

∞ and contained in a spread element z such that IE = I(V), then
the cone

B∗ =
⋃

P∈BE

〈P,V〉 ∪ {z}

is a unital in Π(S).

Proof. Here, BE is a set of q2m points of Γ′ \ E∗
∞, and hence it consists of affine

points of PG(4m, q). Furthermore, every element in IE is a (2m − 1)-dimensional
subspace of E∗

∞. By Theorem 2.2, if FE coincides with the family F(V) previously
defined, then B∗ is a unital in the semifield plane Π(S). Since FE consists of all affine
2m-dimensional subspaces of Γ′ through an element of IE , we get that FE = F(V)
if and only if IE = I(V).

An egg is said to be good at an element E if every (3m−1)-dimensional subspace
containing E and at least two other egg elements, contains exactly qm + 1 egg
elements [42].

Let K be the quadratic cone in PG(3, qm) with equation X0X1 = X2
2 . A flock of

K is a set of qm planes partitioning the cone minus its vertex V = 〈(0, 0, 0, 1)〉 into
disjoint conics. In accordance with this choice of coordinates, the planes of a flock
of K can be written as tX0 + f(t)X1 + g(t)X2 + X3 = 0, for all t ∈ Fqm , for some
f, g : Fqm → Fqm . We denote this flock by F(f, g). If f and g are linear over a
subfield of Fqm, then the flock is called a semifield flock. The maximal subfield with
this property is called the kernel of the flock.

From now on, we assume that the kernel of a semifield flock F(f, g) is Fq. This
implies that the f and g are Fq-linearized polynomials, i.e.

f(t) =

m−1∑

i=0

cit
qi, g(t) =

m−1∑

i=0

bit
qi ,

for some bi, ci ∈ Fqm, i = 0, . . . , m− 1.

If a basis of Fqm over Fq is fixed, then every r-ple (x1, . . . , xr) ∈ F
r
qm can be

viewed as a rm-ple over Fq, which will be denoted by (x1, . . . , xr)q. In the paper
[27] it was shown that for every semifield flock F(f, g) there corresponds an egg in
PG(4m− 1, q) whose dual, say E , is good at an element, which can be assumed to
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be E∞. Then, the elements and the tangent spaces of E have the following form,
respectively:

E(a, b) = {(t,−g(a,b)(t),−at,−bt)q : t ∈ Fqm}, for all a, b ∈ Fqm ,

E∞ = {(0, t, 0, 0)q : t ∈ Fqm},
E∗(a, b) = {(t, h(a,b)(r, s) + g(a,b)(t), r, s)q : t, r, s ∈ Fqm}, for all a, b ∈ Fqm ,

E∗
∞ = {(0, t, r, s)q : t, r, s ∈ Fqm},

(2)

with

g(a,b)(t) = a2t+
m−1∑

i=0

(biab+ cib
2)1/q

i

t1/q
i

,

and

h(a,b)(r, s) = 2ar +
m−1∑

i=0

(bi(as+ br) + 2cibs)
1/qi .

Because of the expression of the polynomials g(a, b) and h(a, b), such an egg will be
denoted by E(b, c).

Theorem 3.2. Let E = E(b, c) be a good egg of PG(4m − 1, q), which is good at
E∞. Then, the set BE is a minimal FE-blocking set in Γ′ = PG(3m, q) if and only
if X2 +

∑m−1
i=0 (biXY + ciY

2)1/q
i

+ c = 0 has a solution for all c ∈ Fqm.

Proof. Let Γ′ = {(u, t, r, s)q : u ∈ Fq and r, s, t ∈ Fqm}. It is evident that Γ′ is
a projective space of dimension 3m over Fq and it contains E∗

∞. By taking into
account the general form of the elements of E = E(b, c), we get

BE = {〈(1,−g(a,b)(1),−a,−b)q〉 : a, b ∈ Fqm}

and
IE = {I(a, b) : a, b ∈ Fqm},

where
I(a, b) = E∗(a, b) ∩ E∗

∞ = {(0, h(a,b)(r, s), r, s)q : r, s ∈ Fqm}. (3)

All the affine 2m-dimensional subspaces of Γ′ through an I(a, b) are determined
by joining it with an affine point of the affine m-dimensional subspace spanned by
E∞ and O = 〈(1, 0, 0, 0, 0)〉. Therefore, the elements of FE have the form

F (a, b, c) = {(u, uc+ h(a,b)(r, s), r, s)q : u ∈ Fq and r, s ∈ Fqm},

for all a, b, c ∈ Fqm .

A point P (x, y) = 〈(1,−g(x,y)(1),−x,−y)q〉 ∈ BE lies in F (a, b, c) if and only if

−g(x,y)(1) = −h(a,b)(x, y) + c
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or, equivalently, if and only if (x, y) is a solution of

X2 +

m−1∑

i=0

(biXY + ciY
2)1/q

i − 2aX −
m−1∑

i=0

(bi(aY + bX) + 2cibY )1/q
i

+ c = 0. (4)

We refer to the polynomial on the left-hand side of the equation as H(a,b,c)(x, y).
Since E is an egg, for any given a, b ∈ Fqm , the intersection of the tangent space
E∗(a, b) with Γ′ is the 2m-dimensional subspace F (a, b, c′) ∈ FE , with c

′ = g(a,b)(1).
Therefore, through the point P (a, b) ∈ BE there is the element F (a, b, c′) ∈ FE

intersecting BE precisely at P (a, b). This implies that BE is a minimal FE -blocking
set if and only if Eq. (4) has a solution (x, y) ∈ Fqm × Fqm for any given elements
a, b, c ∈ Fqm.

From [26, Lemma 1.4], for any a, b ∈ Fqm , the linear collineation

ψa,b : PG(4m− 1, q) −→ PG(4m− 1, q)
〈(u, t, r, s)q〉 7→ 〈(u, t+ h(a,b)(r, s)− g(a,b)(u), r − ua, s− ub)q〉

fixes E∞ pointwise and maps E(a′, b′) to E(a′+a, b′+b). In addition, ψa,b fixes Γ
′, and

hence BE . A straightforward, though tedious, calculation shows that ψa,b acts also on
the set of tangent spaces by fixing E∗

∞ setwise and mapping E∗(a′, b′) to E∗(a+a′, b+
b′). This implies that ψa,b fixes both IE and FE setwise; in particular, F (a′, b′, c) is
mapped to F (a + a′, b + b′, c′), with c′ = c − ga,b(1) + h(a′+a,b′+b)(a, b). This means
that, because of the linearity of the second sum in Eq. (4), H(a′+a,b′+b,c)(x, y) = 0
has a solution for all c ∈ Fqm if and only if H(a,b,c)(x, y) = 0 has a solution for all
c ∈ Fqm. Therefore, BE is a minimal FE -blocking set if and only if, for a fixed pair
(a, b) ∈ Fqm × Fqm , Eq. (4) has at least one solution (x, y) ∈ Fqm × Fqm, for all
c ∈ Fqm. In particular, we can chose (a, b) = (0, 0) so that Eq. (4) reduces to

X2 +

m−1∑

i=0

(biXY + ciY
2)1/q

i

+ c = 0. (5)

4 A new unital in a Dickson commutative semi-

field plane

In [35], Penttila and Williams constructed an ovoid of the parabolic quadric Q(4, 35)
in PG(4, 35), i.e., a set O of 310 + 1 points having exactly one point on each gen-
erator of the quadric. Moreover, O is a translation ovoid, meaning that the points
of O can be coordinatized by using functions that are additive over F3. According
to a construction given in [28], such a translation ovoid corresponds to a semifield
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flock of the quadratic cone in PG(3, 35), which, in turn, corresponds to a generalized
quadrangle with parameters (310, 35), whose point-line dual is a translation gener-
alized quadrangle. By a result of Payne and Thas [34, 8.7.1], the latter generalized
quadrangle is isomorphic to T (E) for some egg E in PG(19, 3). By Theorem 3.4 in
[27], the dual egg of E forms a good egg ED in PG(19, 3). Whence, via the above
correspondences, the Penttila-Williams ovoid of Q(4, 35) gives rise to a good (dual)
egg in PG(19, 3). In order to simplify the notation, we will refer to it as E = E(b, c)
with b = (0, 1, 0, 0, 0), c = (0, 0, 0,−1, 0); see [27].

According to the expressions of the polynomials g(a,b)(t) and h(a,b)(r, s) in this case,
the egg elements of E are defined by the polynomials

g(a,b)(t) = a2t− (b2)3
2

t3
2

+ (ab)3
4

t3
4

(6)

and
h(a,b)(r, s) = −ar + b3

2

s3
2

+ (br + as)3
4

, (7)

for all a, b ∈ F35 .

Let p be an odd prime and ξ a non-square in Fpm. By [17, p.241], the multiplication
defined by

(x, y) ∗ (a, b) = (ax+ ξbαyα, bx+ ay)

with α ∈ Aut(Fpm) not the identity, turns F
2
pm into a Dickson commutative semifield

of order p2m which we denote by D = D(pm, ξ, α). In particular, its middle nucleus
is Nm = {(a, 0) : a ∈ Fpm}, and its left nucleus is Nl = {(a, 0) : a ∈ Fix(α)},
coinciding with its center K.

Now, let p = 3 and m = 5. For any pair (a, b) ∈ F
2
35, we consider the following

map
τ(a,b) : (x, y) 7→ (bx+ ay,−ax+ b3

2
y3

2
),

which defines the subspaces S(a, b) = {((x, y)τ(a,b), x, y)3 : x, y ∈ F35} of PG(19, 3).
Set S = {S(a, b) : a, b ∈ F35} ∪ {S∞}, where S∞ = {(x, y, 0, 0)3 : x, y ∈ F35}.
Let ϕ be the linear map ϕ : (x, y) 7→ (−y, x). Then, the set {ϕτ(a,b) : a, b ∈ F35}

is precisely the spread set of F10
3 associated with the Dickson commutative semifield

D = D(35,−1, 32).

It turns out that S is a 9-spread of Σ∞ = PG(19, 3) and, by [2], the translation
plane Π(S) is isomorphic to the Dickson commutative semifield plane π(D).

Let V = {(t,−t34 , 0, 0)3 : t ∈ F35}. Then, V is contained in the spread element
z = S∞ and it intersects trivially the subspace Γ = E∗

∞ = {(0, t, r, s)3 : t, r, s ∈ F35}.
We also have

〈S(a, b),V〉 = {(br + as + t,−ar + b3
2

s3
2 − t3

4

, r, s)3 : t, r, s ∈ F35},

giving

〈S(a, b),V〉 ∩ Γ = {(0,−ar + b3
2

s3
2

+ (br + as)3
4

, r, s)3 : r, s ∈ F35}
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which is precisely the subspace I(a, b) defined by expression (3), with h(a,b)(r, s) as
in (7).

Proposition 4.1. The set BE defined by the Penttila-Williams egg E = E(b, c) is a
minimal F(E)-blocking set.

Proof. By taking into account Theorem 3.2, BE is a minimal FE -blocking set if and
only if

X2 + (XY )3
4 − (Y 2)3

2

= −c (8)

has a solution for all c ∈ Fqm.

We distinguish two cases: −c is a square in Fqm or not. If −c is a square, then

(±√−c, 0) are solutions of Eq. (8); if −c is not a square, then (0,±
√
c3

3) are
solutions of Eq. (8).

By Theorem 3.1, the cone

B∗

E = {〈(1, c,−g(a,b)(1)− c3
4

,−a,−b)3〉 : a, b, c ∈ F35} ∪ {S∞},
with g(a,b)(t) as in (6), is a unital in the translation plane Π(S).
Consider the collineation of PG(20, 3) defined as ϕ : 〈(u, v, t, r, s)3〉 7→ 〈(u,−t, v, r, s)3〉.

Then, Π(S)ϕ represents the Dickson commutative semifield plane π(D). It turns out
that the set

U = {(g(a,b)(1) + c3
4

, c,−a,−b) : a, b, c ∈ F35} ∪ {(∞)}
is a unital in π(D). Note that U cannot be a Buekenhout-Metz unital since π(D) is
a 10-dimensional translation plane over its kernel F3. On the other hand, as π(D)
admits unitary polarities [21], U might be a polar unital. The following result shows
that this is not the case.

Theorem 4.2. The unital U is not a polar unital in π(D).

Proof. Since the tangent space at the egg element E(0, 0) is E∗(0, 0), the tangent
line of Π(S) at the point O = 〈(1, 0, 0, 0, 0)3〉 ∈ B∗

E is the subspace spanned by
S(0, 0) and O. Then, the tangent line of π(D) at (0, 0) ∈ U is [0, 0].

From [24, Theorem 2.1], any unitary polarity of π(D) mapping (0, 0) to [0, 0] is
given by

ρa : (x1, x2, y1, y2) ↔ [ax1,−ax2,−y1, y2],
(m1, m2) ↔ (a−1m1,−a−1m2)
(∞) ↔ [∞].

for some non-zero a ∈ F35 .

The unital U is a polar unital with respect to ρa, for some a ∈ F35 , if and only if
each of its points is an absolute point. Straightforward calculations show that the
point (1, 1, 0, 0) ∈ U is not incident with ρa(1, 1, 0, 0) = [a,−a, 0, 0] for all non-zero
a ∈ F35 , showing that U is not a polar unital.
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[3] J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe,
Math. Z. 60 (1954), 156–186.

[4] B. Bagchi and S. Bagchi, Designs from pairs of finite fields, I. A cyclic unital
U(6) and other regular Steiner 2-designs, J. Combin. Theory Ser. A 52 (1989),
51–61.

[5] A. Barlotti and G. Lunardon, Una classe di unitals nei ∆-piani, Riv. Mat. Univ.
Parma (4) 5 (1979), 781–785.

[6] S.G. Barwick, Unitals in the Hall plane, J. Geom. 58 (1997), 26–42.

[7] S.G. Barwick, L.R.A. Casse and C.T. Quinn, The André/Bruck and Bose rep-
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[40] T. Szőnyi, A. Cossidente, A. Gács, C. Mengyn, A. Siciliano and Z. Weiner, On
large minimal blocking sets in PG(2, q), J. Combin. Des. 13 (2005), 25–41.

[41] J.A. Thas, Geometric characterization of the [n− 1]-ovaloids of the projective
space PG(4n− 1, q), Simon Stevin 47 (1974), 97–106.

[42] J.A. Thas, Generalized quadrangles of order (s, s2), II, J. Combin. Theory Ser.
A 79 (1997), 223–254.

14


	1 Introduction
	2 Definitions and preliminary results
	3 Unitals from eggs
	4 A new unital in a Dickson commutative semifield plane

