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Abstract We address the question of understanding the effect of the underlying
network topology on the spread of a virus and the dissemination of information
when users are mobile performing independent random walks on a graph. To this
end, we propose a simple model of infection that enables to study the coincidence
time of two random walkers on an arbitrary graph. By studying the coincidence
time of a susceptible and an infected individual both moving in the graph we obtain
estimates of the infection probability. The main result of this paper is to pinpoint
the impact of the network topology on the infection probability. More precisely,
we prove that for homogeneous graphs including regular graphs and the classical
Erdős–Rényi model, the coincidence time is inversely proportional to the number
of nodes in the graph. We then study the model on power-law graphs, that exhibit
heterogeneous connectivity patterns, and show the existence of a phase transition
for the coincidence time depending on the parameter of the power-law of the degree
distribution. We finally undertake a preliminary analysis for the case with k random
walkers and provide upper bounds on the convergence time for both the complete
graph and regular graphs.
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1 Introduction

In recent years, there has been a surge of hand-held wireless computing devices
such as PDAs together with the proliferation of new services. These portable
computing devices are equipped with a short-range wireless technology such as WiFi
or Bluetooth. Despite providing a great deal of flexibility this ability to wirelessly
connect to other devices, and to transfer data on the move, attracted the attention of
virus writers who exploit such features for launching computer-virus outbreaks that
take advantage of human mobility (Wang et al. 2009; Kleinberg 2007; Leavitt 2005).

Over the past couple of years, there have been indeed reports of malicious code
that takes advantage of bluetooth vulnerabilities such as the Cabir worm that was
detected during the World Athletics Championship (Mobile 2010) and another
at a company that has been reported by CommWarrior (http://www.f-secure.com/
v-descs/commwarrior.shtml). Despite their small scale, these incidents bode more
threats taking advantage of events and locations where individuals gather in close
proximity (Yan et al. 2007; Su et al. 2006).

In much of the literature on mathematical epidemiology, the members of the
population are assumed to occupy fixed locations and the probability of infection
passing between a pair of them in a fixed time interval is taken to be some function
of the distance between them. Mean-field (aka homogeneous mixing) models are a
special case where an infected individual can potentially infect a number of random
individuals chosen uniformly at random among the population (Daley and Gani
2001). Recently, there has been an increasing interest in understanding the impact of
the network topology on the spread of epidemics in networks with fixed nodes, see
Draief (2006), Draief and Massoulié (2010). There has however been little analytical
work to date on how mobility patterns may affect the outcomes of the processes
concerned.

In this work, we consider a different model in which the agents are mobile and
can only infect each other if they are in sufficiently close proximity. The model is
motivated both by certain kinds of biological epidemics, whose transmission may be
dominated by sites at which individuals gather in close proximity (e.g. workplaces or
public transport for a disease like SARS, cattle markets for foot-and-mouth disease,
etc.) and by malware spreading between wireless devices via Bluetooth connections,
for example.

Related work In what follows, we briefly describe some of the relevant related work
on modelling epidemic spreading in mobile environments. To our knowledge, the
first attempts to model virus spreading in mobile networks rely on the use of non-
rigorous mean-field approximations (similar to the classical Kephart–White model
Kephart and White 1991) that incorporate the mobility patterns of users. In Mickens
and Noble (2005), the authors derive a threshold for the persistence of the epidemic
by computing the average number of neighbours of a given node. Using a similar
approach but with different mobility patterns, Nekovee (2007), Rhodes and Nekovee
(2008) explore the evolution of the number of devices that are infected in terms of
the contact rate between users.

A related line of work studying the dissemination of information in opportunistic
networks (Chaintreau et al. 2007) focuses on the following analogous problem: Sup-
pose that a set of mobile agents with wireless communication capabilities, forming
a temporary network without the aid of a fixed infrastructure, are interested in a
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piece of information that is initially held by one user. The information is transmitted
between users who happen to be in each other’s range. As in the case of static
networks (Pittel 1987), one may be interested in the time it takes for the rumour to be
known to all users. To this end we need to understand how information is transmitted
between an informed and an ignorant user. This is also relevant to patterns of opinion
formation and propagation of trends on social networks (Amini et al. 2009). Our
work gives some insight on the impact of the network structure on the likelihood of
successfully transmitting the rumour.

Our contribution In contrast to the previous work which has focused on Euclidean
models and homogeneous mobility patterns, in this work we consider a model
wherein the different locations that a user can reach have varying popularity. More
precisely, we consider a simple and stylised mathematical model of the spread
of infection as follows. There is a finite, connected, undirected graph G = (V, E)

on which the individuals perform independent random walks following a certain
rate transition matrix Q. The infection can pass from an infected to a susceptible
individual only if they are both at the same vertex. We assume that the probability of
the virus being passed over a time interval of length τ is 1 − exp(−βτ), where β > 0.
The parameter β is known the infection rate. We shall focus a single infected and
a single susceptible individual and ask what the probability is that the susceptible
individual becomes infected by time t. This probability has been studied in the case
of a complete graph in Datta and Dorlas (2004). Here, we extend their results to a
much wider class of graphs.

It is simplistic to consider just a single infective and a single susceptible individual.
Nevertheless, insights gained from this setting are relevant in the “sparse” case,
where the number of both infected and susceptible individuals is small and inter-
contact times are fairly large. In that case, it is not a bad approximation to consider
each pair of individuals in isolation. The “dense” setting will require quite different
techniques and is not treated here.

Random walks on graphs Motivated by applications in Physics, Biology, Social
Sciences and Computer Science, there has been an ever increasing interest in
analysing the properties of interacting particles or agents moving on a given network
(Draief et al. 2005). In particular, random walks play a central role in computer
science, spanning a wide range of areas in both theory and practice, including dis-
tributed computing (Bui et al. 2004). In fact many distributed algorithms use random
walks as a building block. Applications in networks include token management
(Coppersmith et al. 1993), load balancing (Karger and Ruhl 2004), small-world
routing (Draief and Ganesh 2006; Kleinberg 2000), search Gkantsidis et al. (2005),
information propagation and gathering (Kempe et al. 2001), network topology
monitoring (Ganesh et al. 2007) and group communication in ad-hoc networks
(Dolev et al. 2006). The paper Lovász (1993) provides a survey of the properties
of a random walk on a finite graph.

There has been fewer work related to multiple interacting mobile agents on a finite
network. In Cooper et al. (2009) the authors propose a number of these dynamics
and study their asymptotic properties on regular graphs. Aldous (1991) derives an
upper bound for the expected meeting time of two independent copies of Markov
chain as a function of the hitting time for a single chain. Coppersmith et al. (1993)
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provide an upper bound for the expected meeting time of a variant of the problems
of two random walks on a general graph whereby an adversary tries to keep the
tokens apart. Finally, Dimitriou et al. (2006) addresses a similar problem to ours. The
authors analyse the dynamics of interacting random walks k − 1 of which are healthy
and one is infectious where the infetion is transimitted as soon as an infectious and
a healthy particle meet at given site. This model is related to the broadcast model
presented in Cooper et al. (2009). They derive upper bounds for the time it takes
to infect all the healthy particles using standard results on the coalescence time of
multiple random walks (Aldous and Fill 2002).

Organisation of the paper The rest of the paper is organised as follows. In Section
2, we present our model and state our main results that relate the coincidence time
of the two walkers to the stationary distribution of a (general) random walk on a
graph which enables us to upper bound the probability of infection at a given time
t. In Section 3, we analyse the case of the standard continuous random walk and
instantiate our results for regular graphs, the Erdős–Rényi graph and power-law
networks. In Section 4, we present a more detailed analysis for the complete graph
and regular graphs in the case of k ≥ 2 walkers providing tighter bounds than the
ones derived in Dimitriou et al. (2006) for both models.

2 Model

We now describe the model precisely. We assume that the particles are mobile on
a graph G = (V, E) and that their movements are characterised by independent
continuous-time Markov chains (CTMCs) on the finite state space V = 1, . . . , n,
with the same transition rate matrix given by Q = (qij)i, j∈V where

∑
j∈V qij = 0 for

all i ∈ V. More precisely, we assume that if a given particle occupies node i then it
jumps to node j at rate qi, j ≥ 0. We assume that the graph G is connected and that
qi, j > 0 if (i, j) ∈ E (the edge (i, j) is present in the graph G) and 0 otherwise.

It is well known that if Q is the transition matrix of an ergodic Markov chain then
there exists an invariant distribution π on V such that π Q = (0, . . . , 0) and

lim
t→∞ ||P(Xt ∈ . | X0 = i) − π.|| = 0 ,

where

||ν − η|| = 1

2

∑

k∈V

|νk − ηk| = max
A⊆V

|νA − ηA|

is the total variation distance between ν and η two probability measures on V.
From now on we assume that the Markov chain with transition rate matrix Q is

reversible, i.e. πiqij = π jq ji (for a detailed account on reversible Markov chains see
(Aldous and Fill 2002, Chapter 3). Considering 0 = λ1 < λ2 ≤ · · · ≤ λn the eigen-
values of −Q, and using (Ganesh et al. 2007, Lemma 1), we have that,

||P(Xt ∈ . | X0 = i) − π.|| ≤ 1

2
√

πi
e−λ2t . (1)

We now consider two independent random walkers (Xt, t ≥ 0) and (Yt, t ≥ 0)

moving between the nodes of the graph according the matrix Q where Xt and Yt
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correspond to the positions of the infected and susceptible individuals respectively at
time t. A first natural object to study in this framework is the meeting time between
the two walks defined by

TM = min{t ≥ 0, Xt = Yt}

which is finite regardless of the initial condition. In Aldous and Fill (2002, Proposition
5, Chapter 14), it is shown that the worst-case mean meeting time

τM = max
i, j∈V

E (TM | X0 = i, Y0 = j) ≤ max
i, j

E
(
Hj | X0 = i

)
,

where Hj is the time is takes the (single) chain (Xt)t to hit node j starting from
node i.

We define the coincidence time up to time t, denoted τ(t), as the total time up to t
during which both walkers are at the same vertex, i.e.,

τ(t) =
∫ t

0
1(Xs=Ys)ds. (2)

Let I(t) denote the indicator function that the initial susceptible becomes infected by
time t. Then, conditional on τ(t), we have

E(I(t) | τ(t)) = 1 − exp(−βτ(t)), (3)

where β > 0 is the infection rate. Let γ (t) = E(I(t)) be the probability that the initial
susceptible becomes infected by time t.

We are interested in estimating the coincidence time τ(t) and the infection
probability γ (t) for different families of graphs. We consider the case when these
chains are started independently in the stationary distribution and provide estimates
of the coincidence time and an upper bound for the infection probability for general
mobility models.

Theorem 1 Suppose X0 and Y0 are chosen independently according to the invariant
distribution π . Then, we have

E[τ(t)] =
∑

v∈V

π2
v t

γ (t) ≤ 1 − exp

(

−βt
∑

v∈V

π2
v

)

.

Proof Observe that, for all s ≥ 0,

P(Xs = Ys) =
∑

v∈V

P(Xs = Ys = v)

=
∑

v∈V

π2
v ,
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because Xs and Ys are independent, and are in stationarity. Hence, it is immediate
from Eq. 2 that

E[τ(t)] =
∫ t

0

∑

v∈V

π2
v ds

=
∑

v∈V

π2
v t .

Next, taking expectations in Eq. 3 with respect to the conditioning random variable
τ(t), we have

γ (t) = 1 − E[exp(−βτ(t))]
≤ 1 − exp(−βE[τ(t)])

= 1 − exp

(

−βt
∑

v∈V

π2
v

)

,

where the inequality follows from Jensen’s inequality. 	


We now introduce some terminology and define some examples of graph models
that we shall consider. For two functions f (·) and g(·) on the natural numbers, we
write f (n) ∼ g(n) to mean that their ratio tends to 1 as n tends to infinity. We write
f (n) = O(g(n)) if f (n)/g(n) remains bounded by a finite constant, f (n) = o(g(n)) if
f (n)/g(n) tends to zero, and f (n) = 	(g(n)) if g(n) = O( f (n)). For a sequence of
events An indexed by n ∈ N, we say that they occur with high probability (w.h.p.) if
P(An) tends to 1 as n tends to infinity.

Example: uniform random walk If we consider the case where the rate transition
matrix is given by

qij =
⎧
⎨

⎩

1 if (i, j) ∈ E,

0 if (i, j) /∈ E,

−di if i = j

where di is the degree of i, i.e. the number of neighbours of node i in the graph G
then it is known that the stationary distribution is the uniform distribution over V,
πi = 1/n for all i ∈ V, and a direct application of Theorem 1 yields

E[τ(t)] = t/n , γ (t) ≤ 1 − e−βt/n .

Moreover, the two walks need not start from the stationary distribution. In fact,
it is not difficult to see that in this case, if the graph is connected, then the second
eigenvalue of Q above is positive, and in fact bounded away from zero, for all n, using
the fact that xT Qx = −∑

(i, j)∈E(xi − x j)
2. Therefore, after O(log(n)), using Eq. 1, the

distribution of the walks coincide with the uniform distribution w.h.p.

3 Standard continuous-time random walk

In this section, we choose a matrix Q in order to allow a non-uniform probability
of being at a given node in stationary regime. More precisley, the particles perform
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independent continuous-time Markov chains (CTMCs) on the finite state space V,
with the same transition rate matrix given by

qij =
⎧
⎨

⎩

1
di

if (i, j) ∈ E,

0 if (i, j) /∈ E,

−1 if i = j

Moreover, they both intially start in positions distributed according to the invari-
ant distribution π given by

πi = di
∑

v∈V dv

. (4)

Note that if Xt and Yt are not started from the stationary distribution, then by
Eq. 1, after c log n

λ2
, c constant but large, the distributions of Xt and Yt coincide with

the uniform distribution on V w.h.p. Moreover, by Cheeger’s inequality (see Mohar
1997), we have that

λ2 ≥ η(G)2

2
(G)
,

where 
(G) is the maximal degree of the nodes in G and η(G) is the isoperimetric
constant or expansion of a graph G defined by

η(G) = inf
U⊂V, |U |≤n/2

E(U, Uc)

|U | ,

E(U, Uc) denotes the number of edges having one vertex in U and the other in
its complement, Uc (i.e., crossing the cut (U, Uc)); and |U | the number of vertices
or size of U . In particular if the graph is an expander, then the spectral gap
λ2 is large, and the (uniform) random walk is rapidly mixing (Mohar 1997). In
particular, the infection does not take place, w.h.p., before the two walks approach
the stationary distribution. In what follows, we will to consider graphs which are
expanders as illustrated in Ganesh et al. (2005) through the computation of the
isoperimetric constant for Erdős–Rényi and power-law graphs and Friedman’s proof
Alon’s second eigenvalue conjecture for regular graphs (Friedman 2003).

3.1 Examples

We now introduce a number of families of graphs of interest.

Complete graphs Consider the complete graph on n nodes, namely the graph in
which there is an edge between every pair of nodes. Thus, dv = n − 1 and πv = 1/n
for all v ∈ V, so we have by Theorem 1 that E[τ(t)] = t/n. This result should be
intuitive by symmetry. Lemma 1 also gives us an upper bound on the infection
probability, γ (t) ≤ 1 − exp(−βt/n). Roughly speaking, this says that it takes time
of order n/β for the susceptible individual to become infected; for t 
 n/β, the
probability of being infected is vanishingly small. Again, this is consistent with
intuition.

Regular graphs A graph G = (V, E) is said to be r-regular if dv = r for all v ∈ V.
Thus, a complete graph is regular with r = n − 1. It is readily verified that πv = 1/n
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for all v ∈ V if G is r-regular for any r ≥ 3. Hence, if G is connected, we have the
same estimates for τ(t) and γ (t) as for the complete graph, which is a special case
corresponding to r = n − 1.

The next examples we consider will be families of random graphs widely used in
practice to model networks.

Erdős–Rényi random graphs The Erdős–Rényi graph G(n, p) is defined as a ran-
dom graph on n nodes, wherein each edge is present with probability p, independent
of all other edges. We consider a family of such random graphs indexed by n, and
take p to be a function of n chosen so that np > c log n for some constant c > 1.
We also condition on the graph being connected. For p as above, the probability of
connectivity tends to 1 as n tends to infinity, so conditioning on connectivity does
not alter any of the estimates we shall derive later for the coincidence time on such
graphs. In this model, the node degrees are identically distributed Binomial random
variables with parameters (n − 1, p). In particular, they concentrate around the mean
value of np, and have exponentially decaying tails away from this value. Thus, while
Erdős–Rényi graphs are not exactly regular, they exhibit considerable homogeneity
in node degrees.

Power-law random graphs In contrast to the above graph models, many real-world
networks exhibit considerable heterogeneity in node degrees, and have empirical
degree distributions whose tails decay polynomially; see, e.g., Barabási and Albert
(1999), Faloutsos et al. (1999). This observation has led to the development of
generative models for graphs with power-law tails (Barabási and Albert 1999;
Bollobás and Riordan 2004) as well as random-graph models possessing this property
(Chung and Lu 2003). For definiteness, we work with the model proposed in Chung
and Lu (2003), but we believe that similar results will hold for the other models as
well.

In the model of Chung and Lu (2003), each node v is associated with a positive
weight wv , and edges are present independently with probabilities related to the
weights by

P((u, v) ∈ E) = wuwv

W
where W =

∑

x∈V

wx. (5)

We assume that W ≥ w2
max, so that the above defines a probability. It can be

verified that E[dv] = wv and so this model is also referred to as the expected degree
model. The model allows self-loops. The Erdős–Rényi graph G(n, p) is a special
case corresponding to the choice wv = np for all v ∈ V. If the weights are chosen
to have a power-law distribution, then so will the node degrees. The following
3-parameter model for the ordered weight sequence is proposed in Chung and
Lu (2003), parametrised by the mean degree d, the maximum degree m, and the
exponent γ > 2 of the weight distribution:

wi = m
(

1 + i
i0

)− 1
γ−1

, i = 0, 1, . . . , n − 1, (6)

where

i0 = n
(

d(γ − 2)

m(γ − 1)

)γ−1

. (7)

Note that W = ∑n−1
i=0 wi ∼ nd.
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We consider a sequence of such graphs indexed by n. The maximum expected
degree m and the average expected degree d may, and indeed typically will, depend
on n. In models of real networks, we can typically expect d to remain bounded or
to grow slowly with n, say logarithmically, while m grows more quickly, say as some
fractional power of n. In this paper, we only assume the following:

d ≥ δ > 0, d = o(m), m ≤ √
nd,

m
d

= o
(

n
1

γ−1

)
. (8)

Here, δ is a constant that does not depend on n. In other words, the average expected
degree is uniformly bounded away from zero. The third assumption simply restates
the requirement that w2

0 ≤ W, so that Eq. 5 defines valid probabilities. The last
assumption ensures that i0, defined in Eq. 7, tends to infinity.

3.2 Application to graphs

We now describe our results about these models.

Theorem 2 Consider a sequence of graphs G = (V, E) indexed by n = |V|. On each
graph, consider two independent random walks with initial condition X0, Y0 chosen
independently from the invariant distribution π for the random walk on that graph.

We have E[τ(t)] = t/n for regular graphs, including the complete graph, on n nodes.
For Erdős–Rényi random graphs G(n, p) conditioned to be connected, and having

np ≥ c log n for some c > 1, we have E[τ(t)] ∼ t/n, as n tends to inf inity.
Finally, consider a sequence of power-law random graphs def ined via Eqs. 5 and 6,

and satisfying the assumptions in Eq. 8. Then, we have the following:

nE[τ(t)]
t

∼

⎧
⎪⎨

⎪⎩

c, if γ > 3,

c(log m), if γ = 3,

c(m.d)3−γ , if 2 < γ < 3,

where c > 0 is a constant that may depend on γ , but not on n.

The thereom illustrates a discrepency between the dynamics of the system of two
particles for regular graphs, Erdős–Rényi random graphs and power-law graphs for
γ > 3 on one hand, and power-law graphs γ ≤ 3 on the other hand. For the former,
the particles spend O(t/n) amount of time together up to time t. In fact, as we will
illustrate it in Section 4 for the complete and regular graphs, the healthy particle is
infected w.h.p. before time β+2

β
n. As for power-law graphs with γ ≤ 3, the particles

spend considerably more time together, at high degree nodes, and we anticipate that
the infection occurs much faster.

The remainder of this section is dedicated to proving Theorem 2. If the graph G
is regular, then, by Eq. 4, πv = 1/n for all v ∈ V. Hence, the claim of the theorem
follows from Theorem 1. A more thorough analysis is provided in Section 4 for
regular and complete graphs, where we present som eintial findings for the case
where there are k particles: one infected and k − 1 healthy.

In order to estimate E[τ(t)], we need to compute

∑

v∈V

π2
v =

∑
v∈V d2

v
(∑

v∈V dv

)2 . (9)
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To this end, define

D =
∑

v∈V

dv =
∑

u,v∈V

Auv, (10)

where Auv = 1((u,v)∈E) is the indicator that u and v are connected in G, and

Xv = dv(dv − 1) =
∑

i �= j

Avi Av j and D2 =
∑

v∈V

Xv . (11)

We will derive the first and second moments of the variables D and D2. It then
suffices to use Chebyshev’s inequality to establish concentration results for both
variables D and D2. By Eq. 9 and Theorem 1, and the fact that

∑
v∈V d2

v = D2 + D
and D = ∑

v∈V dv , we will have an estimate of the coincidence time that holds whp.
We begin by computing the mean and variance of D in the expected degree model

with arbitrary weight sequence {wi, i = 0, . . . , n − 1}.
For notational convenience, we define

w = 1

n

n−1∑

i=0

wi, wk = 1

n

n−1∑

i=0

wk
i , k = 2, 3, . . .

We obtain Erdős–Rényi graphs G(n, p) by setting wi = np for all i, and so,
wk = (np)k for such graphs.

Next, consider power-law graphs with weight sequence specified by Eqs. 6 and 7.
Since i0 tends to infinity by assumption, we have for such graphs that

wk = mk

n

n−1∑

i=0

(
1 + i

i0

)− k
γ−1

∼ mk

n

∫ n

0

(
1 + x

i0

)− k
γ−1

dx

= mk i0

n

∫ n/ i0

0
(1 + x)

− k
γ−1 dx. (12)

Now, straightforward calculations yield that w ∼ d for all γ > 2, whereas, for k ≥ 2,
we have

wk ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(γ−2)k

(γ−1)k−1(γ−1−k)
dk, if γ > k + 1,

(k−1)k

kk−1 dk log m
d , if γ = k + 1,

(γ−2)γ−1

(γ−1)γ−2(k+1−γ )
dγ−1mk+1−γ , if 2 < γ < k + 1.

(13)

We can now compute the mean and variance of D, the sum of node degrees.

Proposition 1 Consider a random graph G = (V, E) specif ied by the expected degree
model with an arbitrary weight sequence {wv, v ∈ V} satisfying W ≥ w2

max, where
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W = ∑
v∈V wv . Let the sum of node degrees, D, be def ined as in Eq. 10. Then, we

have

E[D] = nw,

Var(D) = 2
(

nw −
(w2

w

)2) −
(w2

w
− w4

nw2

)
, (14)

where n = |V| is the total number of nodes.
In particular, for large n, if G is the Erdős–Rényi random graph G(n, p), then

E[D] = n2 p

Var(D) = (2n − 1)np(1 − p) ∼ 2n2 p(1 − p), (15)

whereas, if G is a power law random graph satisfying the assumptions of Theorem 2,
then

E[D] = nd and Var(D) ∼ 2nd .

The proof is provided in the Appendix of the paper. The following corollary is
now an easy consequence of Chebyshev’s inequality.

Corollary 1 If Gn, n ∈ N is a sequence either of Erdős–Rényi random graphs or of
power-law random graphs satisfying the assumptions of Theorem 2, then the sum of
node degrees D concentrates at its expected value in the sense that D ∼ E[D] w.h.p.

We now establish a similar concentration result for the sum of squared degrees.
To this end, recall that

Xv = dv(dv − 1) =
∑

i �= j

Avi Av j

D2 =
∑

v∈V

Xv.

We have the following:

Proposition 2 Let D2 be def ined as in Eq. 11. We then have

E[D2] = nw2 −
(w2

w

)2

Var(D2) ≤ 4nw3 + 2nw2 + 4n
(w2)2

w
. (16)

We now specialise the results to Erdős–Rényi and power-law random graphs,
showing that D2 concentrates near its expected value with high probability.

Proposition 3 Suppose G(n, p) is a sequence of Erdős–Rényi random graphs indexed
by n (where p depends on n but this is not made explicit in the notation), and that np
is uniformly bounded away from zero. Then

D2 ∼ E[D2] ∼ n3 p2, w.h.p.
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Proof We have, by Proposition 2 and the fact that wk = (np)k for the Erdős–Rényi
random graph G(n, p), that

E[D2] = n2(n − 1)p2 ∼ n3 p2, Var(D2) ≤ 8n4 p3 + 2n3 p2.

Hence, by Chebyshev’s bound, we obtain for all ε > 0 that,

P(|D2 − E[D2]| > εE[D2]) ≤ Var(D2)

ε2E[D2]2

≤ 1

ε2(n − 1)2 p
+ 1

ε2n(n − 1)2 p2
.

Now, by the assumption that np is bounded away from zero, (n − 1)2 p and
n(n − 1)2 p2 tend to infinity as n tends to infinity. Thus, P(|D2 − E[D2]| > εE[D2])
tends to zero for all ε > 0. This establishes the claim of the Proposition. 	


Using similar arguments, albeit with more involved computation, we derive an
analogous result for power-law graphs. The proof is provided in the Appendix of the
paper.

Proposition 4 Suppose Gn, n ∈ N is a sequence of power-law random graphs satisfy-
ing the assumptions in Theorem 2, with γ > 2. Then, D2 ∼ E[D2] whp, and

E[D2] ∼

⎧
⎪⎨

⎪⎩

cnd2, if γ > 3,

cnd2(log m), if γ = 3,

cndγ−1m3−γ , if 2 < γ < 3,

To complete the proof of Theorem 2, it suffices to combine the results of
Lemmas 1 and 4 with the fact that

∑
v π2

v = D2+D
D2 .

4 Further analysis of the complete and regular graphs

In this section, we focus our attention on the complete graph for which the uniform
and the standard continuous-time random walks coincide. Due to the absence of
topology, i.e. a walk can jump to any other node uniformly at random, we can explore
this model in more detail. First, let us analyze the case of two random walks, one
being infectious and the other healthy. The dynamic of the system can be described
through a three state Markov chain: state 1 corresponds to the case where the two
walks are apart, the state 2 corresponds to when the two walks coincide, and state 3
corresponds to the infection of the healthy walk by the infected one. The rate matrix
of the corresponding continuous-time Markov chain is then given by

Q =
⎛

⎜
⎝

−2
n−1

2
n−1 0

2(n−2)

n−1 −
(
β + 2(n−2)

n−1

)
β

0 0 0

⎞

⎟
⎠ ,
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and the corresponding transition matrix Pt = etQ. The eigenvalues of Q are 0, −λ1

and −λ2 with

λ1 = 1

2

(
β + 2 +

√
(β + 2)2 − 8β/(n − 1)

)

λ2 = 1

2

(
β + 2 −

√
(β + 2)2 − 8β/(n − 1)

)
,

with eigenvectors

⎛

⎝
1
1
1

⎞

⎠,

⎛

⎝
1

1 − (n − 1)λ1/2
0

⎞

⎠ and

⎛

⎝
1

1 − (n − 1)λ2/2
0

⎞

⎠, respectively.

The infection probability after time t is therefore given by

γ (t) = (Pt)1,3 = (
1 0 0

)
etQ

⎛

⎝
0
0
1

⎞

⎠

= 1 + λ2

λ1 + λ2
e−λ1t − λ1

λ1 + λ2
e−λ2t

∼ 1 − exp

(

− 2

(β + 2)2

βt
n

)

yielding a tighter bound than the one derived using Theorem 1.
Let m3(i) be the mean hitting time of state 3, starting from state i, for i = 1, 2.

Note that m3(1) is the mean time for the healthy node to get infected. By the first-
step analysis (Norris 1997, Theorem 3.3.3), we have

2

n − 1
m3(1) = 2

n − 1
m3(2) + 1

(

β + 2(n − 2)

n − 1

)

m3(2) = 2(n − 2)

n − 1
m3(1) + 1 .

From this, it follows, that the average time to infection ETInf is given by

E (TInf) = m3(1) ∼ β + 2

2β
n . (17)

To conclude this section we provide a first analysis of the case with k random
particles k ≥ 2 where initially one particle is infectious and the remaining k − 1 are
healthy. In what follows we provide an upper bound on the time to infection of the
whole population. First it is easy to note that at time t a given particle can occupy any
of the n nodes of the graph. Therefore by combining Eq. 17 and the union bound, the

average time to infection E

(
T(k)

Inf

)
is bounded by

E

(
T(k)

Inf

)
≤

k∑

j=2

( j − 1)
β + 2

2β
n = β + 2

4β
k(k − 1)n .

We now derive a better bound. First, note that at any given time, on the complete
graph, each of the particles is located uniformly at random on the graph. If we assume
that there are i infectious particles and (k − i) healthy ones, then for k ≤ √

n, it is not
difficult to show that the probability that there is at least an encounter between one
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healthy and one infectious particles is equivalent to i(k−i)
n . To simplify the analysis,

we assume that if there are healthy and infectious particles located at the same node
then there is at most one infection that occurs before any of the k particles jumps to
another node which happens with probability β

β+k .
The above assumption slows down the infection process and thus yields an upper

bound. It is not difficult to note that the time until there is a new particle infected is
stochastically dominated by

∑N
i=1 Ei where Ei are i.i.d. r.v. distributed according to

an exponential distribution with parameter k and N is a geometric random variable
with parameter β

β+k
i(k−i)

n . Hence,

E

(
T(k)

Inf

)
≤ (β + k)n

β

k−1∑

i=1

1

i(k − i)

= (β + k)n
βk

k−1∑

i=1

(
1

i
+ 1

k − i

)

∼ 2(β + k)n log(k)

βk
,

and for k = n1/2−ε , we have E

(
T(k)

Inf

)
≤ 2n log(k)

β
.

The above analysis can be extended to the case of r-regular graphs (r ≥ 3), using
Cooper et al. (2009, Theorem 22), one can derive that the probability of a meeting
between a healthy and an infectious particle, at the stage where there are i infectious
particles is asymptotically (in n) equal to r−2

r−1
i(k−i)

n yielding the following result.

Theorem 3 The time to infection, starting from 1 infected particle and k − 1 healthy
ones, all performing standard continuous-random walks on an r-regular graph, r ≥ 3
and k = o(

√
n), satisf ies

E

(
T(k)

Inf

)
≤ 2

r − 2

r − 1

β + k
βk

n log(k) .

Appendix

Proof of Proposition 1 It is immediate from Eq. 10 that

E[D] =
∑

u,v∈V

P((u, v) ∈ E)

=
∑

u,v∈V

wuwv

W
= W,

which establishes the first equality in Eq. 14. Next, rewrite Eq. 10 as

D = 2
n∑

i=1

n∑

j=i+1

Aij +
n∑

i=1

Aii,



Discrete Event Dyn Syst (2011) 21:41–61 55

and observe from the independence of the edges that

Var(D) = 4
n∑

i=1

n∑

j=i+1

Var(Aij) +
n∑

i=1

Var(Aii)

= 2
n∑

i=1

n∑

j=1

Var(Aij) −
n∑

i=1

Var(Aii).

Now, Var(Auv) = P((u, v) ∈ E)(1 − P((u, v) ∈ E)), and so,

Var(D) = 2
n∑

i=1

n∑

j=1

(wiw j

W
− w2

i w
2
j

W2

)
−

n∑

i=1

(w2
i

W
− w4

i

W2

)
.

Upon simplifying, this yields the second equality in Eq. 14. Now, using the fact that
wk = (np)k for Erdős–Rényi graphs G(n, p), we readily obtain Eq. 15.

Next, suppose G is a power-law graph (more precisely, Gn is a sequence of power
law graphs) satisfying the assumptions of Theorem 2. It follows from Eq. 12 that

w4 ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(γ−2)4

(γ−1)3(γ−5)
d4, if γ > 5,

81
64 d4 log m

d , if γ = 5,

(γ−2)γ−1

(γ−1)γ−2(5−γ )
dγ−1m5−γ , if 2 < γ < 5,

(18)

while

w2 ∼

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(γ−2)2

(γ−1)(γ−3)
d2, if γ > 3,

1
2 d2 log m

d , if γ = 3,

(γ−2)γ−1

(γ−1)γ−2(3−γ )
dγ−1m3−γ , if 2 < γ < 3,

(19)

and w ∼ d for all γ > 2.
By Eq. 14, it suffices to show that

(w2

w

)2 = o(nd) and
w4

w2 = o(n2d) (20)

in order to show that Var(D) ∼ 2nw ∼ 2nd.
Suppose first that γ > 3. Then, by Eq. 19 and the fact that w = nd,

1

nd

(w2

w

)2 = O
(d

n

)
= o(1),

where the last equality follows from Eq. 8, and the fact that d ≤ n.
Now let γ = 3. Then, by Eq. 19 and the fact that w = nd,

1

nd

(w2

w

)2 = O
(d

n
log

m
d

)
= O

(m
n

d
m

log
m
d

)
= o(1),
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where the last equality follows by Eq. 8. On the other hand, if 2 < γ < 3, then, by
Eq. 19,

1

nd

(w2

w

)2 = O
(d2γ−5m6−2γ

n

)

= O
((d

n

)γ−2) = o(1),

where we have used the inequality m ≤ √
nd from Eq. 8 to obtain the second equality.

To obtain the last equality, note that it follows from Eq. 8 that m = o(n) and hence
that d = o(n) as well. We have thus established the first equality in Eq. 20 for all
γ > 2. The proof of the second equality is similar and is omitted. This completes the
proof of the propostion. 	


Proof of Proposition 2 We first note that

E[Xv] =
∑

i �= j

wiw jw
2
v

W2
= w2

v

(
1 − 1

W2

∑

i∈V

w2
i

)

= w2
v

(
1 − w2

nw2

)
.

Therefore,

E[D2] =
∑

v∈V

E[Xv] = nw2 −
(w2

w

)2
,

which is the first part of Eq. 16. Next, for distinct nodes u, v ∈ V, we have

Cov(Xu, Xv) =
∑

i �= j

∑

k �=l

Cov(Aiu A ju, Akv Alv)

= 4
∑

i �=v,l �=u

Cov(Aiu Auv, Auv Alv)

= 4E[Au,v](1 − E[Au,v])
∑

i �=v

E[Aiu]
∑

l �=u

E[Alv].

The second equality above holds because, by the independence of edges, the indi-
cator random variables Aiu A ju and Akv Alv corresponding to the open triangles (or
2-stars) iuj and kvl are independent unless two of the edges are the same; the only
way this can happen is if (u, v) is a common edge and there are 4 possible node
labellings corresponding to each such edge set. Now, recall that E[Au,v] = wuwv/W
and

∑
i E[Aiu] = E[du] = wu. Hence, we see from the above that

0 ≤ Cov(Xu, Xv) ≤ 4
w2

uw
2
v

W
. (21)
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Similarly, we obtain

Var(Xu) =
∑

i �= j

∑

k �=l

Cov(Aiu A ju, Aku Alu)

= 4
∑

j

∑

i �= j

∑

l �=i, j

Cov(Aiu A ju, A ju Alu) + 2
∑

i �= j

Var(Aiu A ju)

≤ 4
∑

j

∑

i �= j

∑

l �=i, j

E[Aiu A ju Alu] + 2
∑

i �= j

E[Aiu A ju].

Using the fact that distinct edges are independent, we get

Var(Xu) ≤ 4w3
u + 2w2

u. (22)

Now, by Eqs. 11, 21 and 22

Var(D2) =
∑

u∈V

Var(Xu) +
∑

u �=v

Cov(Xu, Xv)

≤
∑

u∈V

(4w3
u + 2w2

u) +
∑

u,v∈V

4
w2

uw
2
v

W
.

Computing the above sums yields the second part of Eq. 16. 	


Proof of Proposition 4 We will show that Var(D2) = o(E[D2]2), so that the claim
follows by Chebyshev’s bound, as in the proof of the previous lemma. We will
consider separately the parameter ranges γ ≥ 4, 3 ≤ γ < 4 and 2 < γ < 3, where γ

is the exponent in the power law describing the degree distribution.
In the following, c1, c2, . . . will denote generic positive constants, not necessarily

the same from line to line. Recall that w ∼ d.
Suppose first that γ ≥ 4. Then, by Eq. 13, w3 = O(d3 log m

d ) and w2 ∼ c1d2.
Therefore, by Lemma 2,

E[D2] ∼ c1nd2

and

Var(D2) = O
(

nd3 log
m
d

+ nd2
)

= O
(

nd3 log
m
d

)
,

where the last equality holds because of the assumption in Eq. 8 that d ≥ δ for some
constant δ > 0. Thus, we see that

Var(D2)

E[D2]2
= O

( 1

nd
log

m
d

)
= o(1),

since m ≤ n.
Suppose next that 3 ≤ γ < 4. Then, by Eq. 13, w3 = O(dγ−1m4−γ ), while

w2 ∼ c1d2 if 3 < γ < 4 and w2 ∼ c2d2 log m
d if γ = 3. Therefore, by Lemma 2,

E[D2] ≥ c1nd2 − c2d2 log2 m
d

≥ c1nd2 − c2d2 log2 n = 	(nd2), (23)
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whereas,

Var(D2) ≤ c1ndγ−1m4−γ + c2nd2 log
m
d

+ c3nd3 log2 m
d

≤ c1ndγ−1m4−γ + c2nd3 log2 m
d

,

= c1ndγ−1m4−γ

(

1 +
( d

m

)4−γ

log2 m
d

)

.

We have used the assumption that d is uniformly bounded away from zero to obtain
the second inequality above. Since we also assumed in Eq. 8 that d = o(m), we have

(d/m)4−γ log2(m/d) = o(1) .

for all γ < 4. Hence, Var(D2) = O(ndγ−1m4−γ ). Combining this with Eq. 23, we get

Var(D2)

E[D2]2
= O

(
1

nd

(m
d

)4−γ
)

= O
(

1

nd
n(4−γ )/(γ−1)

)

= o(1).

We have used Eq. 8 to obtain the second equality above and the fact that γ ≥ 3
to obtain the last equality. Moreover, E[D2] ∼ cnd2 for 3 < γ < 4, whereas
E[D2] ∼ cnd2 log(m) for γ = 3.

Finally, suppose that 2 < γ < 3. Then, by Eq. 13, w3 = O(dγ−1m4−γ ) and
w2 ∼ c1dγ−1m3−γ , so that, by Lemma 2,

E[D2] ≥ c1ndγ−1m3−γ − c2(dγ−2m3−γ )2

≥ c1ndγ−1m3−γ

(

1 − c2

n

(m
d

)3−γ
)

.

Now, by Eq. 8, (m/d)3−γ = o(n(3−γ )/(γ−1)) = o(n) since γ > 2. Consequently,

E[D2] = 	(ndγ−1m3−γ ).

On the other hand,

Var(D2) ≤ c1ndγ−1m4−γ + c2ndγ−1m3−γ

+ c3nd2γ−3m6−2γ

≤ c1ndγ−1m4−γ

(

1 + c2

m
+ c3

( d
m

)γ−2
)

= O(ndγ−1m4−γ ).

Hence,

Var(D2)

E[D2]2
= O

(
ndγ−1m4−γ

n2d2γ−2m6−2γ

)

= O
(

1

nm

(m
d

)γ−1
)

Now, by Eq. 8, and the fact that γ > 2 we have (m/d)γ−1 = o(n). Since the maximum
degree m is assumed to grow as a power of n, we have Var(D2)

E[D2]2 = o(1). Note that
E[D2] ∼ cndγ−1m3−γ , for 2 < γ < 3.

Using Chebyshev’s inequality, this establishes the claim of the proposition. 	
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