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Abstract Many large-scale multi-agent missions consist of a sequence of sub-
tasks, each of which can be accomplished separately by having agents execute
appropriate decentralized controllers. However, many decentralized controllers
have network topological prerequisites that must be satisfied in order to achieve
the desired effect on a system. Therefore, one cannot always hope to accom-
plish the original mission by having agents naively switch through executing
the controllers for each subtask. This paper extends the Graph Process Spec-
ification (GPS) framework, which was presented in previous work as a way to
script decentralized control sequences for agents, while ensuring that network
topological requirements are satisfied when each controller in the sequence is
executed. Atoms, the fundamental building blocks in GPS, each explicitly state
a network topological transition. Moreover, they specify the means to make
that transition occur by providing a multi-agent controller, as well as a way
to locally detect the transition. Control design using GPS therefore reduces to
selecting a sequence of atoms from a library to satisfy network topological re-
quirements, and specifying interrupt conditions for switching. As an example
of how to construct an atom library, the optimal decentralization algorithm is
used to generate atoms for agents to track desired multi-agent motions with
when the network topology is static. The paper concludes with a simulation
of agents performing a drumline-inspired dance using decentralized controllers
generated by optimal decentralization and scripted using GPS.
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1 Introduction

As research in multi-agent systems progresses in the upcoming decades, the
missions which agents are expected to undertake will also become increasingly
complex. One way to reduce the complexity associated with controller design is
to break the mission into a sequence of subtasks, and design decentralized con-
trollers for completing each of the subtasks separately. To perform the entire
mission, agents must then consecutively execute the controllers for each sub-
task in the sequence. For example, consider the task of designing controllers for
a group of agents to perform the drumline-inspired multi-agent dance shown in
Figure 1. One way to go about it would be to have agents switch consecutively
between executing controllers designed for performing specific maneuvers, such
as going into a circle or forming a GT (Georgia Tech) logo.

However, many decentralized controllers have network topological prereq-
uisites that must be satisfied in order to achieve the desired effect on a system.
For example, the convergence properties associated with nearest-neighbor av-
eraging (e.g., Olfati-Saber et al (2007)) are based on the assumption that the
network topology is a connected graph. Moreover, the network topology itself
may be state-dependent or can change with time. Therefore, one cannot al-
ways hope to accomplish the original mission by having agents naively switch
through executing the controllers for each subtask. This is because the net-
work topology resulting from the termination of one controller may not satisfy
what the next controller in the sequence needs in order to achieve its desired
effects on the system when executing.

This paper presents two main theoretical contributions. The first is an
extension of the Graph Process Specification (GPS) framework presented in
Twu et al (2010) along with a series of detailed examples demonstrating its
usage. The GPS framework acts as a way to script sequences of decentralized
controllers for agents, while simultaneously ensuring that network topological
requirements are satisfied for each controller in the sequence during execu-
tion. To do so, GPS builds decentralized control sequences out of fundamental
building blocks called atoms. Each atom explicitly states a network topological
transition (a so-called graph process as discussed in Mesbahi and Egerstedt
(2010)). Moreover, every atom specifies the means to make this transition
occur by providing a multi-agent controller, as well as a locally-checkable con-
dition which allows for an agent to verify that the transition has taken place
before terminating the controller.

Control design in GPS reduces to selecting a sequence of atoms from a li-
brary such that each atom terminates with a network topology which the next
atom in the sequence needs when starting execution in order to have the de-
sired effect on the system. Moreover, interrupt conditions can be scripted which
specify how agents will switch through the controller sequence. Together, the
atom sequence and interrupts form a decentralized control strategy for agents.
Upon checking that the strategy respects the network topological requirements
of each controller during execution, it is downloaded onto the agents. There-
fore, it is possible for agents to have special a priori designations in GPS.
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(l) Agents form a GT
(Georgia Tech) logo.

Fig. 1 Example of a complex drumline-inspired multi-agent dance, where agents switch
through a sequence of controllers that were each designed for a specific maneuver. The
locations of the agents are marked by O’s and the lines indicate their trajectory during the
past 0.3 seconds.
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To carry out the control strategy, agents start by executing the controller for
the first atom. This continues until an agent detects that both the required
transition in the network topology has taken place, and that the interrupt con-
dition is satisfied. Upon doing so, that agent broadcasts a message throughout
the network and all agents switch simultaneously to executing the controller
for the next subtask, and so on. Thus, a multi-agent system which follows a
control strategy scripted using GPS behaves as a hybrid system.

The second main contribution of this paper is an example illustrating how
an atom library can be constructed for use in GPS control design. In partic-
ular, the optimal decentralization algorithm from Twu and Egerstedt (2010)
is presented as a way to generate atoms for agents to track desired multi-
agent motions when the network topology is static. The paper concludes with
a simulation showcasing agents performing a drumline-inspired dance by con-
secutively executing a sequence of decentralized controllers generated from
optimal decentralization and scripted using GPS.

The remainder of this paper will be organized as follows: Section 2 provides
background information related to GPS and the optimal decentralization al-
gorithm. Section 3 presents the GPS framework, while Section 4 provides a
detailed example of its usage in multi-agent control design. Finally, Section 5
presents the optimal decentralization algorithm as a way to generate atoms,
and showcases it through a simulation.

2 Background

The idea behind the GPS framework, which was originally presented in Twu
et al (2010), is related to recent developments in abstraction-based approaches
to controlling groups of agents. Advances in embedded graph grammars (EGG)
(e.g., McNew and Klavins (2006); Smith et al (2009)) have developed rules for
a collection of agents to choose their local controllers. When a rule fires, the
agents switch to the appropriate controller specified in the EGG language.
Furthermore, the work in Kloetzer and Belta (2007) used linear temporal log-
ics to specify control for a team of agents. Using this approach, the multi-agent
“program” is checked for correctness before individual control laws are issued
to the systems. Since a GPS specifies a sequence of decentralized controllers to
be executed, it is more closely related to motion description languages (MDL)
Brockett (1988); Manikonda et al (1998); Martin et al (2008). In particular,
Martin et al (2008) created the MDLn framework to allow for multi-agent
motion programs with networked information requirements built into the lan-
guage. GPS differs from this work by considering a group-level view of the
agents, rather than the execution of the individual agents’ MDLn strings.

A multi-agent system using a control strategy designed through GPS acts
as a hybrid system, where its low-level continuous dynamics are coupled with
high-level discrete mode-switches. A sample of the rich literature available on
the control of hybrid systems includes Morse (1997); Branicky et al (1998);
Hedlund and Rantzer (1999); Bemporad et al (2000); Koutsoukos et al (2000);
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Antsaklis (2000); Attia et al (2005); Shaikh and Caines (2007). In particular,
designing a control sequence for agents by scripting a sequence of atoms in
GPS is closely related to the mode sequencing problem for hybrid systems
(e.g., Alamir and Attia (2004); Attia et al (2005)), except with constraints
limiting which atom pairs can be executed consecutively. Moreover, GPS also
allows for interrupt conditions to be specified that determine when agents
switch from executing one mode to another in the sequence. Such a scenario is
reminiscent of the mode scheduling problem (e.g., Axelsson et al (2008)), where
optimization occurs over both the mode sequence and switching times between
the modes (e.g., Shaikh and Caines (2002); Xu and Antsaklis (2002a,b); Shaikh
and Caines (2003)).

The extensiveness of the atom library in GPS determines the richness of
the multi-agent control sequences that can be scripted using GPS. However,
one challenge in constructing such a library lies in the difficulty associated
with creating decentralized controllers that have specific desired effects on a
multi-agent system executing it. In general, the issue of designing decentralized
controllers has received significant attention during the last decade, with two
distinctly different approaches emerging. The first approach can be thought of
as a bottom-up approach, where global properties are derived from local con-
trollers. Examples of this include rendezvous and consensus controllers (e.g.,
Jadbabaie et al (2003); Olfati-Saber and Murray (2004); Ren and Beard (2005);
Ji and Egerstedt (2007); Tanner et al (2007)), formation control (e.g., Tanner
et al (2004); Eren et al (2005)), and swarming inspired controllers (e.g., Couzin
and Franks (2003); Liu et al (2003); Lin et al (2004); Olfati-Saber et al (2007)).
The top-down approach involves specifying a global performance metric, and
then investigating when the resulting optimal controller is in fact decentralized.
Examples of this view include Bamieh et al (2002); Rantzer (2007); Rotkowitz
and Lall (2006); Xiao et al (2006); Motee and Jadbabaie (2008). The optimal
decentralization algorithm used in this paper as an example of how one can
generate atoms was originally presented in Twu and Egerstedt (2010) as a
bridge between the two existing approaches to decentralized controller design.
By coupling global performance metrics with parameterized constraints de-
scribing what it means for a controller to be decentralized for a system, the
algorithm transforms the decentralization process into an optimization prob-
lem over the parameters.

Having placed the GPS framework into context with existing work in
abstraction-based multi-agent control design, hybrid systems, and decentral-
ized control, the next section will present technical details for the framework.

3 Graph Process Specification Formulation

3.1 Networked System Representation

Consider a collection of N agents, where the state xi of the ith agent belongs
in the differentiable manifold X, for i ∈ N = {1, . . . , N}. Additionally, let
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x ∈ XN be the concatenated states of all N agents in the system, such that
x = [(x1)T . . . (xN )T ]T . The network topology which describes the flow of infor-
mation amongst agents at each instant will be represented by a vector-weighted
directed graph G = (N , E, w), where E ⊆ E = {(i, j) | i, j ∈ N and i 6= j} and
(i, j) ∈ E represents a flow of information from agent i to j. Furthermore, let
w : E → Rp, for some variable p ∈ N, be a function which characterizes the
information flow from one agent to another by assigning a vector to each edge.
For example, in a team of mobile robots, the existence of an edge (i, j) ∈ E
means that agent j can sense agent i, while the vector-weight w((i, j)) may
be used to describe the associated relative displacement vector which agent
j senses. We will refer to this vector-weighted directed graph as the current
information flow graph of the network. It should be noted that the vector-
weight does not necessarily have to represent the information which is sensed.
For example, the vector-weight can also describe the type or strength of a flow
of information between two agents in the network.

We will represent the set of all possible information flow graphs that can
describe the network as G = {(N , E, w) |E ⊆ E and ∃p ∈ N where w : E →
Rp}. Let the mapping s : XN → G be a graph inducing function that takes in
the states of all agents, and returns the information flow graph describing the
network. Furthermore, let S = {s | s : XN → G} be the set of all possible graph
inducing functions. Note that this formulation is similar to that of connectivity
graphs in Muhammad and Egerstedt (2005).

3.2 Atoms and Consistency

Many decentralized controllers have prerequisites on the information flow
graph which must be met, when being executed by agents, in order to have
the intended effect on a system. However, these requirements are also what
may prevent agents from naively executing an arbitrarily chosen sequence of
controllers consecutively. This is because the information flow graph resulting
at the termination of one controller may not necessarily be what the next con-
troller in the sequence requires. Therefore, if one wished to script sequences
of decentralized controllers for agents to execute, it is necessary to make ex-
plicit both the information flow graph that a controller needs, and how the
information flow graph is affected as agents execute the controller.

To make this information readily available, we present the concept of atoms,
which act as the fundamental building blocks in the GPS framework. An atom
contains three key pieces of information. First, each atom describes the types of
multi-agent systems that it is making a statement about, i.e., those with agent
dynamics in the set F and information flow graph given by a graph inducing
function from the set S. Second, each atom explicitly states a transition in
the system’s information flow graph from the initial set G to the final set H.
Finally, each atom describes the means by which to make this transition occur
by stating a control law U that agents execute, as well as a condition C which
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lets agents detect if the transition has occurred. Formally, an atom is defined
as follows:

Definition 1 An atom A is a tuple given by

A = (S,F,G,H,U , C),

such that

1. S ⊆ S
2. F ⊆ {f ∈ F | f : XN × UN × R≥0 → (

⋃

x∈X

TxX)N}

3. G ⊆ G
4. H ⊆ G
5. U : S ×XN × R≥0 → UN

6. C : S ×XN × R≥0 → {0, 1}N .

Here, F is the set of all functions that are Lipschitz continuous in its first two
arguments and piecewise continuous in its third argument, U is a manifold
corresponding to the set of control inputs, and TxX is the tangent space of a
point x ∈ X.

An atom is consistent if the transition of the information flow graph from
set G to set H is guaranteed to occur in finite time, and can always be detected
by at least one agent in the network using the condition C in finite time as well.
Such a guarantee is important when designing control sequences using atoms
since agents should not stop executing a controller until the information flow
graph makes the described transition. Ensuring that the transition occurs in
finite time prevents a controller in the sequence from blocking others. More-
over, requiring that at at least one agent can detect the transition ensures that
C is effective, and lets that agent broadcast a message throughout the network
for synchronous controller switching.

To formally define a consistent atom, we make use of the following short-
hand notation: for a function z : A → BN , where A and B are arbitrarily
defined sets, let zi : A → B, for i ∈ N , be such that ∀ a ∈ A, z(a) =
[(z1(a))T . . . (zN (a))T )]T . The definition of a consistent atom is as follows:

Definition 2 An atom A = (S,F,G,H,U , C) is consistent when ∀ f ∈ F,
∀x0 ∈ XN , and ∀ s ∈ S such that s(x0) ∈ G, if

1. x(t0) = x0 for some t0 ∈ R≥0

2. ẋ(t) = f(x(t),U(s, x(t), t), t),

then Ci(s, x(t), t) = 1, for some t ≥ t0 and i ∈ N , implies that s(x(t)) ∈ H.
Furthermore, ∃ t∗ ∈ [t0,∞) and ∃ j ∈ N such that Cj(s, x(t), t) = 1∀ t ≥ t∗.

The above definition says the following: for an atom A = (S,F,G,H,U , C),
assume that the N agents have dynamics given by f ∈ F and information flow
described using a graph inducing function s ∈ S. Suppose that the information
flow graph at some initial time t = t0 belongs to the set of initial graphs G,
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and that the controller U is used by the agents. If A is consistent, then it is
guaranteed that the system will evolve such that the information flow graph
enters and stays in the set of final graphs H within finite time. Furthermore,
membership of the current information flow graph in H can be locally detected,
as indicated by when Ci → 1, for some agent i ∈ N . A consistent atom requires
that at least one agent in the network realize within finite time when the
information flow graph has entered into and will stay in H.

Note that the definition of a consistent atom allows for the control law
U and termination condition C to be computed by an agent using informa-
tion from anyone else in the network, even if no edge exists between the two
agents in the information flow graph. To respect the limitations on inter-agent
information flow as described by the network topology, it is necessary to re-
strict each agent’s computations to use only locally available information in
the network. Note that such an approach follows closely with the definition
of a distributed algorithm from Lynch (1996). We therefore define a function
that describes an agent computation as being decentralized if it satisfies the
following conditions:

Definition 3 A function ζ : S×XN×R≥0 → BN is decentralized if ζi(s, x, t) 6=
ζi(s, y, t) implies that either xi 6= yi, or there exists a j ∈ N where (j, i) ∈ E
and xj 6= yj . Here, B is some nonempty set and the edge set E comes from
s(x) = (N , E, w). Moreover, the above must hold for all i ∈ N , s ∈ S, and
t ∈ R≥0, and x ∈ XN .

In the above definition, a function ζ is decentralized if for each agent i ∈ N ,
the evaluation of ζi is independent of the states of agents in the network whom
are not agent i’s neighbors. Therefore, if the evaluation of ζi changes, then ei-
ther agent i’s or one of its neighbors’ states has changed. With such a definition
in place, it is now possible to enforce that the computations described by a
consistent atom use only locally available information in the network. To do
so, both the controller U and termination condition C must be decentralized.

Definition 4 A decentralized consistent atom A = (S,F,G,H,U , C) is a con-
sistent atom where both U and C are decentralized.

Before proceeding onwards, we will solidify the concepts presented thus far
through an example of constructing a decentralized consistent atom for agents
to perform nearest-neighbor averaging. It should be noted that a rich litera-
ture exists on nearest-neighbor averaging controllers for multi-agent systems,
each with their own associated merits and demerits. The controller used in
this example was chosen merely to illustrate the process of encapsulating a
decentralized controller into a decentralized consistent atom.

Example 1 Suppose that in a team of N agents, the ith agent has state xi ∈
X = R2 that describes its planar position in Cartesian coordinates, for all
i ∈ N . Since we are interested in focusing on high-level coordination strategies,
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agents will be treated as point particles with single integrator dynamics fI :
R2N × R2N × R≥0 → R2N , where

ẋ = fI(x, u, t) = u. (1)

Furthermore, let
FI = {fI} (2)

be the set containing the agents’ single integrator dynamics.
Suppose that each agent is equipped with omnidirectional sensors (e.g.,

sonar, LIDAR, etc.) and can measure relative displacement vectors to other
agents within a radius δ > 0. We will use the notion of a ∆-disk proximity
graph to describe such a scenario. In particular, let s∆(δ) ∈ S be the graph
inducing function such that ∀x ∈ R2N , s∆(δ)(x) = (N , E(x), w(x)), with
(i, j) ∈ E(x) only when ||xi − xj || ≤ δ. The edge weight function w(x) will
be used to describe the sensed distance between two neighboring agents, so
that for each edge (i, j) ∈ E(x), w(x)((i, j)) = ||xi − xj ||. For the sake of
notational simplicity, the remainder of this paper will treat all information
flow graphs induced by s∆(δ) as if they were weighted undirected graphs,
since (i, j) ∈ E(x) ⇐⇒ (j, i) ∈ E(x) and w((i, j)) = w((j, i)). Let

S∆(δ) = {s∆(δ)} (3)

be the set containing s∆(δ), the ∆-disk proximity graph inducing function.
Using these choices for agent dynamics and graph inducing functions, we can
now begin constructing our example decentralized consistent atom for nearest-
neighbor averaging.

The goal of nearest-neighbor averaging is to have agents within the network
reach consensus with one another by converging to the same state. In our case,
because an agent’s state is its position, nearest-neighbor averaging will drive
the agents to meet at the same location. To do so, each agent calculates its
control using only sensed relative displacement vectors to its neighbors. For the
chosen graph inducing function and agent dynamics, Ji and Egerstedt (2007)
present the following decentralized controller for performing nearest-neighbor
averaging while maintaining network connectivity:

U i
avg(δ)(s∆(δ), x, t) = −

∑

j∈Nρ(i)

2δ − ||xi − xj ||

(δ − ||xi − xj ||)2
(xi − xj), (4)

for i ∈ N . Here, Nρ(i) =
{

j ∈ N such that ||xi − xj || < δ
}

refers to the index
set of agent i’s neighbors in the network which are located strictly less than
δ away. The controller Uavg is decentralized since each agent computes its
control signal using only relative displacement information between itself and
a subset of its neighbors in the network.

Ji and Egerstedt (2007) state that in a network where every pair of nodes
has a path that connects them (i.e., a connected graph) consisting of edges
with weights less than δ, then the nearest-neighbor averaging controller will
drive all agent states to the same value asymptotically. Consequently, the
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network topology will become and stay as KN , the complete graph with N
nodes (i.e., an edge exists between every pair of agents) in finite time. Thus,
the set of initial information flow graphs for the nearest-neighbor averaging
atom is given by Gavg, where

Gavg(δ) = {(N , E, w) | ∃e ⊆ E where (N , e) is connected

and w ((i, j)) < δ, ∀ (i, j) ∈ e} . (5)

To build a decentralized consistent atom, agents must be able to locally
detect when the current network topology is a complete graph. The triangle
inequality states, for a given choice of 0 < λ ≤ δ, that if two agents j and k are
both neighbors of agent i and are within distance λ

2 from it, then the distance
between agents j and k cannot exceed λ. Therefore, agents j and k must also
be neighbors of each other as well. Using this observation, we will create the
decentralized function Cavg(λ) for locally detecting when the network topology
is a complete graph, with edge weights all less than or equal to some value λ.
In particular, for a given choice of 0 < λ ≤ δ and for all i ∈ N , let

Ci
avg(λ)(s, x, t) =

{

1 , if N(i) = N − {i} and ||xi − xj || ≤ λ
2 ∀ j ∈ N(i)

0 , otherwise,
(6)

where N(i) =
{

j ∈ N such that ||xi − xj || ≤ δ
}

is the index set of agent i’s
neighbors. Finally, we describe the set of information flow graphs that agents
can locally detect using Cavg(λ) with the set Havg(λ), where

Havg(λ) = {(N , E, w) | (N , E) = KN and w((i, j)) ≤ λ ∀(i, j) ∈ E} . (7)

Note that KN above refers to the complete graph with N vertices.
Having specified all the components of the atom for nearest-neighbor av-

eraging, we will now group them together and verify that it is indeed a decen-
tralized consistent atom:

Lemma 1 The atom for agents to perform nearest-neighbor averaging:

Aavg(λ, δ) = (S∆(δ),FI ,Gavg(δ),Havg(λ),Uavg(δ), Cavg(λ)), (8)

where 0 < λ ≤ δ, is a decentralized consistent atom.

Proof Suppose a multi-agent system has dynamics fI and information flow
graph given by the graph inducing function s∆(δ). Having agents execute the
decentralized controller Uavg(δ), when the network has an information flow
graph in set Gavg(δ), will drive all agent states to the same value asymptoti-
cally. Consequently, the information flow graph will enter and stay in the set
Havg(λ) within finite time, i.e., all edge weights will not exceed λ. By con-
struction, Cavg(λ) is a decentralized function that allows for a single agent in
the network to detect when such a transition occurred. Therefore, Aavg(λ, δ)
is a decentralized consistent atom.
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3.3 Modes and Composability

This previous example showed how one can create a decentralized consistent
atom for a specific multi-agent maneuver. With similar methods, it is possible
to construct an extensive library of decentralized consistent atoms for various
multi-agent motions. One can then use that library to specify decentralized
control sequences for agents, while ensuring that the information flow graph
requirements for each controller of the sequence are satisfied during execution.
In particular, a sequence of decentralized consistent atoms can be scripted
such that the control law in each atom is guaranteed to terminate with an
information flow graph which the controller in the next atom expects when
initiating. Moreover, additional interrupt conditions, which we will refer to as
ξ, can be specified that determine when the agents synchronously switch from
one executing one controller to the next. A multi-agent system following a
control strategy scripted in GPS therefore acts as a hybrid system, where the
mode sequence is given by the controllers U contained in each of the atoms,
and the guard conditions are dependent on both C and ξ.

In such a hybrid system, a mode certainly cannot switch over to the next
until conditions for atom consistency are met (i.e., the information flow graph
has transitioned into the setH for that atom). However, the interrupt condition
that is specified for executing that atom should be respected as closely as
possible too. Therefore, the condition for terminating a controller should be a
logical AND of both the termination condition C and interrupt ξ as evaluated
by an agent in the network. We will refer to both the consistent atom and
interrupt condition associated with it collectively as a mode in GPS.

Definition 5 A mode is denoted by the tuple

M = (A, ξ),

where A is a consistent atom and ξ : S ×XN ×R≥0 → {0, 1}N . Furthermore,
a mode is a decentralized mode if A is a decentralized consistent atom and ξ
is a decentralized function.

Observe that by keeping the consistency conditions C encapsulated within
the atom, while letting the interrupt mapping ξ be specified separately in the
mode, we are promoting the reusability of consistent atoms. For example, the
same consistent atom A, that makes agents shrink a circle formation indefi-
nitely, can be used to define different modes by simply using different interrupt
mappings. One mode can be created which terminates when the circle has ra-
dius smaller than 1, while another can be created that terminates when the
radius is smaller than 0.01.

It is important to note that there is nothing which says that the inter-
rupt condition ξ cannot be blocking, e.g., if the conditions for setting off the
interrupt contradict those required for atom consistency. This design choice
was made to give the user the most flexibility when writing scripts for agents.
Such a choice follows the approach adopted by many mainstream computer
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programming languages (e.g., the ability to write infinite-loops and deadlock
scenarios in Java), as well as abstraction-based motion-programming languages
(e.g., blocking interrupt conditions in MDL and MDLe). Therefore, it is at the
discretion of the user to avoid such blocking scenarios whenever specifying
interrupts.

One of the appeals to GPS is that decentralized control sequences scripted
using atoms can be easily checked to see if requirements on the information flow
graph are respected for each controller during its execution. To perform such
a check, we introduce the concept of mode composability. We will refer to two
modes as being composable if no matter how the controller in the first mode
terminates, the resulting information flow graph is always what the controller
in the second mode expects when initiating. In particular, composability re-
quires that each member of the first mode’s set of final information flow graphs
H belong to the second mode’s set of initial information flow graphs G.

Definition 6 The mode M1 = (A1, ξ1) is composable with the mode M2 =
(A2, ξ2), where A1 = (S1,F1,G1,H1,U1, C1) and A2 = (S2,F2,G2,H2,U2, C2),
if H1 ⊆ G2. We will denote this property by M1 ≺ M2.

Note that mode composability does not necessarily commute. For example,
a mode that drives agents from a line formation to a circle formation may
compose with a mode that rotates the circle formation, but certainly not the
other way around.

3.4 Graph Process Specifications

To script a control strategy for agents using the GPS framework, two key pieces
of information are needed. The first is the mode sequence which describes the
controllers that agents will switch through executing consecutively, as well
as how that switching will occur. The second is a precise description of the
multi-agent system used to check if the mode sequence can indeed be executed
successfully. In this description, x0 gives the initial state information, s∗ is the
graph inducing function that gives the information flow graph of the system,
and f∗ describes the agent dynamics. These two pieces of information will be
grouped together into what we call a Graph Process Specification (GPS).

Definition 7 A Graph Process Specification (GPS) is a tuple given by

GPS = ((x0, s
∗, f∗), (M1, . . . ,Mm)),

where m ∈ N and Mk = (Ak, ξk), for k = 1, . . . ,m, are modes such that

1. x0 ∈ XN

2. s∗ ∈ S
3. f∗ ∈ {f ∈ F | f : XN × UN × R≥0 → (TX)N}.
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Three checks are required to verify if a control sequence scripted in a GPS
is executable by the multi-agent system which the script was written for. First,
it is necessary to first check if the atoms contained within each mode are valid
for the multi-agent system of interest. To do this, one must verify that the
multi-agent system’s graph inducing function s∗ and agent dynamics f∗ fall
into the sets S and F, respectively, for each mode’s atom. Next, the initial
condition of the agents have to be such that the induced information flow
graph of the system allows for agents can start executing the first mode’s
controller. Therefore, it is necessary to check that the information flow graph
s∗(x0) belongs to the set G of the first mode’s atom. Finally, after verifying
that the first mode can be initiated, we must ensure that each mode can
transition to the next while respecting the each mode’s requirements on the
information flow graph. Therefore, a final check must be performed to verify
that each mode composes with the next in the sequence. Moreover, if each
mode in the GPS is decentralized, then the multi-agent system can execute the
entire control sequence using only locally available information in the network,
with the exception of global broadcasts for simultaneous mode switches. These
requirements are described formally below:

Definition 8 A GPS ((x0, s
∗, f∗), (M1, . . . ,Mm)) is executable if

1. Mk ≺ Mk+1, for k = 1, . . . ,m− 1
2. s∗ ∈ Sk, for k = 1, . . . ,m
3. f∗ ∈ Fk, for k = 1, . . . ,m
4. s∗ (x0) ∈ G1,

where Ak = (Sk,Fk,Gk,Hk,Uk, Ck), for k = 1, . . . ,m. Furthermore, an ex-
ecutable GPS is locally executable if each mode Mk, for k = 1, . . . ,m, is a
decentralized mode.

3.5 Graph Process Specification Executions

To illustrate how agents will behave when following a control sequence scripted
by an executable GPS, we will formally describe its execution. We start by
defining a variant of the hybrid time sets used in Johansson et al (1999) to
describe the time intervals in which each mode of the GPS is being executed:

Definition 9 A hybrid time set is a sequence of intervals Q = {q1, . . . , qw},
for some w ∈ N, such that

1. qk = [zk, z
′
k], for k = 1, . . . , w − 1

2. qw = [zw, z
′
w] if z

′
w < ∞, and [zw,∞) otherwise

3. zk ≤ z′k, for k = 1, . . . , w
4. z′k = zk+1 for k = 1, . . . , w − 1.

Hybrid time sets are used to describe the execution of a GPS similar to how
Johansson et al (1999) uses them to describe the execution of a hybrid system:
as a set of requirements on the state trajectory. Therefore, a state trajectory
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is either accepted or rejected as an execution of the GPS. To be an execution
of a GPS, the state trajectory must begin at the initial condition specified in
the GPS. The state evolution in each mode must be driven by the controller
in that mode’s consistent atom, as applied to the agent dynamics. Lastly, each
mode terminates as soon as any agent detects that the information flow graph
has entered into the set of final graphs and that the interrupt conditions are
satisfied as well. Although the end of a mode is detected by a single agent, all
agents switch modes simultaneously.

Definition 10 Given an executable GPS, ((x0, s
∗, f∗), (M1, . . . ,Mm)), its

execution is a pair (Q, x), where Q = {q1, . . . , qm̃} is a hybrid time set with
m̃ ≤ m and z1 = 0. If m̃ < m, then z′m̃ = ∞, while if m̃ = m, then we allow for
z′m̃ ≤ ∞. Additionally, x(t) is a state trajectory defined on either t ∈ [0,∞) if
z′m̃ = ∞, or on t ∈ [0, z′m̃] if z′m̃ < ∞, such that

1. x(0) = x0

2. ẋ(t) = f∗(x(t),Uk(s
∗, x(t), t), t) when t ∈ qk, for k = 1, . . . , m̃.

3. For each k = 1, . . . , m̃− 1, ∃i ∈ N such that

Ci
k(s

∗, x(z′k), z
′
k) = 1 and ξik(s

∗, x(z′k), z
′
k) = 1.

If z′m̃ < ∞, then the above also holds for k = m̃.
4. For each k = 1, . . . , m̃, ∄ t ∈ qk − {z′k} such that

Ci
k(s

∗, x(t), t) = 1 and ξik(s
∗, x(t), t) = 1

for some i ∈ N .

This definition describes an execution of a GPS in the following way: the
state trajectory x(t) of the agents starts at the initial condition x0 at time
t = 0. Given that the GPS contains a sequence of m modes, qk corresponds
to the time that mode k is being executed, for k = 1, . . . , m̃, where m̃ ≤ m.
In the kth mode, as indicated by when t ∈ qk, the agent state dynamics f∗

uses the controller Uk, as supplied by Ak. The kth mode stops and switches
to the k + 1th mode in the sequence (or stops the execution of the GPS if
k = m) the instant t = z′k. This corresponds to the first time t ∈ qk when
both Ci

k → 1 and ξik → 1, for any agent i ∈ N . Finally, since the end of the
kth mode depends on a user defined interrupt mapping ξk, it is possible that
the interrupt never fires, causing the kth mode to continue executing forever.
Such a blocking scenario is why we allow for m̃ ≤ m. Figure 2 provides an
illustration showing how the execution of an executable GPS with three modes
is viewed as a hybrid system.

In this section, we have defined the tools which the GPS framework is
composed of, as well as the execution of an executable GPS. In the next
section, we will give a detailed example of how one can go about writing a
script for a decentralized control sequence in GPS that makes agents switch
between multiple formations.
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Ci
1
→ 1

for some i ∈ N

ẋ =
f ∗(x,U2, t)

and

ξi
1
→ 1

C
j
2 → 1

for some j ∈ N

and

ξ
j
2 → 1

ẋ =
f ∗(x,U1, t)

ẋ =
f ∗(x,U3, t)

Fig. 2 An illustration showing how the execution of an executable GPS with three modes
can be viewed as a hybrid system.

4 Graph Process Specification Examples

In this section, we provide an example of how GPS can be used to script a
decentralized control sequence for a multi-agent system that makes agents first
go into a line formation, and then switch into a circle formation. The process of
encapsulating the relevant multi-agent controllers into decentralized consistent
atoms will be illustrated in detail. Two scripts written as GPS’s will be created
using those atoms: the original which is not executable, and a revised one
which is made executable through a mode insertion. Note that this section
builds off of the nearest-neighbor averaging example in Example 1. Therefore,
all assumptions and definitions made previously will still hold true in this
section.

4.1 Connectedness-Preserving Formation Control Laws

We will use the connectedness-preserving formation control law from Ji and
Egerstedt (2007) throughout this example as a way to have agents move into
desired formations. It should be noted that many controllers exist in literature
for formation control in multi-agent systems, each with their own respective
merits and demerits. We use the formation control law from Ji and Egerstedt
(2007) here simply as an example to illustrate how one can encapsulate an
existing decentralized multi-agent controller into a decentralized consistent
atom.

Details of the controller will now be reviewed in the context of GPS. Let
the set of target points τ i ∈ R2, for all i ∈ N , describe the desired rela-
tive displacements between agents in a formation. The formation control law
uses only locally available information to drive the agents in such a way that
||(xi−xj)− (τ i−τ j)|| → 0, for all pairs of agents i, j ∈ N . In other words, the
control law makes an agent compare its actual displacements with its neigh-
bors to the displacements required to create the formation. It then makes the
agents move so as to make those two displacements equal one another, thereby
driving agents into a translation of the formation specified by the target points.
Therefore, the need for a global coordinate system is avoided.

Have τ = [(τ1)T . . . (τN )T ]T be the vector of concatenated target points.
The shorthand notation dij = τ i − τ j , for all i, j ∈ N , will be used to repre-
sent the displacement vector between any two agents i and j in the desired



16 Philip Twu et al.

formation. Furthermore, let lij(t) = xi(t)−xj(t), for all i, j ∈ N , be the actual
displacement vector between agents i and j at time t. The controller which
allows for agents to achieve formations while maintaining network connectivity
will now be presented.

Theorem 1 Suppose a multi-agent system has graph inducing function s∆(δ)
and dynamics fI . Let the information flow graph induced by the target points be
given by s∆(δ)(τ) = (N , Ed, wd), where (N , Ed) is connected and wd((i, j)) <
δ for all (i, j) ∈ Ed. Furthermore, have the graph induced by the agent states
at time t be s∆(δ)(x(t)) = (N , E(x(t)), w(x(t))). Ji and Egerstedt (2007) state
that if at some initial time t = t0:

1. Ed ⊆ E(x(t0)),
2. ||lij(t0)|| ≤ ǫ∗ for some specific ǫ∗ > 0 (see Ji and Egerstedt (2007) for

details), for all (i, j) ∈ Ed,

then having agents execute the control law Uform(Ed, τ, δ), such that

U i
form (Ed, τ, δ) (s∆(δ), x, t)

= −
∑

j∈NGd
(i)

2 (δ − ||dij ||)− ||lij(t)− dij ||

(δ − ||dij || − ||lij(t)− dij ||)
2 (dij − lij(t)) (9)

for all i ∈ N , where NGd
(i) = {j | (j, i) ∈ Ed}, will guarantee that Ed ⊆

E(x(t)) for all t ≥ t0. Furthermore, the agent states x(t) will converge asymp-
totically to the translationally-invariant formation defined by the target points
τ in the sense that ||lij(t)− dij || → 0, for all i, j ∈ N , as t → ∞.

To reiterate, if agents are initially close enough to one another and the
initial network topology is a supergraph of the graph induced by the target
points, then it will remain a supergraph while the controller Uform(Ed, τ, δ) is
executed. Furthermore, the controller will make agents move asymptotically
into the desired formation using only locally available information within the
network. Therefore, Uform(Ed, τ, δ) is a decentralized controller. It should be
noted that this controller drives agents to a desired formation assuming that
each agent has an a priori assignment (i.e., agent i knows it should go to
position i in the formation). Moreover, it requires agents to store informa-
tion about the target points τ so that each agent knows its required relative
displacement to other agents in the network.

Next, we will specialize this controller to make agents go into line and circle
formations, as well as encapsulate them within decentralized consistent atoms
to be used in the GPS framework.

4.2 Line-Formation Decentralized Consistent Atom

We start by constructing a decentralized consistent atom that drives N agents
into a line formation. Let τline, the vector of concatenated target points de-
scribing the desired formation, be given by

τ1line = [0 0]T and τ i+1
line = τ iline − [0.9δ 0]T , (10)
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for i = 1, . . . , N−1. The information flow graph resulting from applying s∆(δ)
to τline is the line graph Gline = (N , Eline, wline) where Eline = {(i, i+1) | i =
1, . . . , N − 1} and wline((i, j)) = 0.9δ, for all (i, j) ∈ Eline. To better visualize
the desired line formation, the location of the target points, along with the
corresponding network topology, are illustrated in Figure 3 for N = 6 and
δ = 1.

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1

0

1

123456

Fig. 3 The target points τline and the network topology (N , Eline) for the line formation,
with N = 6 and δ = 1.

To have agents successfully use the formation control law in Theorem 1, we
require that the information flow graph induced by the agent states initially
belong to

Gline(ǫ
∗
line) = {(N , E, w) |Eline ⊆ E and

w((i, j)) ≤ ǫ∗line for all (i, j) ∈ Eline} , (11)

where ǫ∗line is chosen appropriately. The desired line formation can then be
achieved by specializing the formation control law (9) to create a new control
law Uline(δ), where

U i
line(δ)(s, x, t) = U i

form (Eline, τline, δ) (s, x, t), (12)

for all i ∈ N .
Although ideally we would like for the agents to stop executing the con-

troller when they have perfectly achieved the line formation, the controller
cannot guarantee that it occurs in finite time. Furthermore, checking to see
whether the network topology has become a line graph is difficult for a single
agent to do in a decentralized manner. For the sake of this example, we instead
let the set of final graphs contain information flow graphs which can be easily
checked by a single agent, i.e., when agent 1’s only neighbor is agent 2. A timer
interrupt can then be used later on, when constructing modes from this atom,
to delay the controller’s termination and allow the agents to get arbitrarily
close to the desired formation. Thus, the set of final information flow graphs
for the controller is chosen to be

Hline(δ) = {(N , E, w) |Eline ⊆ E,w((i, j)) < δ for all (i, j) ∈ Eline,

and (1, j) /∈ E, ∀ j 6= 2} , (13)

In the set of final graphs above, the requirements on the edge weights are
guaranteed to be met by the connectedness-preserving nature of the controller.
For simplicity, we will let agent 1 be the only one that can detect the transition
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of the information flow graph into the set Hline(δ). To do so, agent 1 will be
using the decentralized function Cline, where

C1
line(s, x, t) =

{

1 , if N(1) = {2}
0 , otherwise,

(14)

with N(1) being the index set of agent 1’s neighbors in the induced graph.
Furthermore, since only agent 1 will be checking for the termination of the
controller in this example, we let

Ci
line(s, x, t) = 0, for i = 2, . . . , N. (15)

With all the components in place, we are ready to construct the decentralized
consistent atom for driving agents into a line formation.

Lemma 2 The atom for driving agents into a line formation:

Aline(ǫ
∗
line, δ) = (S∆(δ),FI ,Gline(ǫ

∗
line),Hline(δ),Uline(δ), Cline), (16)

where ǫ∗line is chosen to satisfy Theorem 1, is a decentralized consistent atom.

Proof To verify the consistency of the atom, we assume the information flow
graph is initially in Gline(ǫ

∗
line). Since Uline(δ) is the formation control law from

Theorem 1, it will asymptotically drive the agents to the formation specified
by τline. Upon getting close enough to the desired formation, the information
flow graph s∆(δ)(x(t)) becomes and stays as Gline, and therefore transitions
into the set Hline(δ) in finite time. By construction, Cline allows for agent 1 to
locally check if the transition has occurred.

4.3 Circle-Formation Decentralized Consistent Atom

Next, we will construct a decentralized consistent atom that makes N agents
go into a circle formation using a design similar to that used for Aline(ǫ

∗
line, δ).

Let the target points τ icirc ∈ R2, for i = 1, . . . , N , which describe the desired
formation, be given by

τ1circ = [0 0]
T

(17)

and

τ i+1
circ = τ icirc +Rot

(

2π

N

)i

[0.9δ 0]
T
, (18)

for i = 1, . . . , N − 1, where Rot(·) designates the counterclockwise rotation
matrix

Rot(θ) =

[

cos (θ) −sin (θ)
sin (θ) cos (θ)

]

. (19)

Furthermore, have τcirc = [(τ1circ)
T . . . (τNcirc)

T ]T be the concatenated target
points.

The information flow graph resulting from applying s∆(δ) to τcirc is the
cycle graph Gcirc = (N , Ecirc, wcirc) where Ecirc = {(N, 1)} ∪ {(i, i + 1) | i =
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Fig. 4 The target points τcircle and the network topology (N , Ecircle) for the circle for-
mation, with N = 6 and δ = 1.

1, . . . , N − 1} and wcirc((i, j)) = 0.9δ, for all (i, j) ∈ Ecirc. To better visualize
the desired circle formation, Figure 4 shows the locations of the target points
in τcirc, along with the corresponding network topology, for N = 6 and δ = 1.

Just like with the line formation case, we assume that the information flow
graph is initially in

Gcirc(ǫ
∗
circ) = {(N , E, w) |Ecirc ⊆ E and

w((i, j)) ≤ ǫ∗circ for all (i, j) ∈ Ecirc} . (20)

We specialize the control law (9) to achieve the desired circle formation by
defining the controller Ucirc(δ), where

U i
circ(δ)(s, x, t) = U i

form (Ecirc, τcirc, δ) (s, x, t). (21)

For the same reasons as when designing Aline(ǫ
∗
line, δ), we only require that

the set of final graphs be:

Hcirc(δ) = {(N , E, w) |Ecirc ⊆ E,w((i, j)) < δ for all (i, j) ∈ Ecirc,

and N(1) = {2, 6}} , (22)

and use the decentralized function Ccirc to have agent 1 detect when the in-
duced graph has entered Hcirc(δ) using locally available information, where

C1
circ(s, x, t) =

{

1 , if N(1) = {2, 6}
0 , otherwise,

(23)

and
Ci
circ(s, x, t) = 0, for i = 2, . . . , N. (24)

Combining all the components that have been defined thus far creates the
decentralized consistent atom which drives agents into a circle formation.

Lemma 3 The atom for driving agents to a circle formation:

Acirc(ǫ
∗
circ, δ) = (S∆(δ),FI ,Gcirc(ǫ

∗
circ),Hcirc(δ),Ucirc(δ), Ccirc), (25)

where ǫ∗circ is chosen to satisfy Theorem 1, is a decentralized consistent atom.

Proof The proof is identical to that for Aline(ǫ
∗
line, δ) in Lemma 2.
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4.4 Locally Executable GPS Example

Thus far in the paper, a total of three decentralized consistent atoms have been
constructed: nearest-neighbor averaging (Lemma 1), line formation (Lemma
2), and circle formation (Lemma 3). Together, these three atoms make a simple
atom library which we can use in this example for scripting decentralized
control sequences for agents. Consider now, the task of designing a control
sequence which will make agents first go into a line formation, and then switch
into a circle formation. We will show how to use the atoms already existing in
our simple atom library to design a decentralized control strategy to achieve
this.

First, we start by examining the multi-agent system which the script will
be written for. In particular, the multi-agent system will consist of N = 6
agents, with single-integrator dynamics fI , and initial positions x0 ∈ R12,
given by x0 =

[

(x1
0)

T . . . (x6
0)

T
]

, where

x1
0 = [0 0]T , x2

0 = [0.25 0.25]T , x3
0 = [0.25 0.55]T ,

x4
0 = [0 0.37]T , x5

0 = [−0.37 0.37]T , x6
0 = [−0.25 0.75]T .

Suppose that each agent can sense neighboring agents which are located within
a radius of δ = 1. The information flow graph of the network is therefore
described by the function s∆(1), and the induced graph of the agents’ initial
states forms a complete graph where all edge weights are less than 0.8.

Now that we know the system which we will be designing a control sequence
for, the next step is to specify a sequence of atoms for the agents. Note that
the overall mission for the agents can be broken down into two subtasks: form
a line, and then form a circle. Our first attempt at constructing an atom
sequence is to use the naive approach of using one atom to accomplish each
of the subtasks, and simply executing the two back to back. Letting ǫ∗line and
ǫ∗circ from Lemmas 2 and 3 equal 0.8, we get that s∆(1)(x0) ∈ Gline(0.8) and
s∆(1)(x0) ∈ Gcirc(0.8). The first proposed atom sequence is therefore given
by Aline(0.8, 1), followed immediately by Acirc(0.8, 1).

To place the two atoms into modes, it is necessary to define interrupts ξline
and ξcirc for the line and circle atoms respectively. Recall that the final graph
sets Hline(δ) and Hcirc(δ) allow for their associated controllers to terminate
execution before the agents have perfectly formed the desired formation. Such
a design choice was made because of the asymptotic nature of the control laws,
in which the agents will only continuously get closer to the desired formation
but never perfectly achieve it. To provide the agents with an adequate amount
of time to form each formation in a visually appealing way, we will define
the interrupts such that ξiline → 1 and ξicirc → 1, for all i ∈ N and for all
time, after 3 seconds have elapsed since they were first evaluated. Combining
these interrupts with the decentralized consistent atoms yields the following
decentralized modes:

Mline = (Aline(0.8, 1), ξline) and Mcirc = (Acirc(0.8, 1), ξcirc). (26)
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Combining the mode sequence with a description of the multi-agent system
that is expected to execute the controllers yields GPS1.

GPS1 = ((x0, s∆(1), fI), (Mline,Mcirc)) (27)

Checking GPS1 reveals that it is not executable because the mode Mline does
not compose with Mcirc. This is because any graph in Hline(1) has agent 2
being the only neighbor of agent 1, whereas all graphs in Gcirc(0.8) require
that agents 1 and 6 be neighbors as well. Furthermore, some graphs belonging
to Hline(1) have edge weights which are too large to belong in Gcirc(0.8).

To fix these problems, we will consider inserting a mode between Mline

and Mcirc that adds additional edges to the information flow graph and de-
crease all the edge weights. Fortunately, the decentralized consistent atom for
nearest-neighbor averaging from Example 1 does exactly what is needed in
this situation. Using Aavg(λ, δ), we can define the decentralized mode

Mavg = (Aavg(0.8, 1), ξavg), (28)

where ξiavg → 1 always, for all i ∈ N . A new script can then be written where
the mode Mavg is inserted in between the two existing modes Mline and
Mcirc. Therefore, the script makes agents first go into a line formation, then
perform nearest-neighbor averaging, and finally go into a circle formation. The
new mode sequence, along with a description of the multi-agent system, are
combined to form GPS2 which is shown below to be locally executable.

Lemma 4 The graph process specification

GPS2 = ((x0, s∆(1), fI), (Mline,Mavg,Mcirc)) (29)

is locally executable.

Proof First, note that s∆(1) and fI belong to the respective graph inducing
function and agent dynamics sets in the decentralized consistent atoms of all
three modes. Since s∆(1)(x0) gives a complete graph where all edge weights
are less than 0.8, s∆(1)(x0) ∈ Gline(0.8). Noticing that each graph in Hline(1)
has a line graph as a subgraph, with edge weights strictly less than 1, we
see that Hline(1) ⊆ Gavg(1). Lastly, because Havg(0.8) only contains complete
graphs with edge weights less than or equal to 0.8, each graph contains the
required cycle subgraph to belong to Gcirc(0.8) and so Havg(0.8) ⊆ Gcirc(0.8).
These checks show that GPS2 is executable. Furthermore, since each of the
modes in GPS2 are decentralized modes, it is also locally executable.

A simulation of agents executing the decentralized controller sequence
scripted in the locally executable GPS2 is shown in Figure 5, for N = 6
and δ = 1.

The strategy of inserting a mode containing the atom Aavg(λ, δ) into
GPS1’s mode sequence to form the executable GPS2 turns out to be a useful
strategy which applies to many scenarios. Therefore, Aavg(λ, δ) can be thought
of as a “universal glue” for certain pairs of modes which are not composable.
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Fig. 5 Simulation of agents executing the decentralized controller sequence scripted using
the locally executable GPS2, as given in (29), for N = 6 and δ = 1. The location of the
agents are marked by O’s and the lines indicate edges in the induced graph.

In particular, the final set of graphs in the first mode must be a subset of
Gavg(δ). Such a requirement is very reasonable since all that is required is
that the first mode terminates with an information flow graph that remains
connected even in the presence of small perturbations to inter-agent displace-
ments. Since Aavg(λ, δ) adds edges to the information flow graph and decreases
the edge weights, the set of initial graphs in the second mode must include all
graphs after a certain number of edges have been added and all edge weights
have fallen below some threshold. Such a property is described in the definition
below.

Definition 11 Suppose there exists a nonempty set of information flow graphs
G ⊆ G, whose members all have vector-weight functions w that return scalar
values. G is inclusive if (N , E, w) ∈ G implies that (N , Ê, ŵ) ∈ G as well,
where E ⊆ Ê and ŵ((i, j)) ≤ w((i, j)) for all (i, j) ∈ E.

Using the definition of inclusive sets of information graphs, we can then
precisely specify types of modes which are not composable but can be fixed
by inserting in a mode containing the atom Aavg(λ, δ).

Theorem 2 Let the two modes M1 and M2, where Mi = (Ai, ξi) and Ai =
(Si,Fi,Gi,Hi,Ui, Ci), for i = 1, 2, be such that H1 ⊆ Gavg(δ) and G2 is inclu-
sive. Then there exists a λ∗ > 0 where if M = (Aavg(λ

∗, δ), ξ), and ξ is any
arbitrary interrupt mapping, then M1 ≺ M and M ≺ M2.
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Proof M1 ≺ M follows from the assumption that H1 ⊆ Gavg(δ). Since G2 is
inclusive, it must contain all information flow graphs which are complete and
have edge weights that are less than or equal to some threshold λ∗. Therefore,
Havg(λ

∗) ⊆ G2 and so M ≺ M2.

To summarize the example presented in this section, we started out with a
mission consisting of two subtasks: having agents first go into a line formation,
and then switch to a circle formation. The formation control law from Ji and
Egerstedt (2007) was used to create decentralized consistent atoms containing
controllers that drive agents into each of the formations separately. Using the
GPS framework, a script written using the naive approach of executing the
controllers for achieving the two formations back to back was shown to not be
executable. This was because the information flow graph of the system upon
terminating the line formation controller did not allow for the circle formation
controller to immediately start executing afterwards. However, the missing
transition in the system’s information flow graph could be supplied by inserting
a mode for nearest-neighbor averaging between the two existing modes. The
resulting GPS was checked to be locally executable and a simulation was shown
of agents executing the scripted decentralized control sequence to accomplish
the original mission.

5 Example of Generating Decentralized Consistent Atoms

To use GPS effectively in scripting control sequences for multi-agent systems,
it is necessary to have a library of decentralized consistent atoms available
to construct mode sequences from. While the previous section demonstrated
how to use such an atom library, little has been said on how such a library
can be constructed in the first place. As can be seen in the examples thus
far, many challenges may arise when attempting to construct a decentralized
consistent atom. First is the difficulty associated with decentralized controller
design itself. Second is in interpreting the assumptions made when designing
the controller from a network topological perspective, as well as understanding
how the information flow graph is effected during the controller’s execution.
Finally, the third challenge lies in designing termination conditions that allow
agents to detect when a transition in the network’s information flow graph has
occurred, while using only locally available information.

In this section, we will present an example that illustrates the concept
of generating decentralized controllers from centralized specifications, thereby
focusing on the first of the three challenges that were highlighted. In particular,
we will present the optimal decentralization algorithm from Twu and Egerstedt
(2010) as a way to generate decentralized controllers for agents to track desired
multi-agent motions which have been defined on the agent trajectory level.
Then, we connect those results with the GPS framework by showing how
the generated controllers can be encapsulated into decentralized consistent
atoms for populating an atom library with. Note that the main focus of this
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section lies in how the products of decentralized control design methods can be
encapsulated into decentralized consistent atoms for use in GPS. Therefore, we
will restrict our attention to multi-agent systems where the network topology
is static, and switching conditions for controllers are timer-based (as opposed
to state-dependent).

It should be noted that a general theory on generating decentralized con-
trol laws for agents in a setting with dynamic network topologies is still an
unsolved problem. Moreover, how to design algorithms which allow for agents
to determine the overall network topology by using only local-available con-
ditions (i.e., state dependency rather than timer-based conditions) is an open
research question as well. Although allowing for multi-hop inter-agent commu-
nication may help get around this issue, the focus of this section is mainly on
decentralized controller design. Therefore, introducing any new agent capabil-
ities at this point will only complicate matters and draw focus away from the
intended theoretical contribution of this section.

5.1 Optimal Decentralization

The optimal decentralization algorithm generates a decentralized control strat-
egy for agents to track a desired multi-agent motion that has been defined on
the agent trajectory level. In particular, the algorithm generates a sequence of
decentralized controllers, as well as switching times for transitioning through
the sequence. Therefore, the output of the algorithm can be used to generate
both a sequence of atoms, as well as locally-checkable timing requirements that
describe when each controller should terminate execution. To do so, it bridges
both the top-down and bottom-up approaches to decentralized controller de-
sign that was described in Section 2. A global performance metric is coupled
with parameterized constraints describing what a decentralized controller is
for the system, and an optimization problem is solved to find the parameters
which allows agents to track the desired motion the best.

Similar to the examples from the previous section, we assume that the
multi-agent system of interest has N agents. The state xi ∈ X = R2 describes
the position of the ith agent using Cartesian coordinates, for all i ∈ N , and
each agent has single integrator dynamics fI . Once again, we assume that each
agent can sense the relative displacement vector to each of its neighbors in the
network. However, we will restrict our attention in this algorithm to systems
where the inter-agent information flow is given by a static network topology.
Such a setup could, for example, describe a situation in which the sensing
radius of each agent is much larger than the area in which their movement is
confined to. In such a scenario, each agent only chooses to keep track of a select
few other agents in the network for complexity and scalability reasons. The
information flow graph used in this system will be given by the graph inducing
function sσ(x) = (N , Eσ, wσ(x)), where Eσ is fixed and wσ(x)((i, j)) = xi−xj

gives the relative displacement between neighboring agents, for all (i, j) ∈ Eσ.
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Given some mission defined on the agent trajectory level which starts at
t = 0 and ends at t = T , we wish to generate an executable sequence of
m decentralized controllers that tracks the given trajectory. The multi-agent
system will transition through the controller sequence using global clock-based
switching, where the kth mode occurs during the time interval [τk−1, τk), for
k = 1, . . . ,m, and where the global switching times must satisfy the constraint

0 = τ0 ≤ τ1 ≤ . . . ≤ τm−1 ≤ τm = T. (30)

In each mode, agents compute their control as a linear combination of scaled
and rotated displacement vectors between itself and each of its neighbors. The
dynamics for the ith agent operating in the kth mode are therefore

ẋi = −
∑

j∈N(i)

rijk Rot (θijk)
(

xi − xj
)

, ∀t ∈ [τk−1, τk) , (31)

with rijk ∈ R and θijk ∈ [0, 2π) parameterizing the scaling and rotation,
respectively, of the displacement vector between agents i and j. Notice that
(31) gives a general form for a class of decentralized controllers. By optimally
selecting the mode parameters rijk and θijk , as well as the global switching
times τk, a decentralized controller sequence can be generated to minimize the
tracking error with the given target trajectory.

When performing optimizations on the parameters rijk and θijk, it is help-
ful to use the following change of variables:

aijk = rijk cos (θijk) (32)

bijk = rijk sin (θijk) , (33)

and optimize over aijk and bijk instead. This helps to avoid any issues associ-
ated with the cyclic nature of θijk. Therefore, by letting

Mijk =

[

aijk −bijk
bijk aijk

]

, (34)

the agent dynamics in (31) can be rewritten as

ẋi = −
∑

j∈N(i)

Mijk

(

xi − xj
)

, ∀t ∈ [τk−1, τk) , . (35)

Moreover, to make optimizing over all agents’ parameters easier, the entire
multi-agent system’s dynamics can be collected together in matrix form. First,
the parameters aijk and bijk can be grouped together, for each mode k, into
vectors

ak = [. . . , aijk, . . .]
T

and bk = [. . . , bijk, . . .]
T
. (36)

Define the (2N × 2N) adjacency matrix Ak(ak, bk) associated with the kth
mode, in terms of (2× 2) blocks, by

Aijk(ak, bk) =

{

Mijk , if (j, i) ∈ Eσ

0 , otherwise.
(37)
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Next, let the (2N × 2N) degree matrix Dk(ak, bk) associated with the kth
mode also be defined in terms of (2× 2) blocks by

Dijk(ak, bk) =















∑

z|(z,i)∈Eσ

Mizk , if i = j

0 , otherwise.

(38)

Finally, define the weighted Laplacian matrix Lk(ak, bk) associated with the
kth mode as

Lk(ak, bk) = Dk(ak, bk)−Ak(ak, bk). (39)

The evolution of x, the concatenated states of all N agents in the multi-agent
system, can now be described by the dynamics

ẋ = −Lk(ak, bk)x, ∀t ∈ [τk−1, τk), (40)

for each mode k = 1, . . . ,m.
Assuming that the agents have initial state x(0) = x0, the task of generat-

ing a sequence of m decentralized controllers to track some target trajectory
xd : [0, T ] → R2N can be treated as an optimal control problem. In this case,
the objective is to optimally choose the parameters ak and bk for each mode
k = 1, . . . ,m, as well as the global switching times τ1, . . . , τm−1, so as to
minimize the cost functional

J =
1

2

∫ T

0

||x (t)− xd (t) ||
2 dt (41)

for a system with dynamics (40). Extra care must be taken to ensure that the
global switching times satisfy the constraints in (30).

5.2 Optimization of Parameterized Modes

To optimize ak and bk in each mode k = 1, . . . ,m, so as to minimize J , we will
first derive costate dynamics and optimality conditions for a general switched
autonomous system with parameterized modes. Those results will then be
specialized for our multi-agent system of interest in (40).

Consider a system that evolves as a switched autonomous system starting
at time t = 0, and ending at time t = T , with m modes and m− 1 switching
times. Each of the modes’ dynamics are given by the function f but are param-
eterized by different scalar parameters γk, for each mode k = 1, . . . ,m. The
switching times are τ1, . . . , τm−1 satisfying (30), with the kth mode occurring
in the time interval [τk−1, τk). Letting

Γ = [γ1, . . . , γm]
T

(42)

be the vector containing the parameters for each mode, the dynamics of the
system are given by

ẋ = F (x, Γ, t) (43)
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with
F (x, Γ, t) = f (x, γk) ∀t ∈ [τk−1, τk). (44)

The objective is to choose Γ so as to minimize the generalized cost functional

J =

∫ T

0

H (x (t)) dt. (45)

Theorem 3 The optimality condition for each γk in (44) with respect to cost
(45) is

∂J

∂γk
=

∫ τk

τk−1

pT (τ)
∂f

∂γk
(τ, γk) dτ = 0, (46)

where p is the costate with dynamics

ṗ = −

(

∂F

∂x

)T

p−

(

∂H

∂x

)T

(47)

and boundary condition
p (T ) = 0. (48)

Proof Perturbing the parameter γk that defines the kth mode, the dynamics
of the perturbed system are

ẋ+∆ẋ =































...
f (x, γk−1) , t ∈ [τk−2, τk−1)

f (x+∆x, γk +∆γk) , t ∈ [τk−1, τk)
f (x+∆x, γk+1) , t ∈ [τk, τk+1)

...

with x (0) +∆x (0) = x (0) = x0. The dynamics of the deviation ∆x are given
by a first-order approximation as

∆ẋ =



















0, t ∈ [0, τk−1)
∂f
∂x

∆x+ ∂f
∂γk

∆γk, t ∈ [τk−1, τk)
∂f
∂x

∆x, t ∈ [τk, τk+1)
...

where ∆x (0) = ∆x (τk−1) = 0. Letting Φ (·) be the state transition matrix for
the ∆x linear system, the dynamics can be rewritten as

∆x =











0, t ∈ [0, τk−1)
∫ t

τk−1

Φ (t, τ) ∂f
∂γk

(τ)∆γk dτ, t ∈ [τk−1, τk)

Φ (t, τk)
∫ τk
τk−1

Φ (τk, τ)
∂f
∂γk

(τ)∆γk dτ, t ∈ [τk, T ].

To derive the optimality conditions, it is necessary to calculate

J (γk +∆γk)− J (γk) =
∂J

∂γk
∆γk = ∆Jγk

, (49)
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where

∆Jγk
=

∫ T

0

(H (x+∆x)−H (x)) dt ≈

∫ T

0

∂H

∂x
∆xdt

simplifies to

∆Jγk
=

∫ τk

τk−1

(

∫ T

τ

∂H

∂x
(t)Φ (t, τ) dt.

)

∂f

∂γk
(τ) dτ∆γk.

Defining the costate as

pT (τ) =

∫ T

τ

∂H

∂x
(t)Φ (t, τ) dt, (50)

the expression for ∆Jγk
can be rewritten as

∆Jγk
=

∫ τk

τk−1

pT (τ)
∂f

∂γk
(τ) dτ∆γk.

Seeing that the previous equation matches the form in (49), we finally arrive
at the optimality condition for γk, given by

∂J

∂γk
=

∫ τk

τk−1

pT (τ)
∂f

∂γk
(τ, γk) dτ. (51)

Now, it is necessary to derive an expression for the dynamics and boundary
conditions of the costate. Taking the time-derivative of the costate defined in
(50) results in

ṗT (τ) =
∂

∂τ

(

−

∫ τ

T

∂H

∂x
(t)Φ (t, τ) dt

)

.

Applying the chain rule and substituting in the state transition matrix prop-
erty ∂

∂τ
Φ (t, τ) = −Φ (t, τ) ∂F

∂x
(τ), we get

ṗT (τ) = −
∂H

∂x
(τ)−

∫ T

τ

∂H

∂x
(t)Φ (t, τ)

∂F

∂x
(τ) dt.

Moving terms out of the integral gives

ṗT (τ) = −

(

∫ T

τ

∂H

∂x
(t)Φ (t, τ) dt

)

∂F

∂x
(τ)−

∂H

∂x
(τ) ,

where by reapplying the definition of the costate in (50), we see that the costate
evolves as

ṗ = −

(

∂F

∂x

)T

p−

(

∂H

∂x

)T

. (52)

The boundary condition for the costate is found by letting τ = T in (50),
which yields

p (T ) = 0. (53)
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To apply these results to the problem of optimal decentralization, the op-
timality conditions and costate dynamics need to be specialized for the multi-
agent system (40) and cost (41).

Corollary 1 Optimality conditions for parameters ak and bk in the multi-
agent system (40), with respect to cost (41), are given by

∂J

∂ak
=

∫ τk

τk−1

pT (τ)
∂f

∂ak
(τ, ak) dτ = 0 (54)

∂J

∂bk
=

∫ τk

τk−1

pT (τ)
∂f

∂bk
(τ, bk) dτ = 0, (55)

where the ∂f
∂ak

and ∂f
∂bk

matrices can be populated using (2× 1) blocks based on

∂fi
∂aijk

= −
(

xi − xj
)

(56)

∂fi
∂bijk

= −

[

0 −1
1 0

]

(

xi − xj
)

, (57)

and fi is the (2× 1) block of f corresponding to the dynamics of agent i.

Proof The expressions (54) and (55) are the same as (46) with ak and bk
substituted in for γk. It is unclear whether or not there exists elegant matrix
equations to express ∂f

∂ak
and ∂f

∂bk
. However, some insight can be gained by

looking at the individual agents’ dynamics (35) with aijk and bijk substituted
in for Mijk:

ẋi = −
∑

j∈N(i)

[

aijk −bijk
bijk aijk

]

(

xi − xj
)

. (58)

From the above expression, we see that aijk and bijk do not appear anywhere
else except in agent i’s dynamics. Therefore, it can be differentiated by aijk and

bijk to obtain the expressions for ∂fi
∂aijk

and ∂fi
∂bijk

in (56) and (57), respectively.

Those results can then be put composed together to obtain ∂f
∂ak

and ∂f
∂bk

.

Finally, the multi-agent system’s dynamics (40) and cost functional (41)
need to be substituted into the costate dynamics (47).

Corollary 2 Costate dynamics for calculating the optimality conditions of ak
and bk in (54) and (55) are

ṗ (t) = LT
k (ak, bk)p (t)− x (t) + xd (t) ∀t ∈ [τk−1, τk). (59)
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5.3 Switch Time Optimization

Optimality conditions for switching times in a switched autonomous system
were derived in Egerstedt et al (2006). They are restated here, for the sake of
easy reference:

Theorem 4 The optimality condition with respect to cost functional (45) for
switching times in a switched autonomous system, where mode k has dynamics
f parameterized by γk, is

∂J

∂τk
= pT (τk) (f (x (τk) , γk)− f (x (τk) , γk+1)) = 0. (60)

The costate dynamics are the same as (47), with associated boundary condi-
tions (48).

Corollary 3 The switch time optimality conditions specialized for the multi-
agent system (40), with respect to cost (41), are given by

∂J

∂τk
= pT (τk) (Lk+1(ak+1, bk+1)− Lk(ak, bk))x (τk) , (61)

with costate dynamics (59) and boundary condition (48).

5.4 Generating a Locally Executable GPS

The mode parameters ak and bk, as well as the global switching times τk, can
be numerically optimized with respect to the cost J in (41) using the derived
costate dynamics and optimality conditions. One such optimization technique,
which is used in the example at the end of this section, is the steepest descent
with Armijo step size algorithm. However, as stated in Egerstedt et al (2006),
additional care must be taken whenever global switching times are being op-
timized to ensure that they satisfy the constraint (30).

From this point onwards, we assume that given some desired agent trajec-
tory, a numerical optimization algorithm was used to find the mode parameters
a∗k and b∗k, and global switch times τ∗k , that yielded a tolerable final cost J .
These optimized values help define a set of decentralized controllers for our
multi-agent system to track the desired motion with. We will now show how to
encapsulate each of the generated decentralized controllers into decentralized
consistent atoms. GPS will be used to script a mode sequence for the multi-
agent system that goes through the controllers sequentially, and switches based
on timer-based conditions. It will be shown later that a GPS control sequence
scripted using this method is always locally executable.

Define the set containing the graph inducing function sσ as

Sσ = {sσ} . (62)
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Moreover, let the decentralized multi-agent controller corresponding to the kth
mode be given by U∗

k (s, x, t), where

U∗i
k (s, x, t) =







−
∑

j∈N(i)

r∗ijk Rot
(

θ∗ijk
) (

xi − xj
)

, for t < T0 +
(

τ∗k − τ∗k−1

)

0 , otherwise,
(63)

is simply the decentralized controller from (31) but using the optimal param-
eters r∗ijk and θ∗ijk, as obtained from a∗k and b∗k. In the above expression, T0

corresponds to the time at which that particular controller is first executed by
agents in the system. The reason for limiting the duration of each controller
is because they are time-invariant, and that agents have single integrator dy-
namics. Therefore, arbitrarily long “breaks” can be taken in between executing
the controllers for each mode, as long as the duration that each controller is
executed matches what is specified by the optimized global switching times.
Note that this controller assumes that agents have access to an accurate clock.
Such an assumption was also used in the examples in Section 4, where agents
used timer interrupts for switching between line and circle formation atoms.

To ensure that the controller in mode k executes through its entire required
duration, we define the function C∗

k(s, x, t) for agents to locally check when a
controller’s execution can be terminated as a timer interrupt, where

C∗i
k (s, x, t) =

{

1 , if t ≥ T0 +
(

τ∗k − τ∗k−1

)

0 , otherwise.
(64)

Finally, we define the set of initial graphs G∗
k and final graphs H∗

k. These
sets will contain the information flow graphs corresponding to the optimized
state trajectory at the switching times before and after the execution of each
controller. Let x∗ : [0, T ] → R2N be the state trajectory resulting from using
the optimized mode parameters a∗k and b∗k, as well as the optimized global
switching times τ∗k , on the multi-agent system dynamics (40). The set of initial
and final graphs are then given by

G∗
k =

{

sσ(x
∗(τ∗k−1))

}

and H∗
k = {sσ(x

∗(τ∗k ))} . (65)

Putting all the components together, a decentralized consistent atom can
be constructed to encapsulate the optimized decentralized controller for each
mode k = 1, . . . ,m.

Lemma 5 The atom for the kth decentralized controller resulting from optimal
decentralization:

A∗
k = (Sσ,FI ,G

∗
k,H

∗
k,U

∗
k , C

∗
k), (66)

for k = 1, . . . ,m, is a decentralized consistent atom.

Proof The set G∗
k contains only the information flow graph resulting from

applying the graph inducing function sσ to the agent state vector x∗(τ∗k−1) +

α, where α ∈ R2N is any arbitrary vector. This is because sσ(x
∗(τ∗k−1) +

α) = sσ(x
∗(τ∗k−1)) ∈ G∗

k. Since U∗
k uses only relative displacement vectors,
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we know that the agent state vector resulting from executing the control law
with dynamics fI for at least τ∗k − τ∗k−1 time units will be x∗(τ∗k ) + α (since
the control is designed to be zero after τ∗k − τ∗k−1 seconds have elapsed). The
function C∗

k allows for each agent to individually determine when the controller
has executed for long enough by using a timer interrupt. The information flow
graph of the final state is then given by sσ(x

∗(τ∗k ) + α) = sσ(x
∗(τ∗k )) ∈ H∗

k.

To script a control sequence using the decentralized consistent atoms, they
must first be placed into decentralized modes. For the sake of analysis, we
will let the interrupt function ξ∗k for mode k be such that ξ∗k → 1 always.
However, recall that the interrupt functions ξ∗k can be defined arbitrarily in
implementation since they do not affect the composability of modes. The kth
mode in the sequence is therefore given by

M∗
k = (A∗

k, ξ
∗
k) , (67)

for k = 1, . . . ,m. With all m modes defined, a locally executable GPS can
be constructed that contains a description of our multi-agent system, as well
as a mode sequence for the agents to execute that makes them sequentially
transition through the generated decentralized controllers.

Theorem 5 The graph process specification resulting from performing optimal
decentralization:

GPS∗ = ((x0, sσ, fI), (M
∗
1, . . . ,M

∗
m)), (68)

is locally executable.

Proof The graph inducing function sσ and dynamics fI are members of their
associated sets in each mode’s decentralized consistent atom. Using the graph
inducing function on the initial condition gives sσ(x0) ∈ G∗

1. Furthermore,
since H∗

k = G∗
k+1, we get that M∗

k ≺ M∗
k+1, for k = 1, . . . ,m− 1.

Therefore, what has been shown is that decentralized controller sequences
generated from optimal decentralization can always be encapsulated into de-
centralized consistent atoms. Those atoms can then be used to script a locally
executable GPS for agents to track desired multi-agent motions with. We will
now showcase the performance of decentralized control strategies scripted us-
ing this method through a simulation of agents tracking a drumline-inspired
multi-agent dance.

Example 2 A MATLAB simulation was performed in which a system of N =
21 agents were tasked to track the drumline-inspired multi-agent dance con-
sisting of agent trajectories shown in Figure 1. Drumline formations are tra-
ditionally designed by choreographers to be executed in a centralized manner.
The position and path taken by band members at each moment in time have
been predetermined to a high level of detail. As a result, band members spend
a lot of time practicing to follow these predetermined paths. However, such an
approach requires each band member to memorize paths taken throughout the
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entire dance sequence and have global sensing capabilities to know if they’re
in the correct position. Optimal decentralization is used to mimic the original
routine using only decentralized control laws, i.e., requiring agents to make
use of only locally-available information while executing the control laws.

The target trajectory is defined from t = 0 to t = T = 10.78. A total ofm =
23 modes were allowed for the multi-agent system to track the desired multi-
agent motion. Therefore, all 22 switching times, as well as the parameters for
all 23 modes, need to be optimized. To do so, steepest descent with Armijo step
size algorithm was performed for 5000 iterations. The resulting convergence
of the cost J , corresponding to the tracking error, is shown in Figure 6. Using
the decentralized control laws and switching times generated from optimal
decentralization, decentralized consistent atoms and interrupt conditions can
be created using methods shown in Section 5.4. Putting them together, a
locally executable GPS can be constructed for the multi-agent system that
makes agents transition through a sequence of decentralized control laws with
timer-based interrupts to track the drumline-inspired dance.
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Cost vs Iteration

Fig. 6 Convergence of cost J (tracking error) after performing steepest descent with Armijo
step size on parameters and switching times for tracking a multi-agent drumline-inspired
dance.

Note that everything in this example up until now is meant to be done
offline and in a centralized manner. Upon scripting the decentralized control
sequence using GPS and checking to see that it is indeed locally executable, the
information required for execution (i.e., control laws, termination condition
checks, and interrupt conditions) are then downloaded to each agent. The
agents then simultaneously start executing their respective control strategies
using only information that is locally available in the network.

The agent trajectories resulting from a simulation where they execute
the scripted decentralized control strategy for tracking the drumline-inspired
dance are shown in Figure 7. Here, the actual locations of the agents are
marked by O’s with lines connecting them to their desired location marked
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by X’s to help ease the comparison. Note that while the original simulation of
the multi-agent dance in Figure 1 used performed using centralized coordina-
tion strategies, Figure 7 shows agents tracking the trajectories but using only
decentralized controllers. Therefore, this example helps showcase the perfor-
mance of the optimal decentralization algorithm in generating controllers for
agents to track complex multi-agent motions.

6 Conclusion

This paper presented an extension to previous work on the Graph Process
Specification (GPS) framework, as well as a series of detailed examples demon-
strating its usage in multi-agent control design. It was shown that multi-agent
controllers oftentimes have network topological prerequisites which must be re-
spected, while being executed by agents, in order to have the desired effect on a
system. The concept behind atoms, the fundamental building blocks in GPS,
was presented along with examples on how to construct them. Each atom
specified a specific network topological transition for the system. Moreover,
each atom also described the means by which agents can make this transition
occur, as well as a way for agents to locally detect that the transition has
taken place. Using a library of atoms, GPS could be used to script decentral-
ized control sequences for agents, while ensuring that the network topological
requirements of each decentralized controller were satisfied. This paper also
presented an example of how an atom library can be constructed. The opti-
mal decentralization algorithm was used to generate atoms for agents to track
desired multi-agent motions with in a system where the network topology is
static. The paper concluded with a simulation showcasing agents performing
a complex drumline-inspired dance using decentralized control sequences gen-
erated from optimal decentralization and scripted using GPS.
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