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Abstract. We consider the max-plus analogue of the eigenproblem for matrix pencils,
Ax = λBx. We show that the spectrum of (A, B) (i.e., the set of possible values of λ)
is a finite union of intervals, which can be computed by a pseudo-polynomial number of
calls to an oracle that computes the value of a mean payoff game. The proof relies on the
introduction of a spectral function, which we interpret in terms of the least Chebyshev
distance between Ax and λBx. The spectrum is obtained as the zero level set of this
function.

1. Introduction

Max-plus algebra is the analogue of linear algebra developed over the max-plus semiring

which is the set Rmax = R∪{−∞} equipped with the operations of “addition” “a+ b” :=

a ∨ b = max(a, b) and “multiplication” “ab” := a + b. Zero of this semiring is −∞, and

unity of this semiring is 0. Note that “a−1” = −a. The operations of the semiring are

extended to matrices and vectors over Rmax. That is if A = (aij), B = (bij) and C = (cij)

are matrices of compatible sizes with entries from Rmax, we write C = A∨B if cij = aij∨bij

for all i, j and C = AB if cij =∨k(aik + bkj) for all i, j.

We investigate the two-sided eigenproblem in max-plus algebra: for two matrices A,B ∈
Rn×m

max , find scalars λ ∈ Rmax called eigenvalues and vectors x ∈ Rn
max\{−∞} called

eigenvectors such that

(1) “Ax = λBx”,
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where the operations have max-plus algebraic sense. In the conventional notation this

reads

(2)
m

max
j=1

(aij + xj) = λ +
m

max
j=1

(bij + xj), ∀i = 1, . . . , n.

The set of eigenvalues will be called the spectrum of (A,B) and denoted by spec(A,B).

When B is the max-plus identity matrix I (all diagonal entries equal 0 and all off-

diagonal entries equal −∞), problem (1) is the max-plus spectral problem. The latter

spectral problem, as well as its continuous extension for max-plus linear operators, is of

fundamental importance for a wide class of problems in discrete event systems theory,

dynamic programming, optimal control and mathematical physics [BCOQ92, HOvdW05,

KM97].

Problem (1) is related to the Perron-Frobenius theory for the two-sided eigenproblem

in the conventional linear algebra, as studied in [MOS+98, MNV08]. When both matrices

are nonnegative and depend on large parameter, it can be shown following the lines of

[ABG98, Theorem 1] that the asymptotics of an eigenvalue with nonnegative eigenvector

is controlled by an eigenvalue of (1). This argument calls for the development of two-sided

analogue of the tropical eigenvalue perturbation theory presented in [ABG06a, ABG04].

A specific motivation to study the two-sided max-plus eigenproblem arises from discrete

event systems. In particular, systems of the form “Ax = Bx” or “Ax 6 Bx” appear in

scheduling. Indeed, when λ = 0, System (2) can be interpreted as a rendez-vous constraint.

Here, xj represents the starting time of a certain task j (for instance, the availability of a

part in a manufacturing systems). The expression maxn
j=1(aij +xj) represents the earliest

completion time of a task which needs at least aij time units to be completed after task

j started. Thus, the system “Ax = Bx” requires to find starting times such that two

different sets of tasks are completed at the earliest exactly at the same times. In many

situations, such systems cannot be solved exactly, and it is natural to solve perturbed

problems like “Ax = λBx”, which amounts to computing time separation between events.

Motivations of this nature arose for instance in the work of Burns, Hulgaard, Amon, and

Borriello [BHAB95], following the work of Burns on the checking of asynchronous digital

circuits [Bur91]. Systems of the form “Ax 6 Bx” have also been studied in relation with

scheduling problems with both AND and OR precedence constraints, as in the work by

Möhring, Skutella, and Stork [MSS04].

Similar motivations led to the study of min-max functions by Olsder [Ols91] and Gu-

nawardena [Gun94]. Such functions can be written as finite infima of max-plus linear

maps, or finite suprema of min-plus linear maps. They also arise as dynamic programming

programming operators of zero-sum deterministic games. In particular, the fixed points
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and invariant halflines of min-max functions studied in [CTGG99, DG06] can be also used

to compute values of zero-sum deterministic games with mean payoff [DG06, ZP96]. Inti-

mate relations between the computation of the value of mean payoff games and two-sided

linear systems in max-plus algebra have been established in [AGG09].

In max-plus algebra, a special form of min-max functions appears in Cuninghame-

Green [CG79], under the name of AA∗-products. The same functions appear as nonlinear

projectors on max-plus cones playing essential role in the max-plus analogue of Hahn-

Banach theorem [CGQS05, LMS01]. The compositions of nonlinear projectors are more

general min-max functions, and they appear when one approaches two-sided systems

Ax = By and Ax = Bx [CGB03], and intersections of max-plus cones [GS08, Ser09]. It

is immediate to see that (1) is a parametric version of Ax = Bx.

In max-plus algebra, partial results for Problem (1) have been obtained by Binding

and Volkmer [BV07], and Cuninghame-Green and Butkovič [CGB08]. In particular,

Cuninghame-Green and Butkovič [CGB08] give an interval bound on the spectrum of

(1) in the case when the entries of both matrices are real. Besides that, both papers treat

interesting special cases, for instance when A and B square, or one of them is a multiple

of the other.

In the present paper, we first show that (1) can be viewed as a fixed-point problem for

a family of parametric min-max functions hλ. Based on this observation, we introduce a

spectral function s(λ) of (1), defined as the spectral radius of hλ. The zero level set of

s(λ) is precisely spec(A,B). More generally, s(λ) has a natural geometric sense, being

equal to the least Chebyshev distance between Ax and λBx.

The function s(λ) is piecewise-linear and Lipschitz continuous, and it has a linear

asymptotics at large and small λ. In an important special case, the asymptotics is just

λ + α1 (at small λ) and −λ + α2 (at large λ). We also give bounds on the spectrum of

two-sided eigenproblem, which improve and generalize the bound of Cuninghame-Green

and Butkovič [CGB08]. In the case when the entries of A and B are integer or −∞, this

allows us to show that all linear pieces of s(λ) can be identified in a pseudopolynomial

number of calls to an oracle which identifies s(λ) at a given point. Importantly, s(λ)

can be interpreted as the value of associated parametric mean-payoff game and it can

be computed by the policy iteration algorithm of [CTGG99, DG06]. This leads to a

procedure for computing the whole spectrum of (1). To our knowledge, no such general

algorithm for computing the whole spectrum of (1) was known previously. We also believe

that the level set method used here, relying on the introduction of the spectral function,

is of independent interest and may have other applications.
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In some cases the spectral function can be computed analytically. In particular, we will

consider an example of [Ser], where it is shown that any finite system of intervals and

points on the real line can be represented as spectrum of (1).

The paper is organized as follows. In Section 2 we consider two-sided systems “Ax =

By” and “Ax = Bx”. We relate the systems “Ax = Bx” to certain min-max functions and

show that the spectral radii of these functions are equal to the least Chebyshev distance

between “Ax” and “Bx”. In Section 3, we introduce the spectral function of two-sided

eigenproblem as the spectral radius of a natural parametric extension of the min-max

functions studied in Section 2. We give bounds on the spectrum of two-sided eigenproblem

and investigate the asymptotics of s(λ). We reconstruct the spectral function and hence

the whole spectrum in a pseudopolynomial number of calls to the oracle.

2. Two-sided systems and min-max functions

2.1. Max-plus linear systems and nonlinear projectors. Consider the n-fold Carte-

sian product Rn
max equipped with operations of taking supremum u∨ v and scalar “multi-

plication” (i.e., addition) “λv” = λ + v. This structure is an example of semimodule over

the semiring Rmax defined in the introduction. The subsets of Rn
max closed under these

two operations are its subsemimodules. We will call them max-plus cones or just cones,

by abuse of language. Indeed, there are important analogies and links between max-plus

cones and convex cones [CGQS05, DS04, GK09, Ser09]. We also need the operation of

taking infimum which we denote by inf.

With a max-plus cone V ⊆ Rn
max we can associate an operator PV defined by its action

(3) PVz =∨{y ∈ V | y 6 z}.

Consider the case when V ⊆ Rn
max is generated by a set S ∈ Rn

max, which means that it is

the set of bounded max-plus linear combinations

(4) z = ∨
y∈S

λy + y.

In this case

PVz = ∨
y∈S

z/y + y, where

z/y = max{γ | γ + y 6 z} = ∧
j∈supp(y)

(zj − yj) =
n∧

j=1
(zj − yj),

(5)

with the convention (−∞) + (+∞) = +∞. Here and in the sequel supp(y) := {i | yi 6=
−∞} denotes the support of y. Note that z/y = ∞ if and only if y = −∞.
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Further we are interested only in the case when V is finitely generated, i.e., S is finite.

Let Ti denote the set of indices where the minimum in z/yi is attained. The following

result is classical.

Proposition 1 ([BCOQ92, But03, HOvdW05]). Let a cone V ⊆ Rn
max be generated by

y1, . . . , ym and let z ∈ Rn
max. The following statements are equivalent.

1. z ∈ V.

2. PVz = z.

3.
⋃m

i=1 Ti = supp z.

We note that the set covering condition 3. has been generalized to the case of Galois

connections [AGK05].

By this proposition, operator PV is a projector onto V . It is an isotonic and +-

homogeneous operator, meaning that z1 6 z2 implies PVz1 6 PVz2, and that PV(λ+ z) =

λ + PVz. However, in general it is neither ∨- nor ∧-linear.

A finitely generated cone can be described as a max-plus column span of a matrix

A ∈ Rn×m
max :

(6) span(A) := {
m∨

i=1
λi + A·i | λi ∈ Rmax, i = 1, . . . , m}.

In this case we denote PA := Pspan(A), and there is an explicit expression for this operator

which we recall below.

We denote Rmax := Rmax ∪ {+∞} and view A ∈ Rn×m

max as an operator from Rn

max to

Rm

max. The residuated operator A] from Rm

max to Rn

max is defined by

(7) (A]y)j = y/A·i =
m∧

i=1
(−aij + yi),

with the convention (−∞) + (+∞) = +∞. Note that this operator, also known as

Cuninghame-Green inverse, sends Rm
max to Rn

max whenever A does not have columns equal

to −∞. The term “residuated” refers to the property

(8) Ax 6 y ⇔ x 6 A]y,

where 6 is the partial order on Rm
max or Rn

max. Using (5) we obtain

(9) PA(z) =
n∨

i=1
(z/A·i) + A·i = AA]z.

In this form (9), the nonlinear projectors were studied by Cuninghame-Green [CG79] (as

AA∗-products).

Finitely generated cones are closed in the topology induced by the metric

(10) d(x, y) = max
i
|exi − eyi|,
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which coincides with Birkhoff’s order topology. It is known [CGQS05, Theorem 3.11] that

the projectors onto such cones are continuous.

The intersection of two finitely generated cones can be expressed in terms of two-sided

max-plus linear systems with separated variables Ax = By, by the following proposition.

Proposition 2. Let A ∈ Rn×m1
max and B ∈ Rn×m2

max .

1. If (x, y) satisfies Ax = By 6= −∞ then z = Ax = By belongs to span(A)∩span(B).

Equivalently, PAPBz = PBPAz = z.

2. If PAPBz = z 6= −∞ then there exist x and y such that Ax = By = z.

This approach to two-sided systems is also useful in the case of systems with non-

separated variables Ax = Bx, which is of greater importance for us here. This system is

equivalent to

Cx = Dy, where

C =

(
A

B

)
, D =

(
In

In

)
,

(11)

and In = (δij) ∈ Rn×n
max denotes the max-plus n× n identity matrix with entries

(12) δij =





0, if i = j,

−∞, if i 6= j.

In this case we have the following version of Proposition 2.

Proposition 3. Let A,B ∈ Rn×m
max .

1. If x satisfies Ax = Bx 6= −∞, then v = (z z)T , where z = Ax = Bx, belongs to

span(C) ∩ span(D). Equivalently, PCPDv = PDPCv = PCv = v.

2. If v = (z z)T 6= −∞ and PCv = v, then there exist x such that Ax = Bx = v.

Pairs (x, y) 6= −∞ such that Ax = By = −∞ are described by: xi 6= −∞⇔ A·i = −∞
and yj 6= −∞ ⇔ B·j = −∞. Analogously, vectors x 6= −∞ such that Ax = Bx = −∞
are described by xi 6= −∞ ⇔ A·i = B·i = −∞. Any such pair of vectors can be added

to any other pair (x′, y′) or, respectively, vector x′, and the resulting pair of vectors will

satisfy the system if and only if so does (x′, y′) or, respectively, x′. Therefore, we can

assume in the sequel without loss of generality that there are no such solutions, i.e., that

1)A and B do not have −∞ columns in the case of separated variables, 2) A and B do

not have common −∞ columns in the case of non-separated variables.
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2.2. Projectors and Perron-Frobenius theory. Suppose that a function f : Rn
max 7→

Rn
max is homogeneous, isotone and continuous in the topology induced by (10). As x →

exp(x) yields a homeomorphism with Rn
+ endowed with the usual Euclidean topology, we

can use spectral theory for homogeneous, isotone and continuous functions in Rn
+. We will

use the following important identities, which follow from the results of Nussbaum [Nus86],

see [AGG09, Lemma 2.8] for a detailed proof.

Theorem 4 (Coro. of [Nus86],[AGG09, Lemma 2.8]). Let f denote an order-preserving,

additively homogeneous and continuous map from (R∪ {−∞})n to itself. Then it has the

largest eigenvalue r(f) which equals

r(f) = max{λ | ∃x ∈ Rn
max λ + x 6 f(x)},(13)

r(f) = inf{λ | ∃x ∈ Rn, λ + x > f(x)}.(14)

Note that (14) is nonlinear generalization of the classical Collatz-Wielandt formula

[Min88]. Equations (13) and (14) are useful in max-plus algebra, since they work for

max-plus matrix multiplication as well as for compositions of nonlinear projectors. For

(14) it is essential that it is taken over vectors with real entries, and that the infimum

may not be reached. Using (14) we obtain that the spectral radius of such functions is

isotone: f(x) 6 g(x) for all x ∈ Rn implies r(f) 6 r(g). We next recall an application of

(14) to the metric properties of compositions of projectors, which is due to [GS08]. The

Hilbert distance between u, v ∈ Rn
max such that supp(u) = supp(v) is defined by

(15) dH(u, v) = max
i,j∈supp(v)

(ui − vi + vj − uj).

If span(u) 6= span(v) then we set dH(u, v) = +∞. Using (15) we define the Hilbert

distance between cones span(A) and span(B), for A ∈ Rn×m1
max and B ∈ Rn×m2

max :

(16) dH(A,B) := min{dH(u, v) | u ∈ span(A), v ∈ span(B), supp(u) = supp(v)}.
Theorem 5 (cp. [GS08], Theorem 25). Let A ∈ Rn×m1

max and B ∈ Rn×m2
max . Then

(17) r(PAPB) = r(PBPA) = −dH(A,B).

If dH(A,B) is finite then it is attained by any eigenvector u of PAPB with eigenvalue

r(PAPB), and its image v by PB.

Proof. As supp(PAPBu) ⊆ supp(PBu) ⊆ supp(u), it follows that PAPB and also PBPA

may have finite eigenvalue only if span(A) and span(B) have vectors with common sup-

port. This shows the claim for the case dH(A,B) = +∞.

Now let dH(A,B) be finite. We show that −dH(u, v) = −dH(A,B) = r(PAPB). Take

arbitrary vectors u ∈ span(A) and v ∈ span(B) with supp(u) = supp(v), and let Pu,



8 STÉPHANE GAUBERT AND SERGEĬ SERGEEV

resp. Pv, be projectors onto the rays U = {λu, λ ∈ Rmax}, resp. V = {λv, λ ∈ Rmax}.
As U ⊆ span(A) and V ⊆ span(B), we have that Pu 6 PA and Pv 6 PB, hence

PuPv 6 PAPB and, by the monotonicity of the spectral radius, r(PuPv) 6 r(PAPB). But

r(PuPv) = −dH(u, v), as this is the only finite eigenvalue of PuPv, and hence −dH(u, v) 6
r(PAPB) and −dH(A,B) 6 r(PAPB). Now observe that −dH(u, v) is equal to the eigen-

value r(PAPB), like in the case of PuPv discussed above. This completes the proof. ¤

In the case of the systems with non-separated variables, we will be more interested in

Chebyshev distance. For u, v ∈ Rn
max with supp(u) = supp(v) it is defined by

(18) d∞(u, v) = max
i∈supp(v)

|ui − vi|.

There is an important special case when Hilbert and Chebyshev distances coincide.

Lemma 6. Let u, v ∈ Rn
max be such that u > v and ui = vi for some i ∈ {1, . . . , n}. Then

dH(u, v) = d∞(u, v).

Theorem 7. Let A,B ∈ Rn×m
max , and let C and D be defined as in (11). Then

(19) r(PCPD) = r(PDPC) = − min
x∈Rm

max

d∞(Ax,Bx).

Proof. Theorem 5 implies that

(20) r(PCPD) = −min{dH(u, v) | u ∈ span(C), v ∈ span(D).}
Let u ∈ span(C) and denote by Pu the projector onto U := {λu | λ ∈ Rmax}. Then u

is an eigenvector of PuPD which corresponds to the spectral radius of this operator, and

applying Theorem 5 to the max cones U and span(D) we see that

(21) dH(u, PDu) = min{dH(u, v) | v ∈ span(D)}.
Note that (21) also holds if there is no v ∈ span(D) with supp(u) = supp(v), in which

case dH(u, PDu) = +∞. This implies

(22) r(PCPD) = −min{dH(u, PDu) | u ∈ span(C)}.
Observe that

(23) u =

(
Ax

Bx

)
, PDu =

(
Ax ∧Bx

Ax ∧Bx

)

for some x ∈ Rm
max, and also that u and PDu satisfy the conditions of Lemma 6 unless

PDu = −∞. Hence dH(u, PDu) = d∞(u, PDu) = d∞(Ax,Bx). Conversely, d∞(Ax, Bx)

equals dH(u, PDu) for u = (Ax Bx)T . Hence the r.h.s. of (19) is the same as the r.h.s. of

(22), which completes the proof. ¤
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2.3. Min-max functions and Chebyshev distance. Let A ∈ Rn×m1
max and B ∈ Rn×m2

max .

In order to find a point in the intersection of span(A) and span(B) (or equivalently, solve

Ax = By), one can try to compute the action of (PAPB)l, for l = 1, 2, . . . , on a vector

z ∈ Rn
max. Equivalently, one can start with a vector x0 ∈ Rm1

max and compute

(24) xk = A]BB]Axk−1, k > 1.

We can assume that A and B do not have columns equal to −∞ so that A]y ∈ Rm1
max and

B]y ∈ Rm2
max for any y ∈ Rn

max.

If at some stage xk = xk−1 6= −∞, then xk is a solution of the system. The details of

this simple algorithm called alternating method can be found in [CGB03] and [Ser09].

Let A, B ∈ Rn×m
max . A system Ax = Bx can be written equivalently as Cx = Dy

with C and D as in (11). Applying alternating method (24) to this system, we obtain

xk = g(xk−1), where

(25) g(x) = A]Ax ∧B]Bx ∧ A]Bx ∧B]Ax.

As it is assumed that A and B do not have common −∞ columns and hence C (and D)

do not have −∞ columns, g(x) ∈ Rm
max for all x ∈ Rn

max.

It follows that (see also [CGB03])

(26) r(g) = 0 ⇔ Ax = Bx is solvable.

In particular, if x is a fixed point of g then it satisfies Ax = Bx. For the function

(27) f(x) = x ∧ A]Bx ∧B]Ax

which appears in [DG06], it is also true the other way around, since

Ax = Bx ⇔ Ax > Bx & Bx > Ax ⇔
⇔ B]Ax > x & A]Bx > x ⇔
⇔ x ∧ A]Bx ∧B]Ax = x.

(28)

We also introduce the function h:

(29) h(x) := A]Bx ∧B]Ax.

Although f , g and h are different functions, they have the same spectral radius, equal

to the inverse minimal Chebyshev distance between Ax and Bx. To show this, we use

the following identity.

(30) − d∞(u, v) = max{λ : λ + u 6 v & λ + v 6 u}.
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Theorem 8. Let A, B ∈ Rn×m
max . For C,D defined by (11), and f , g and h defined by (27)

and (25),

(31) r(PCPD) = r(PDPC) = r(f) = r(g) = r(h) = − min
x∈Rm

max

d∞(Ax,Bx).

Proof. If v is an eigenvector of PDPC with a finite eigenvalue, then C]v is an eigenvector of

g and PCv is an eigenvector PCPD, both with the same eigenvalue. The other way around,

if x is an eigenvector of g with a finite eigenvalue, then (Ax Bx)T is an eigenvector of PDPC

with the same eigenvalue. This argument shows that 1) either the spectral radii of PDPC ,

PCPD and g are all finite or they all equal −∞, 2) the equality r(g) = r(PDPC) = r(PCPD)

holds true both in finite and in infinite case.

We show the remaining equalities. By (13), r(h) is the maximum of λ which satisfy

(32) ∃x ∈ Rm
max : λ + x 6 A]Bx ∧B]Ax.

This is equivalent to

(33) ∃x ∈ Rm
max : λ + Ax 6 Bx & λ + Bx 6 Ax

Using (30) we obtain

(34) r(h) = max
x∈Rm

max

−d∞(Ax,Bx) = − min
x∈Rm

max

d∞(Ax,Bx).

It follows in particular that r(h) 6 0 and moreover, λ 6 0 for any x satisfying (33).

Applying (13) to f and g we obtain that both r(f) and r(g) are equal to the maximum

of λ which satisfy

(35) ∃x ∈ Rm
max : λ 6 0 & λ + Ax 6 Bx & λ + Bx 6 Ax

As the first inequality follows from the other two, we obtain r(f) = r(g) = r(h).

¤

Functions f , g and h as well as projectors onto finitely generated max-plus cones and

their compositions, belong to the class of min-max functions taking Rm

max to Rm

max. Min-

max functions were originally considered by Olsder [Ols91] and Gunawardena [Gun94].

See [CTGG99] for a formal definition. In a nutshell, these are additively homogeneous

and order preserving maps, every coordinate of which can be represented as a minimum

of a finite number of max-plus linear forms, or as a maximum of a finite number of min-

plus linear forms. It is important that any min-max function q : Rn
max → Rn

max can be

represented as infimum of finite number of max-plus linear maps Q(p) meaning that

(36) q(x) =∧
p

Q(p)x,
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in such a way that the following selection property is satisfied:

(37) ∀x ∃p : q(x) = Q(p)x.

In connection with the mean payoff games [DG06], each matrix Q(p) corresponds to a one

player game, where the player Min has chosen her strategy and the player Max is trying

to win what he can.

In particular, f(x), g(x) and h(x), respectively, are represented as infima of the max-

plus linear maps F (p), G(p) and H(p), whose rows are taken from the max-plus linear forms

appearing in (27), (25) and (29), respectively, in the following way:

(38) F
(p)
i· =





Ii·,

−aki + Bk·,

−bki + Ak·.

G
(p)
i· =





−aki + Ak·,

−bki + Bk·,

−aki + Bk·,

−bki + Ak·.

H
(p)
i· =




−aki + Bk·,

−bki + Ak·.

Here Ii· denotes the ith row of the max-plus identity matrix, and the brackets mean that

any possibility, for any k = 1, . . . ,m and aki 6= −∞ or bki 6= −∞, can be taken (assumed

that A and B do not have common −∞ columns). Applying Collatz-Wielandt formula

(14) we obtain the following.

Proposition 9. Suppose that a min-max function q : Rm
max → Rm

max is represented as

infimum of max-plus linear maps Q(l) ∈ Rm×m
max so that the selection property is satisfied.

Then

(39) r(q) = min
l

r(Q(l)).

Proof. The spectral radius is isotone, hence r(q) 6 r(Q(l)) for all p. Using (14) we conclude

that for any ε there is x ∈ Rm such that q(x) 6 r(q) + ε + x. As q(x) = Q(l)x for some l

and there is only finite number of matrices Q(l), there exists l such that

(40) r(q) = inf{µ | ∃x ∈ Rn, Q(l)x 6 µ + x} = r(Q(l)).

¤

Proposition 9 can be derived alternatively from the duality theorem in [GG98b, The-

orem 19] (see also [GG98a]) or from the existence of the value of stochastic games with

perfect information [LL69]. Indeed, the spectral radius can be seen to coincide with the

value of a game in which Player Max chooses the initial state, see [AGG09] for more

information.
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The greatest eigenvalue r(Q(l)) of the max-plus matrix Q(l) = (q
(l)
ij ) ∈ Rm×m

max can be

computed explicitly. It is equal to the maximum cycle mean of Q(l) defined by

(41) max
16k6m

max
i1,...,ik

q
(l)
i1i2

+ q
(l)
i2i3

+ . . . + q
(l)
iki1

k
.

This result is fundamental in max-plus algebra, see [BCOQ92, HOvdW05, ABG06b] for

more details.

3. The spectrum and the spectral function

3.1. Construction of the spectral function. Given A ∈ Rn×m
max and B ∈ Rn×m

max , we

consider the two-sided eigenproblem which consists in finding eigenvalues λ ∈ Rmax and

eigenvectors x ∈ Rm
max\{−∞} such that

(42) Ax = λ + Bx.

The set of eigenvalues is called the spectrum of (A,B) and denoted by spec(A,B).

The case of λ = −∞ appears if and only if A has −∞ columns, and the corresponding

eigenvectors are described by xi 6= −∞ ⇔ A·i = −∞. In the sequel we assume that λ is

finite.

Problem (42) is equivalent to C(λ)x = Dy, where C(λ) ∈ R2n×m
max and D ∈ R2n×n

max are

defined by

(43) C(λ) =

(
A

λ + B

)
, D =

(
I

I

)
.

As it follows from Theorem 8, spec(A,B) = {λ : r(PDPC(λ)) = 0} = {λ : r(hλ) = 0},
where

(44) hλ(x) = (λ + A]Bx) ∧ (−λ + B]Ax).

The function hλ can be represented as infimum of max-plus linear maps so that the

selection property (37) is satisfied. Namely,

(45) hλ(x) =∧
p

H
(p)
λ x,

where for i = 1, . . . , m

(46) (H
(p)
λ )i· =





λ− aki + Bk·, for 1 6 k 6 n, aki 6= −∞,

−λ− bki + Ak·, for 1 6 k 6 n, bki 6= −∞,

the brackets meaning that any listed choice can be taken.
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The greatest eigenvalue of Hλ equals the maximum cycle mean of Hλ. Using formula

(41), we observe that r(Hλ) is a piecewise-linear function, meaning that it is composed of

a finite number of linear pieces. More precisely, we have the following.

Proposition 10. Either r(H
(p)
λ ) = −∞ for all λ, or r(H

(p)
λ ) is a finite piecewise-linear

convex Lipschitz function of λ.

Proof. Using (41) we observe that r(H
(p)
λ ) = −∞ if and only if the associated digraph of

H
(p)
λ is acyclic, and then this holds for all values of λ.

If r(H
(p)
λ ) is finite, then any finite cycle mean of H

(p)
λ can be written as (kλ + a)/l,

where l is the length of the cycle and k is an integer number with modulus not greater

than l, hence this linear function is Lipschitz. The function r(H
(p)
λ ) is pointwise maximum

of a finite number of such linear functions, hence it is a convex Lipschitz piecewise-linear

function. ¤

Definition 1 (Spectral Function). We define the spectral function of (42) by

(47) s(λ) := r(hλ) = r(PDPC(λ)).

It follows from Theorem 8 that s(λ) 6 0 and that s(λ) = 0 if and only if λ ∈ spec(A,B).

In general, s(λ) is equal to the inverse minimal Chebyshev distance between Ax and

λ + Bx.

By Proposition 9,

(48) s(λ) =∧
p

r(H
(p)
λ ).

As r(H
(p)
λ ) are piecewise-linear and Lipschitz, we conclude the following.

Corollary 11. Either s(λ) = −∞ for all λ ∈ R or s(λ) is a finite piecewise-linear

Lipschitz function.

Let us consider the case s(λ) = −∞ in more detail. Define A◦ = (a◦ij) ∈ Rm×n
max and

B◦ = (b◦ij) ∈ Rm×n
max by

(49) a◦ij =





0, if aij ∈ R,

−∞, if aij = −∞.
, b◦ij =





0, if bij ∈ R,

−∞, if bij = −∞.
,

The spectral function of the eigenproblem A◦x = λ + B◦x will be denoted by s◦(λ).

Proposition 12. The following are equivalent:

1. s(λ) is finite for all λ;

2. s◦(λ) is finite for all λ;



14 STÉPHANE GAUBERT AND SERGEĬ SERGEEV

3. A◦x = B◦x has a nontrivial solution whose entries belong to {0,−∞}.

Proof. 1. ⇔ 2 : s(λ) = −∞ if and only if there exists H
(p)
λ such that r(H

(p)
λ = −∞. By

(41), this just means that the associated digraph of H
(p)
λ does not have cycles with finite

weight. This property does not depend on the value of finite coefficients in H
(p)
λ and hence

s(λ) = −∞ if and only if s◦(λ) = −∞.

3. ⇔ 1 : As s(λ) is equal to the inverse minimal Chebyshev distance between Ax and Bx,

it is infinite if and only if there is no nontrivial vector x such that supp(Ax) = supp(Bx),

which is the negation of 3. ¤

Condition 3. of Proposition 12 provides a criterion for s(λ) = −∞, which can be

verified in polynomial time.

Let us indicate yet another consequence of the fact that r(H
(p)
λ ) and s(λ) are piecewise-

linear.

Proposition 13. If spec(A,B) is not empty, then it is a finite system of closed intervals

and points.

Conversely, in [Ser], see also Subsect. 3.5, it is shown that any system of closed intervals

and points in R can be represented as spectrum of (A,B).

3.2. Bounds on the spectrum of (A,B). Next we recall a bound on the spectrum

obtained by Cuninghame-Green and Butkovič [CGB08], extending it to the case when

A = (aij) and B = (bij) may have infinite entries. Denote

D(A,B) = ∨
i : Ai· finite

Ai·/Bi·,

D(A,B) = − ∨
i : Bi· finite

Bi·/Ai·.
(50)

Since Ai·/Bi· = max{γ | Ai· > γ + Bi·} is finite when Ai· is finite and Bi· is not −∞,

we immediately see the following.

Lemma 14. D(A,B) (resp. D(A,B)) is finite if and only if there exists i = 1, . . . , n such

that Ai· is finite (resp. Bi· is finite).

When A and B have finite entries only, D(A,B) and D(A,B) are just like the bounds

of [CGB08, Theorem 2.1]:

D(A,B) =∨
i
∧
j
(aij − bij),

D(A,B) =∧
i
∨
j
(aij − bij).

(51)
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Note that D(A,B) and D(A,B) defined by (50) take infinite values if A or B do not

contain finite rows.

Proposition 15. If Ax 6 λ + Bx (resp. Ax > λ + Bx) has solution x > −∞, then

λ > D(A,B) (resp. λ 6 D(A,B)).

Proof. If there exists i such that aij > λ + bij for all j = 1, . . . , m, then Ax 6 λ + Bx

cannot have solutions. This condition is equivalent to Ai·/Bi· > λ plus the finiteness of

Ai·. Taking supremum of Ai·/Bi· over i such that Ai· is finite yields D(A,B). This shows

that if Ax 6 λ + Bx then λ > D(A, B). The remaining part follows analogously. ¤

The next result is an extension of [CGB08, Theorem 2.1].

Corollary 16. spec(A,B) ⊆ [D(A,B), D(A,B)].

We use identity (13) to give a more precise bound. It will be assumed that A and B

do not have −∞ columns. Note that this condition is more restrictive than that A and B

do not have common −∞ columns, and it cannot be assumed without loss of generality.

Theorem 17. Suppose that A = (aij), B = (bij) ∈ Rn×m
max do not have −∞ columns. Then

(52) spec(A,B) ⊆ [−r(A]B), r(B]A)] ⊆ [D(A, B), D(A,B)].

Proof. Let Ax = λBx, then we also have

Ax 6 λ + Bx ⇔ −λ + x 6 A]Bx,

λ + Bx 6 Ax ⇔ λ + x 6 B]Ax.
(53)

As A and B do not have −∞ columns so that A]Bx and B]Ax do not have +∞ entries,

we can use (13) to obtain from (53) that λ ∈ [−r(A]B), r(B]A)]. For λ = r(B]A) we

can find y 6= −∞ such that λ + y 6 B]Ay and hence λ + By 6 Ay. Using Proposition

15 we obtain λ 6 D(A,B). The remaining inequality λ > D(A,B) can be obtained

analogously. ¤

By comparison with the finer bounds −r(A]B) and r(B]A), the interest of the bounds of

Butkovič and Cuninghame-Green, D(A, B) and D(A,B), lies in their explicit character.

However, these bounds become infinite when the matrices A and B do not have finite

rows. We next give different explicit bounds, which turns out to be finite as soon as A

and B do not have identically infinite columns.

Proposition 18. We have

spec(A,B) ⊆
⋃

16i6n

[−(A]B0)i, (B
]A0)i] ,
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Figure 1. Spectral function of (54)

and so

spec(A,B) ⊆ [−∨
i
(A]B0)i,∨

i
(B]A0)i]

Proof. Consider x := 0 and µ := ∨i[hλ(0)]i, so that hλ(x) 6 µ + x. Then, the non-

linear Collatz-Wielandt formula (14) implies that r(hλ) 6 µ. If λ ∈ spec(A,B), we have

0 6 r(hλ), and so, there exists at least one index i ∈ {1, . . . , n} such that

0 6 [hλ(0)]i = (λ + (A]B0)i) ∧ (−λ + (B]A0)i) .

It follows that λ 6 (B]A0)i and λ > −(A]B0)i. ¤

Remark 1. It follows readily from the Collatz-Wielandt property (14) that

[−r(A]B), r(B]A)] ⊆ [−∨
i
(A]B0)i,∨

i
(B]A0)i]

Example 1. We next give an example, to compare the bounds of Corollary 16, Theorem 17

and Proposition 18. Consider the following finite matrices of dimension 3× 4:

(54) A =



−2 3 −3 −3

−4 1 2 −2

5 −1 5 −1


 , B =



−4 5 −3 3

2 0 −1 4

0 2 −3 −1




From the graph of spectral function, Figure 1, it follows that the only eigenvalue is −2.

The interval [−r(A]B), r(B]A)] is in this case [−2, 0.5]. Bounds (51) of [CGB08, Theo-

rem 2.1] yield the interval [D(A,B), D(A,B)] = [−3, 2], which is less precise. Propo-

sition 18 yields the union of intervals [3, 0] = ∅, [−2,−2], [3, 3] and [−3,−2], thus
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[−3,−2] ∪ {3}. Note that these intervals are incomparable both with [−r(A]B), r(B]A)]

and [D(A,B), D(A,B)] = [−3, 2].

We remark that the intervals [−∨i(A
]B0)i,∨i(B

]A0)i] and [D(A, B), D(A,B)] are

also in general incomparable. Also, Subsect. 3.5 will provide an example where the

bounds [−r(A]B), r(B]A)] are exact.

3.3. Asymptotics of the spectral function. If A and B do not have −∞ columns,

the functions λ+A]B and −λ+B]A are represented as infima of all max-linear mappings

K
(p)
λ and, respectively, M

(s)
λ such that

(K
(p)
λ )i· = λ− aki + Bk·, 1 6 k 6 n, aki 6= −∞,

(M
(s)
λ )i· = −λ− bki + Ak·, 1 6 k 6 n, bki 6= −∞.

(55)

This representation satisfies the selection property.

Matrices K
(p)
λ and M

(s)
λ are both instances of H

(p)
λ which represent hλ. The spectral radii

r(H
(p)
λ ) are maximum cycle means expressed by λk1/l1 + α, where 0 6 |k1| 6 l1 6 m.

The coefficient k1/l1 will be called slope and α will be called offset. In fact, it is only

possible that k1 = l1−2t for t = 1, . . . , l1, since all entries in the representing matrices are

weighted with ±λ and only even numbers of ±λ terms can cancel out. As the arithmetic

mean does not exceed the maximum, it follows that α 6 ∆(A,B), where

(56) ∆(A,B) :=
∨

i,j,k : aij 6=−∞, bik 6=−∞
(aij − bik) ∨

∨

i,j,k : bij 6=−∞, aik 6=−∞
(bij − aik).

We also define

C(A, B) :=
∨

i,j,k : aij 6=−∞, bik 6=−∞
(aij − bik),

C(A, B) :=
∧

i,j,k : aik 6=−∞, bij 6=−∞
(aik − bij).

(57)

Using these observations and notation we study the asymptotics of s(λ), both in general

case and in some special cases.

Theorem 19. Suppose that A,B ∈ Rn×m
max .

1. Either s(λ) = −∞ for all λ, or there exist k1, l1, k2, l2 such that 0 6 l1 6 m,

k1 = l1−2t1 where 0 6 t1 6 bl1/2c, 0 6 l2 6 m, k2 = l2−2t2 where 0 6 t2 6 bl2/2c,
and α1, α2 ∈ R such that

s(λ) = λk1/l1 + α1, if λ 6 −2m2 ×∆(A,B),

s(λ) = −λk2/l2 + α2. if λ > 2m2 ×∆(A,B).
(58)
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2. Suppose that A and B do not have −∞ columns. Then either s(λ) = −∞ for all

λ, or there exist α1 6 r(A]B) and α2 6 r(B]A) such that

s(λ) = λ + α1, if λ 6 −2m×∆(A,B),

s(λ) = −λ + α2, if λ > 2m×∆(A,B).
(59)

3. Suppose that A and B are real. Then

s(λ) = λ + r(A]B), if λ 6 C(A,B),

s(λ) = −λ + r(B]A), if λ > C(A,B).
(60)

Proof. 1: For the proof of this part, we observe that for each λ, the function s(λ) is the

maximum cycle mean of a certain representing matrix H
(p)
λ , so that it equals λk/l + α

where 0 6 l 6 m, k = l − 2t where 0 6 t 6 l. For any two such terms, difference

between coefficients k/l is not less than 1/m2, and the difference between the offsets does

not exceed 2∆(A,B), which yields that all intersection points must be in the interval

[−2m2 ×∆(A,B), 2m2 ×∆(A,B)]. Thus s(λ) is linear for λ 6 −2m2 ×∆(A,B) and for

λ > 2m2 ×∆(A,B). As s(λ) 6 0 for all λ, the left asymptotic slope is nonnegative, and

the right asymptotic slope is non-positive.

2: When A does not have −∞ columns, some of the matrices H
(p)
λ are of the form K

(p)
λ

and their maximum cycle mean is λ + α. Taking minimum over all r(H
(p)
λ ) of that form

yields an offset α1 6 r(A]B). The cycle mean λ + α1 will dominate at small λ, and the

smallest intersection point may occur with a term λ(m−1)/m+α′1. Indeed, the difference

between coefficients is precisely the smallest possible 1/m, and the difference |α1 − α′1|
may be up to 2∆(A,B). This yields the bound −2m×∆(A,B). An analogous argument

follows when λ is large and B does not have −∞ columns.

3: When A and B are real and λ < C(A, B), all coefficients in the min-max function

λ+A]B are real negative, and all coefficients in the min-max function −λ+B]A are real

positive. This implies that s(λ) is equal to the minimum over r(K
(p)
λ ), which is equal to

λ + r(A]B). An analogous argument follows when λ > C(A,B). ¤

In Proposition 23 we will show by an explicit construction that any slope k/l can be

realized as asymptotics of a spectral function.

We next observe that the asymptotics of s(λ) can be read off from s◦(λ), which is the

spectral function associated with A◦ and B◦. These matrices were defined in (49), they

have 0 entries exactly where A, resp. B, have finite entries.
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Proposition 20. Suppose that A,B ∈ Rn×m
max and that that λk1/l1 where k1, l1 > 0 (resp.

−λk2/l2 where k2, l2 > 0) is the left (resp. the right) asymptotic slope of s(λ). Then

(61) s◦(λ) =





λk1/l1, if λ 6 0,

−λk2/l2, if λ > 0.

Proof. Observe that the representing matrices H
(p◦)
λ of

(62) h◦λ := (λ + (A◦)]B◦x) ∧ (−λ + (B◦)]A◦x)

are in one-to-one correspondence with the representing matrices H
(p)
λ of hλ. The finite

entries H
◦(p)
λ equal to ±λ, they are in the same places and with the same sign of λ as in

H
(p)
λ . Hence the cycle means in H

◦(p)
λ have the same slopes as the corresponding cycle

means in H
(p)
λ , but with zero offsets. When s(λ) = r(hλ) is computed by (45), the

asymptotics at large and small λ is determined by the slopes only and yields the same

expression as for s◦(λ) = r(h◦λ). ¤

3.4. Reconstructing the spectrum and the spectral function. Now we consider the

problem of identifying all linear pieces that constitute the spectral function and computing

the whole spectrum of (A,B) in the case when A and B have integer entries.

The result will be formulated in terms of calls to an oracle computing the value of s(λ)

at a given point. Essentially, this oracle computes the value of associated mean payoff

game parametrized by λ. The role of such an oracle can be played by the policy iteration

algorithm of [CTGG99, DG06].

Theorem 21. Let A,B ∈ Rn×m
max have only integer or −∞ entries.

1. All linear pieces that constitute the function s(λ) and hence the spectrum of (A,B)

can be identified in no more than ∆(A,B)×O(m6) calls to the oracle.

2. When A and B have no −∞ columns, the number of calls needed to reconstruct

the function s(λ) can be decreased to ∆(A, B)×O(m5). When A and B are real,

it is decreased to (C(A,B)− C(A,B))×O(m4).

Proof. In all cases we have a finite interval of length L, which is L := ∆(A,B) × O(m2)

in case 1, and L = ∆(A,B)×O(m) or L := (C(A,B)− C(A,B)) in case 2.

We first compute the asymptotic slopes of s(λ) outside L. By Proposition 20, we can do

this by computing s◦(±1) in just two calls to the oracle. Then the goal is to reconstruct

all linear pieces which constitute s(λ) in the interval L.

The linear pieces of s(λ) correspond to the maximal cycle means in the matrices from

the representation of hλ(x). The points where such linear pieces may intersect are given



20 STÉPHANE GAUBERT AND SERGEĬ SERGEEV

by

(63)
a1 + k1λ

n1

=
a2 + k2λ

n2

,

where all parameters are integers and 1 6 |k1|, |k2|, n1, n2 6 m. This implies

(64) λ =
a1n2 − a2n1

k2n1 − k1n2

The denominators of these points range from −m2 to m2, hence their number in the

interval L is L× O(m4). We reconstruct the whole spectral function by calculating s(λ)

at these points, since s(λ) is linear between them. ¤

Since spec(A,B) is the zero set of s(λ), we can identify spec(A,B) by reconstructing

s(λ) in the spectral intervals given by Proposition 18. This yields the following

Corollary 22. Let A,B ∈ Rn×m
max have only integer or −∞ entries and no −∞ columns.

Then the number of calls to the oracle needed to identify spec(A,B) does not exceed

(∨i(B
]A0)i +∨i(A

]B0)i)×O(m4).

3.5. Examples of analytic computation. In this section we consider two particular

situations when the spectral function can be constructed analytically. The first example

shows that any asymptotics k/l, where l = 1, . . . ,m and k = l − 2t for t = 1, . . . , l,

can be realized. The second example is taken from [Ser], and it shows that any system

of intervals and points on the real line can be represented as spectrum of a max-plus

two-sided eigenproblem.

Asymptotic slopes. In our first example we consider pairs of matrices Am,l ∈
Rm×m

max , Bm,l ∈ Rm×m
max with (0,−∞) entries, where 0 6 l 6 bmc. An intuitive idea is

to make a certain “exchange” between the max-plus identity matrix and a certain cyclic

permutation matrix. For instance

(65) A6,2 =




· · · · · 0

· 0 · · · ·
· 0 · · · ·
· · · 0 · ·
· · · 0 · ·
· · · · 0 ·




, B6,2 =




0 · · · · ·
0 · · · · ·
· · 0 · · ·
· · 0 · · ·
· · · · 0 ·
· · · · · 0




,

where the dots denote −∞ entries.

Formally, Am,l = (am,l
ij ) are defined as matrices with {0,−∞} entries such that am,l

ij = 0

for i = 1 and j = m, or i = j + 1 where 2l < i 6 m, or i = j = 2k where 1 6 k 6 l, or

i = 2k + 1 and j = 2k, where 1 6 k < l, and am,l
ij = −∞ otherwise.
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Similarly, Bm,l = (bm,l
ij ) are defined as matrices with {0,−∞} entries such that bm,l

ij = 0

for i = j where 2l < i 6 m, or i = j = 2k − 1 where 1 6 k 6 l, or i = 2k and j = 2k − 1,

where 1 6 k 6 l, and bm,l
ij = −∞ otherwise.

Proposition 23. The spectral function associated with Am,l, Bm,l consists of two linear

pieces: s(λ) = λ× (m− 2l)/m for λ 6 0 and s(λ) = −λ× (m− 2l)/m for λ > 0.

Proof. Let us introduce yet another matrix Cm,l(λ) = (cm,l
ij (λ)) ∈ Rm×m

max . Informally, it

is a sum of a {0,−∞} permutation (circulant) matrix and its inverse, weighted by ±λ.

This pattern corresponds to the above mentioned “exchange” in the construction of Am,l

and Bm,l. In particular, (65) corresponds to

(66) C6,2 =




· −λ · · · −λ

λ · λ · · ·
· −λ · −λ · ·
· · λ · λ ·
· · · −λ · λ

λ · · · −λ ·




.

Defining formally, cm,l
1,m = −λ, cm,l

m,1 = λ, and

(67) cm,l
ij =





sign(i, j)× λ, if 1 6 i, j 6 m and |j − i| = 1,

−∞, otherwise,

where

(68) sign(i, j) =





1, j − 1 = i > 2l or j ± 1 = i = 2k 6 2l,

−1, i− 1 = j > 2l or i± 1 = j = 2k 6 2l.

Observe that the pairs (i, j) and (j, i) for j = i + 1 (and also (1,m) and (m, 1)) have the

opposite sign.

It can be shown that each representing max-plus matrix of the min-max function

(69) hm,l
λ (x) = (λ + (Am,l)]Bm,lx) ∧ (−λ + (Bm,l)]Am,lx)

is choosing one of the two entries in each row of Cm,l(λ). The matrices can be classified

according to this choice as follows (see (66) for an illustration):

1. Choose (m, 1), and (i, i + 1) for i = 1, . . . , m− 1;

2. Choose (1,m), and (i, i− 1) for i = 2, . . . , m;

3. Choose both (m, 1) and (1,m), or both (i− 1, i) and (i, i− 1) for some i = 2, . . . , n.

The first two strategies give just one matrix each, with the (maximum) cycle means

λ× (m−2l)/m and −λ× (m−2l)/m. The rest of the representing matrices are described
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by 3., and it follows that their maximum cycle means are always greater than or equal to

0. Hence s(λ) = λ× (m− 2l)/m ∧ −λ× (m− 2l)/m. ¤

The spectrum of two-sided eigenproblem. Now we consider an example of [Ser].

Let us define A ∈ R2×3t
max , B ∈ R2×3t

max :

A =

(
. . . ai bi ci . . .

. . . 2ai 2bi 2ci . . .

)
,

B =

(
. . . 0 0 0 . . .

. . . ai ci bi . . .

)
,

(70)

where ai 6 ci < ai+1 for i = 1, . . . , t− 1, where bi := ai+ci

2
. The following result describes

spec(A,B).

Theorem 24 ([Ser]). With A, B defined by (70),

(71) spec(A,B) =
t⋃

i=1

[ai, ci].

To calculate s(λ), which is a more general task, one can study the representing matrices

like in the previous example. Another way is to guess, for each λ, a finite eigenvector of

PD ◦ PC(λ) and then s(λ) is the corresponding eigenvalue. By this method we obtained

that:

(72) s(λ) =





λ− a1, if λ 6 a1,

0, if ak 6 λ 6 ck, k = 1, . . . , t,

max(ck − λ, λ− ak+1), if ck 6 λ 6 ak+1, k = 1, . . . , t− 1,

ct − λ, if λ > ct.

More precisely, it can be shown that the following vectors are eigenvectors of PDPC(λ):

(73) yλ =





(0 a1 0 a1), if λ 6 a1,

(0 λ + bk − ak 0 λ + bk − ak), if ak 6 λ 6 bk, k = 1, . . . , t,

(0 ck 0 ck), if bk 6 λ 6 ck, k = 1, . . . , t,

(0 λ 0 λ), if ck 6 λ 6 ak+1, k = 1, . . . , t− 1,,

(0 ct 0 ct)
T , if λ > ct,

with the eigenvalues expressed by (72).

We can also conclude that in this case −r(A]B) = a1 and r(B]A) = ct. Indeed, by

(72), s(λ) = λ − a1 for λ 6 a1 and s(λ) = ct − λ for λ > ct. Comparing this with the

result of Theorem 19, part 3, we get the claim.
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Figure 2. The spectral function of A and B in (74)

As a1 and ct are eigenvalues, the last result shows that the bounds given in Theorem

17 cannot be improved in general.

Example 2. In (70), take t = 3, [a1, c1] = [1, 2], [a2, c2] = [2.2, 2.4] and [a3, c3] = [3, 3].

Then

A =

(
1 1.5 2 2.2 2.3 2.4 3

2 3 4 4.4 4.6 4.8 6

)
,

B =

(
0 0 0 0 0 0 0

1 2 1.5 2.2 2.4 2.3 3

)(74)

The spectral function is shown on Figure 2.
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discussions which have been at the origin of this work.

References

[ABG98] M. Akian, R. Bapat, and S. Gaubert. Asymptotics of the perron eigenvalue and eigenvector
using max-algebra. C.R.A.S. Serie I, 327:927–932, 1998.

[ABG04] M. Akian, R. Bapat, and S. Gaubert. Perturbation of eigenvalues of matrix pencils and
optimal assignment problem. C.R.A.S. Serie I, 339:103–108, 2004. arXiv:math.SP/0402438.

[ABG06a] M. Akian, R. Bapat, and S. Gaubert. Min-plus methods in eigenvalue perturbation the-
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24 STÉPHANE GAUBERT AND SERGEĬ SERGEEV
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