Skip to main content
Log in

Stabilizing bit-rates in networked control systems with decentralized event-triggered communication

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In a decentralized event-triggered networked control system (NCS), an agent samples and transmits its local state information to the controller when some local event occurs. Such event-triggered NCSs were expected to be more efficient than traditional periodically sampled system in terms of communication channel usage. This paper studies the stability of decentralized event-triggered NCS in the presence of quantization and delays. We point out some potential issues in decentralized event-triggered design and propose an alternative decentralized event with a linear-affine threshold, which avoids infinitely fast data transmission. Conditions on quantizer and communication channel are derived, which, when satisfied, can guarantee stability of the resulting NCS. Based on these conditions, finite stabilizing bit-rates are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A formal proof of the existence of the entering time is contained in the proof of Theorem 2 in Appendix D.

  2. To make a fair comparison we used the same quantizer in both the first and the second experiments.

References

  • Anta A, Tabuada P (2010) To sample or not to sample: self-triggered control for nonlinear systems. IEEE Trans Autom Control 55(9):2030–2042

    Article  MathSciNet  Google Scholar 

  • Brockett R, Liberzon D (2000) Quantized feedback stabilization of linear systems. IEEE Trans Autom Control 45:1279–1289

    Article  MATH  MathSciNet  Google Scholar 

  • De Persis C, Sailer R, Wirth F (2011) On a small-gain approach to distributed event-triggered control. In: IFAC world congress, vol 18, pp 2401–2406

  • Delchamps D (1990) Stabilizing a linear system with quantized state feedback. IEEE Trans Autom Control 35(8):916–924

    Article  MATH  MathSciNet  Google Scholar 

  • Dimarogonas DV, Johansson KH (2009) Event-triggered control for multi-agent systems. In: Proc. IEEE conference on decision and control

  • Donkers M, Heemels W (2012) Output-based event-triggered control with guaranteed \(\mathcal L_{\infty}\)-gain and improved and decentralized event-triggering. IEEE Trans Autom Control 57(6):1362–1376

    Article  MathSciNet  Google Scholar 

  • Elia N, Mitter S (2002) Stabilization of linear systems with limited information. IEEE Trans Autom Control 46(9):1384–1400

    Article  MathSciNet  Google Scholar 

  • Heemels W, Johansson KH, Tabuada P (2012) An introduction to event-triggered and self-triggered control. In: Proceedings of IEEE conference on decision and control, pp 3270–3285

  • Huber JB, Matschkal B (2004) Spherical logarithmic quantization and its application for dpcm. In: Int. ITG conf. on source and channel coding, pp 349–356

  • Khalil H (2002) Nonlinear systems. Prentice Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  • Li L, Wang X, Lemmon M (2012) Stabilizing bit-rates in quantized event triggered control systems. In: Proceedings of the 15th ACM international conference on hybrid systems: computation and control. ACM, pp 245–254

  • Liberzon D, Hespanha J (2005) Stabilization of nonlinear systems with limited information feedback. IEEE Trans Autom Control 50(6):910–915

    Article  MathSciNet  Google Scholar 

  • Lunze J, Lehmann D (2010) A state-feedback approach to event-based control. Automatica 46(1):211–215

    Article  MATH  MathSciNet  Google Scholar 

  • Martins NC, Dahleh MA (2008) Feedback control in the presence of noisy channels: bode-like fundamental limitations of performance. IEEE Trans Autom Control 53(7):1604–1615

    Article  MathSciNet  Google Scholar 

  • Mazo Jr M, Cao M (2011) Decentralized event-triggered control with asynchronous updates. In: 2011 50th IEEE conference on decision and control and European control conference (CDC-ECC). IEEE, pp 2547–2552

  • Mazo Jr M, Cao M (2012) Decentralized event-triggered control with one bit communications. In: Analysis and design of hybrid systems, pp 52–57

  • Mazo Jr M, Tabuada P (2008) On event-triggered and self-triggered control over sensor/actuator networks. In: Proceedings of the 47th conference on decision and control, pp 435–440

  • Mazo Jr M, Tabuada P (2011) Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans Autom Control 56(10):2456–2461

    Article  MathSciNet  Google Scholar 

  • Mazo Jr M, Anta A, Tabuada P (2010) An iss self-triggered implementation of linear controllers. Automatica 46(8):1310–1314

    Article  MATH  MathSciNet  Google Scholar 

  • Seyboth G, Dimarogonas D, Johansson K (2011) Control of multi-agent systems via event-based communication. In: IFAC world congress, vol 18, pp 10,086–10,091

  • Sun Y, Mehta PG (2010) Bode-like performance limitations in control of nonlinear systems. IEEE Trans Autom Control 55(6):1390–1405

    Article  Google Scholar 

  • Sun Y, Wang X (2011) Quantization scheme design in distributed event-triggered networked control systems. In: IFAC world congress, pp 13,257–13,262

  • Tabuada P (2007) Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans Autom Control 52(9):1680–1685

    Article  MathSciNet  Google Scholar 

  • Tatikonda S, Mitter S (2004) Control under communication constraints. IEEE Trans Autom Control 49(7):1056–1068

    Article  MathSciNet  Google Scholar 

  • Wan P, Lemmon M (2009) An event-triggered distributed primal-dual algorithm for network utility maximization. In: Proc. IEEE conference on decision and control, pp 5863–5868

  • Wang X, Lemmon M (2008) Event-triggered broadcasting across distributed networked control systems. In: American control conference, pp 3139–3144

  • Wang X, Lemmon M (2009a) Event-triggering in distributed networked systems with data dropouts and delays. In: Hybrid systems: computation and control, pp 366–380

  • Wang X, Lemmon M (2009b) Self-triggered feedback control systems with finite-gain \(\mathcal{L}_2\) stability. IEEE Trans Autom Control 54(3):452–467

    Article  MathSciNet  Google Scholar 

  • Wang X, Lemmon M (2011) Event-triggering in distributed networked control systems. IEEE Trans Autom Control 56(3):586–601

    Article  MathSciNet  Google Scholar 

  • Wang X, Sun Y, Hovakimyan N (2010) Relaxing the consistency condition in distributed event-triggered networked control systems. In: Proc. IEEE conference on decision and control, pp 4727–4732

  • Wang X, Sun Y, Hovakimyan N (2012) Asynchronous task execution in networked control systems using decentralized event-triggering. Syst Control Lett 61(9):936–944

    Article  MATH  MathSciNet  Google Scholar 

  • Wong W, Brockett R (1999) Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback. IEEE Trans Autom Control 44(5):1049–1053

    Article  MATH  MathSciNet  Google Scholar 

  • Yu H, Antsaklis P (2011) Event-triggered real-time scheduling for stabilization of passive/output feedback passive systems. In: American control conference, pp 1674–1679

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wang.

Appendices

Appendix A: Proof of Lemma 1

Proof

Equation 2 implies \(\|\dot x_i(t)\|=\|F_i\left(x(t), K(\hat x)\right)\|\). Since ||x(t)|| and \(\|\hat x(t)\|\) are bounded by θ and \(\hat \theta\), respectively, over \(\left[r_i^k, f_i^{k+1}\right)\), we can apply Assumption 3 that F i is locally Lipschitz and obtain

$$\begin{array}{rll} \|\dot x_i(t)\| &\le& a_i \|x(t)\| + b_i \|\hat x(t)\| \\ &\le& a_i\theta + b_i \hat \theta = \gamma_i, \end{array}$$

where the last inequality is obtained with the assumption ||x(t)|| ≤ θ and \(\|\hat x(t)\| \le \hat \theta\). As a result,

$$ \frac{d}{dt} \|x_i(t)-x_i^k\|~ \le~ \|\dot x_i(t)\| ~\le~ \gamma_i $$

holds for any \(t \in \left[r_i^k, f_i^{k+1}\right)\). Solving this inequality for any \(t \in [r_i^{k+1}, f_i^{k+1})\), we obtain

$$\begin{array}{rll} \|x_i(t) -x_i^k \| &\le& \|x_i\left(r_i^{k+1}\right)-x_i^k\| + \gamma_i \left(t- r_i^{k+1}\right) \\ &\le& \rho_i\|x_i^k\|+ \omega_i+\gamma_i \Delta_i, \end{array}$$

where the second inequality comes from the triggering condition. Note that for any \(t\in [r_i^k, r_i^{k+1}]\), the preceding inequality also holds. Consequently, we have

$$ \|x_i(t) -x_i^k \| \le \rho_i\|x_i^k\|+ \omega_i+\gamma_i \Delta_i, $$

for all \(t\in [r_i^k, f_i^{k+1})\). Subtracting \(\rho_i\|x_i(t) -x_i^k \|\) at both sides of the inequality above, we obtain

$$\begin{array}{rll} (1-\rho_i)\|x_i(t) -x_i^k \| &\le & \rho_i\|x_i^k\|+ \omega_i+\gamma_i \Delta_i - \rho_i\|x_i(t) -x_i^k \| \\ &\le& \rho_i\|x_i(t)\| + \omega_i+\gamma_i \Delta_i, \end{array}$$

which implies inequality (10). □

Appendix B: Proof of Lemma 2

Proof

Since ||x(t)|| ≤ θ and \( \|\hat x(t)\| \le \hat \theta\) for any t ≥ 0, we apply Lemma 1 to obtain

$$ \|x_i(t) -x_i^k \| \le \frac{\rho_i}{1-\rho_i} \|x_i(t)\| + \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} $$

for \(\forall~t\in \left[f_i^k,f_i^{k+1}\right)\), \(\forall~i \in {\mathcal{N}}\), and ∀ k ∈ ℤ + . Since \(\hat x_i(t) = x_i^k\) for \(\forall~t\in \left[f_i^k,f_i^{k+1}\right)\), we know

$$ \|x_i(t) - \hat x_i(t) \| \le \frac{\rho_i}{{1-\rho_i}} \|x_i(t)\| + \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} $$

for ∀ t ≥ 0. Therefore,

$$\begin{array}{rll} \|\tilde x(t)\|= \|x(t)-\hat x(t)\| &\le& \left\|\left\langle \frac{\rho_i}{{1-\rho_i}} \|x_i(t)\| + \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} \right\rangle \right\| \nonumber \\ &\le& \left\|\left\langle \frac{\rho_i}{{1-\rho_i}} \|x_i(t)\|\right\rangle\right\| + \left\|\left\langle \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} \right\rangle \right\| \nonumber \\ &\le& p \|x(t)\| + d \end{array}$$
(37)

where \(p := \max_{i\in {\mathcal{N}}}\frac{\rho_i}{{1-\rho_i}}\) and \(d :=\left\|\left\langle \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} \right\rangle \right\|\).

We now consider \(\dot V\) at time t. By Eq. 5, the time derivative of V at time t satisfies

$$ \dot V \le -\beta(x(t))\left(\phi(\|x(t)\|) - \psi\left(\|x(t)\|, \|\tilde x(t)\|\right)\right). $$

Since ||x(t)|| and \(\|\hat x(t)\|\) are both bounded for any t ≥ 0 , we can apply Assumption 2 to the preceding inequality and obtain

$$\begin{array}{rll} \dot V &\le & -\beta(x(t))\left(L\|x(t)\| - B\|\tilde x(t)\| \right) \\ &\le & -\beta(x(t))\left(L\|x(t)\| - B p \|x(t)\| - Bd \right) \end{array}$$
(38)

where the second inequality is obtained using inequality (37). Therefore there must exist T ≥ 0 such that

$$ \|x(t)\| \le \alpha_1^{-1} \circ \alpha_2\left(\frac{Bd}{L-Bp}\right) $$

holds for ∀ t ≥ T, as shown in Khalil (2002, p. 169). □

Appendix C: Proof of Theorem 1

Proof

First, we prove that V(x(t)) ≤ V(x 0) holds for all t > 0 by contradiction. To simplify the notations, we use V(t) to denote V(x(t)) if it is clear in context. Suppose that there is a time instant \(\bar t > 0\), such that \(V(\bar t) > V(x_0)\). Note that \(\dot V(t)|_{t=0} < 0\). Therefore, there must exist a time instant \(t^* \in (0,\bar t)\) and a small positive constant ϵ such that

$$ V(t) < V(t^*) =V(x_0),~~ \forall~t\in [0,t^*) $$
(39)
$$ \dot V(t) > 0,\;\;\forall~t\in (t^*-\epsilon,t^*]. $$
(40)

These inequalities imply

$$ \|x(t)\| \le \theta, $$
(41)
$$ \|\hat x(t)\| \le \hat \theta $$
(42)

for ∀ t ∈ [0, t *]. Following a similar analysis as in the proof of Lemma 2, we obtain

$$ \dot V(t) \le -\beta(x(t))\left(L\|x(t)\| - B p \|x(t)\| -Bd\right) $$
(43)

for all t ∈ [0,t *], where \(p := \max_{i\in {\mathcal{N}}}\frac{\rho_i}{{1-\rho_i}}\) and \(d :=\left\|\left\langle \frac{\omega_i+\gamma_i \Delta_i}{{1-\rho_i}} \right\rangle \right\|\). By inequality (40), we know \(\dot V(t) > 0\) for ∀ t ∈ (t * − ϵ, t *] . Combining this with the preceding inequality yields

$$ 0 < \dot V(t) \le -\beta(x(t))\left(L\|x(t)\| - B p \|x(t)\| -Bd \right) $$

for any t ∈ (t * − ϵ, t *], which implies

$$\|x(t)\| < \frac{Bd}{L-Bp} $$
(44)

for any t ∈ (t * − ϵ, t *], since β is a positive definite function. Note that by Eq. 11, \(\gamma_i = a_i \theta + b_i \hat \theta\). Therefore, inequality (44) yields

$$\begin{array}{rll} \|x(t)\| &<& \frac{B \left\|\left\langle \frac{\omega_i+ (a_i\theta +b_i\hat \theta) \Delta_i}{{1-\rho_i}} \right\rangle \right\| }{L-Bp}\\ &\le& \alpha_2^{-1}\circ V(x_0) \end{array}$$

for any t ∈ (t * − ϵ, t *], where the second inequality is obtained using inequality (17). As a result, we have \(V(t^*) \le \alpha_2(\|x(t^*)\|) < V(x_0)\), which contradicts inequality (39). Therefore, we can conclude that V(t) ≤ V(x 0) always holds.

Since the hypotheses of Lemma 1 are satisfied, we know that x(t) ∈ Λ, where Λ is defined in Eq. 13. Consequently, ||x(t)|| ≤ θ and \(\|\hat x(t)\| \le \hat \theta\) hold for all t ≥ 0. Applying Lemma 2, we know that the overall NCS is UUB. Meanwhile, since ||x(t)|| and \(\hat x(t)\) are bounded, we know that the growth rate of \(\|x_i(t)-x_i^k\|\) is bounded. Therefore, with a linear-affine threshold, we conclude that the inter-event time intervals are bounded by a positive constant from below. □

Appendix D: Proof of Theorem 2

Proof

By inequalities (19) and (23), we know

$$\begin{array}{rll} \sigma \alpha_1^{-1} \circ V(x_0) &\le& \alpha_1^{-1}\circ \alpha_2 \left(\sigma \alpha_1^{-1} \circ V(x_0) \right) \\ &\le& \mu \kappa \left( \sigma \alpha_1^{-1} \circ V(x_0) \right) \\&<& \kappa \left( \sigma \alpha_1^{-1} \circ V(x_0) \right) < \alpha_2^{-1}\circ~V(x_0), \end{array}$$

which implies that inequality (17) in Theorem 1 is satisfied with \(\omega_i^0 = \tau_i \alpha_1^{-1} \circ V(x_0)\). Then by Theorem 1, we know x(t) ∈ Λ for all t ≥ 0, which means

$$\begin{array}{rll} \|x(t)\| &\le& \alpha_1^{-1}\circ V(x_0),\\ \|\hat x(t)\| &\le& \left\|\left\langle \frac{\tilde \delta_i \tau_i + 1}{1-\tilde \delta_i \rho_i}\right\rangle\right\| \alpha_1^{-1}\circ V(x_0). \end{array}$$

Since the time between the switches of \(\omega_i^s\) is long enough, we can apply Lemma 2 to show that there exists t 1 > 0 such that every \(\omega_i^0\) has been switched to \(\omega_i^1\) and the inequality

$$\begin{array}{rll} \|x(t)\| &\le & \alpha_1^{-1} \circ \alpha_2\left( \sigma \alpha_1^{-1} \circ V(x_0) \right) \\ &\le& \mu \kappa\left( \sigma \alpha_1^{-1} \circ V(x_0) \right) \nonumber \\ &\le & \mu \alpha_2^{-1}\circ V(x_0) \le \mu \alpha_1^{-1}\circ V(x_0) \end{array}$$

holds for any t ≥ t 1, where the third inequality is obtained using inequality (23). Consequently,

$$ \|\hat x(t)\|\le \mu \left\|\left\langle \frac{\tilde \delta_i \tau_i + 1}{1-\tilde \delta_i \rho_i}\right\rangle\right\| \alpha_1^{-1}\circ V(x_0) $$

holds for all t ≥ t 1. Then we can re-apply Lemma 2 to get the new ultimate bound on ||x(t)||, i.e. there exists t 2 > t 1 such that every \(\omega_i^1\) has been switched to \(\omega_i^2\) and

$$\begin{array}{rll} \|x(t)\| &\le& \mu^2\alpha_1^{-1}\circ V(x_0),\\ \|\hat x(t)\| &\le& \mu^2\left\|\left\langle \frac{\tilde \delta_i \tau_i + 1}{1-\tilde \delta_i \rho_i}\right\rangle\right\| \alpha_1^{-1}\circ V(x_0). \end{array}$$

holds for all t ≥ t 2. Keeping this procedure, we know that there exists t k  > 0, such that

$$ \|x(t)\| \le \mu^s \alpha_1^{-1} \circ V(x_0) $$

holds for all t ≥ t s . Since μ ∈ (0, 1), as k → ∞, the preceding inequality implies x(t) → 0, which implies asymptotic stability of the NCS.

We now show the lower bound on the inter-event time intervals. Note that during the time interval when the event is \(\|x_i(r_i^k) -x_i^k\| \le \rho_i\|x_i^k\| +\omega_i^s\), the bound on the state is \(\|x(t)\| \le \mu^s \alpha_1^{-1} \circ V(x_0)\). Therefore, we can follow a similar analysis in Lemma 1 and obtain

$$\begin{array}{lll} &&\|x_i\left(r_i^{k+1}\right) -x_i^k \| \\ &&\quad \le \|x_i\left(r_i^k\right) - x_i^k\| + \mu^s\underbrace{\left( a_i+b_i\left\|\left\langle \frac{\tilde \delta_i \tau_i + 1}{1-\tilde \delta_i \rho_i}\right\rangle\right\| \right)\alpha_1^{-1}\circ V(x_0)}_{\varrho_i} \left(r_i^{k+1}- r_i^k\right) \\ && \quad\le \tilde \delta_i \left(\rho_i\|x_i^k\| + \omega^s_i\right) +\mu^s \varrho_i T_i^k. \end{array}$$

Therefore, with \(\|x_i(r_i^{k+1}) -x_i^k \| = \rho_i\|x_i^k\| + \omega^s_i\), we have

$$ T_i^k \ge \frac{(1-\tilde \delta_i) \tau_i \alpha_1^{-1} \circ V(x_0)}{\varrho_i}. $$

Appendix E: Proof of Lemma 3

Proof

We prove the statement by considering two cases:

Case I: :

when \((1-\rho_i)\|x_i^k\| \ge \omega_i\). By the triggering condition, we have

$$ \|x_i\left(r_i^{k+1}\right)\| \ge \left(1-\rho_i\right)\|x_i^{k}\|-\omega_i $$

which implies

$$\begin{array}{rll} \rho_i\|x_i\left(r^{k+1}\right)\|+\omega_i &\ge & \rho_i\left(\left(1-\rho_i\right)\|x_i^{k}\|-\omega_i\right)+\omega_i \\ &=&(1-\rho_i)\left(\rho_i\|x_i^{k}\|+\omega_i\right) \end{array}$$

Using inequality (29) and the inequality above, we obtain

$$ \frac{\|e_{{\mathcal{Q}},i}^{k+1}\|}{\rho_i\|x_i(r_i^{k+1})\|+\omega_i} \le \frac{\|e_{{\mathcal{Q}},i}^{k+1}\|}{(1-\rho_i)(\rho_i\|{x}_i^{k}\|+\omega_i)} \le \frac{\pi \sqrt{n-1}}{p(1-\rho_i)}. $$
(45)
Case II: :

when \((1-\rho_i)\|x_i^k\| < \omega_i\). In this case the following inequalities

$$\begin{array}{lll} & &\omega_i-(1-\rho_i)\|{x}_i^{k}\|\le\|x_i\left(r_i^{k+1}\right)\|\le (1+\rho_i)\|{x}_i^{k}\|+\omega_i \\ &&\rho_i\|x_i\left(r_i^{k+1}\right)\|+\omega_i \ge \omega_i \end{array}$$

hold. Using inequality (29) and the preceding inequalities, we obtain

$$\begin{array}{rll} \frac{\|e_{{\mathcal{Q}},i}^{k+1}\|}{\rho_i\|x_i(r_i^{k+1})\|+\omega_i}&\le& \frac{\|e_{{\mathcal{Q}},i}^{k+1}\|}{\omega_i} \le \frac{\pi \sqrt{n-1}}{p}\cdot\frac{\rho_i\|{x}_i^{k}\|+\omega_i}{\omega_i}\nonumber\\ &\le& \frac{\pi\sqrt{n-1}}{p}\cdot\left(1+\frac{\rho_i\|{x}_i^{k}\|}{(1-\rho_i)\|{x}_i^{k}\|}\right)\nonumber\\ &=& \frac{\pi\sqrt{n-1}}{p(1-\rho_i)} \end{array}$$
(46)

The right hand side of inequalities (45) and (46) are the same and can be made arbitrarily small by increasing p. □

Appendix F: Proof of Corollary 1

Proof

Consider \(\|x_i(t)-\hat x_i(t)\|\) over \(t\in [r_i^k,r_i^{k+1})\). Note that

$$\begin{array}{rll} \frac{d}{dt} \|x_i(t)-x_i^k\| & \le & \|\dot x_i(t)\| \\ &\le& a_i \|x(t)\| + b_i \|\hat x(t)\| \\ &\le& a_i\theta + b_i \hat \theta = \gamma_i \end{array}$$

holds for any \(t \in \left[r_i^k, r_i^{k+1}\right)\), which implies that for any \(t \in [r_i^k, r_i^{k+1})\), the inequality

$$\begin{array}{rll} \|x_i(t) -x_i^k \| &\le& \|x_i(r_i^k) - x_i^k\| + \gamma_i \left(t- r_i^k\right) \\ &\le& \tilde \delta (\rho_i\|x_i^k\| + \omega_i) +\gamma_i T_i^k \end{array}$$

holds and therefore

$$ \|x_i(r_i^{k+1}) -x_i^k \| \le \tilde \delta (\rho_i\|x_i^k\| + \omega_i) +\gamma_i T_i^k. $$

Based on the triggering condition, \(\|x_i(r_i^{k+1}) -x_i^k \| = \rho_i\|x_i^k\| + \omega_i\). Applying this equation to the preceding inequality yields the satisfaction of inequality (33). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Wang, X. Stabilizing bit-rates in networked control systems with decentralized event-triggered communication. Discrete Event Dyn Syst 24, 219–245 (2014). https://doi.org/10.1007/s10626-013-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-013-0169-z

Keywords

Navigation