Skip to main content
Log in

Cycle time of a P-time Event Graph with affine-interdependent residence durations

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper, we widen the class of P-time Event graphs by introducing affine-interdependent residence durations. This new class is studied through a general algebraic model. Considering a periodic behavior, we provide conditions of existence of a trajectory and propose a technique allowing the determination of extremal solutions. We show that the cycle time is intrinsic to this new model: it depends on the circuits of an associated graph but also on more complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity. An algebra for discrete event systems. Wiley, New York. Available from: http://maxplus.org

    Google Scholar 

  • Burns SM (1991) Performance analysis and optimization of asychronous circuits. Ph.D., Institute of Technology, Pasadena, California, USA

  • David R, Alla H (1992) Petri nets and Grafcet, tools for modelling discrete event systems. Editions Prentice Hall, Londres

    MATH  Google Scholar 

  • Campos J, Chiola G, Colom JM, Silva M (1992) Properties and performance bounds for timed marked graphs. IEEE Trans Circuits Syst 39(5):386–401

    Article  MATH  Google Scholar 

  • Declerck P, Guezzi A, Boimond J-L (2007) Cycle time of P-time Event Graphs. In: 4th international conference on informatics in control, automation and robotics (ICINCO 2007), 09–12 May. Angers, France. Avalaible from: http://www.istia.univ-angers.fr/~declerck/recherche.html

  • Declerck P, Guezzi A, Gros C (2008) Temps de cycle des Graphes d’Événements Temporisés et P-temporels. In: CIFA 08. Bucharest, Romania. Avalaible from: http://www.istia.univ-angers.fr/~declerck/recherche.html

  • Declerck P (2011) From extremal trajectories to consistency in P-time Event Graphs. IETAA9, IEEE Trans Autom Control 56(2):463–467. Available from: http://www.istia.univ-angers.fr/~declerck

    Article  MathSciNet  Google Scholar 

  • Declerck P (2013) Discrete event systems in dioid algebra and conventionnal algebra. Focus Series in Automation & Control, ISTE Ltd and John Wiley & Sons Inc., New York

    Google Scholar 

  • Defossez F, Collart-Dutilleul S, Bon P (2008) Temporal requirements checking in a safety analysis of railway systems. In: FORMS/FORMAT 2008, Symposium on formal methods for automation and safety in railway and automotive systems. TU Braunschweig and Budapest University of Technology and Economics

  • Giua A, Piccaluga A, Seatzu C (2000) Optimal token allocation in timed cyclic Event-Graphs. In: Proc. 4th workshop on discrete event systems, pp 209–218

  • Karp RM (1978) A characterization of the minimum mean-cycle in a digraph. Discret Math 3:309–311

    Article  MathSciNet  Google Scholar 

  • Khansa W (1997) Réseaux de Petri P-temporels. Contribution à l’étude des systèmes à Evénements discrets. Thèse. Université de Savoie, France

  • Magott J (1984) Performance evaluation of concurrent systems using Petri nets. Inf Process Lett 18:7–13. North-Holland

    Article  MathSciNet  MATH  Google Scholar 

  • MuDer Jeng (2005) Comments on timed Petri nets in modeling and analysis of cluster tools. IEEE Trans Autom Sci Eng 2(1):92–93

    Article  Google Scholar 

  • Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  • Ramamoorthy CV, Gary Ho S (1980) Performance evaluation of asynchronous concurrent systems using Petri nets. IEEE Trans Softw Eng SE-6(5):440–449

    Article  MATH  Google Scholar 

  • Savard G (2001) Introduction aux méthodes de points int érieurs, course notes. Avalaible from: http://www.iro.umontreal.ca/~marcotte/Ift6511/Pts_interieurs.pdf

  • Schrijver A (1987) Theory of linear and integer programming. John Wiley and Sons, New York

    Google Scholar 

  • Silva M, Colom JM (1989) On the computation of structural synchronic invariants in P/T nets advances in Petri nets. In: Rozenberg G (ed) pp 386–417. Springer-Verlag, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Declerck.

Appendix

Appendix

Let us express system inequalities (1) on a reduced horizon. Such a form will simplify the calculations. The objective is to establish an equivalent model such that each place of the graph initially contains only zero or one token.

Roughly speaking, the general idea is to split each place containing i tokens into i places, where each place contains only one token (a place can initially contain a maximum number of m tokens). A systematic procedure is as follows.

Let us introduce new variable X, that is, \(X(k)=(X_{0}^{t}(k) \; X_{1}^{t}(k) \; \ldots \; X_{i}^{t}(k) \; \ldots X_{m-1}^{t}(k)) ^{t}\) with X i (k) = x(k − m + i + 1). By construction, we have X m − 1(k) = x(k) and X i (k) = X i + 1(k − 1) for i going from 0 to m − 2.

So, system (1) becomes

$$ \left( \begin{array}{ll} G_{1}^{^{\prime }-} & G_{0}^{^{\prime }-} \\[6pt] G_{1}^{^{\prime }+} & G_{0}^{^{\prime }+} \end{array} \right) \times \dbinom{X(k-1)}{X(k)}\leq \left( \begin{array}{r} -T^{-} \\[6pt] T^{+} \end{array} \right), $$

where \(G_{1}^{^{\prime }-}=( G_{m}^{-} \; 0 \; \ldots \; \ldots \; 0 )\), \(G_{0}^{^{\prime }-}=( G_{m-1}^{-} \; G_{m-2}^{-} \; \ldots \; G_{1}^{-} \; G_{0}^{-} )\), \(G_{1}^{^{\prime }+}=( G_{m}^{+} \; 0 \; \ldots \; \ldots \; 0 t)\) and \(G_{0}^{^{\prime }+}=( G_{m-1}^{+} \; G_{m-2}^{+} \; \ldots \; G_{1}^{+} \; G_{0}^{+} )\).

This system is completed by X i (k) = X i + 1(k − 1) for i going from 0 to m − 2 which is equivalent to the following inequalities

$$ \left\{ \begin{array}{l} X_{i+1}(k-1)-X_{i}(k)\leq 0 \\[6pt] -X_{i+1}(k-1)+X_{i}(k)\leq 0 \end{array} \right. $$

for i = 0 to m − 2. The relevant matrix form is as follows:

$$ \left( \begin{array}{cc} H_{01}^{-} & H_{00}^{-} \\[6pt] H_{01}^{+} & H_{00}^{+} \end{array} \right) \times \dbinom{X(k-1)}{X(k)}\leq \dbinom{0}{0}, $$

where the dimension of the matrices \(H_{01}^{-}=-H_{01}^{+}\) and \( H_{00}^{-}=-H_{00}^{+}\) is ((m − 1).|TRm.|TR|). The matrix \( H_{01}^{-}\) is a subdiagonal of identity matrices immediately above the main diagonal and the matrix \(H_{00}^{-}\) is a main diagonal of negative identity matrices.

Finally, the concatenation of the two systems gives the algebraic form

$$ \left( \begin{array}{r} G^{-} \\[6pt] G^{+} \end{array} \right) \times \binom{X(k-1)}{X(k)}\leq \left( \begin{array}{l} -T^{-} \\[6pt] 0 \\[6pt] T^{+} \\[6pt] 0 \end{array} \right), $$

where \( G^{-}=\left( \begin{array}{rr} G_{1}^{^{\prime }-} & G_{0}^{^{\prime }-} \\ H_{01}^{-} & H_{00}^{-} \end{array} \right) \) and \( G^{+}=\left( \begin{array}{rr} G_{1}^{^{\prime }+} & G_{0}^{^{\prime }+} \\ H_{01}^{+} & H_{00}^{+} \end{array} \right) \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Declerck, P. Cycle time of a P-time Event Graph with affine-interdependent residence durations. Discrete Event Dyn Syst 24, 523–540 (2014). https://doi.org/10.1007/s10626-013-0173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-013-0173-3

Keywords

Navigation