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Abstract

This paper identifies a property of delay-robustness imidiged supervisory control of discrete-event
systems (DES) with communication delays. In previous wodistributed supervisory control problem
has been investigated on the assumption that inter-agenincoications take place with negligible
delay. From an applications viewpoint it is desirable t@xehis constraint and identify communicating
distributed controllers which are delay-robust, namegydally equivalent to their delay-free counterparts.
For this we introduce inter-agent channels modeled ast8-statomata, compute the overall system
behavior, and present an effective computational test &aydrobustness. From the test it typically
results that the given delay-free distributed control ig@obust with respect to certain communicated
events, but not for all, thus distinguishing events whicé aot delay-critical from those that are. The

approach is illustrated by a workcell model with three cominating agents.

. INTRODUCTION

Distributed control is pervasive in engineering practieéher by geographical necessity or to cir-
cumvent the complexity of centralized (also called ‘motimidi’) control. Existing work on distributed

supervisory control of discrete-event systems (DES) hassed on synthesis of local controllers for
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individual agents (plant components) such that the regpuitiontrolled behavior is identical with that
achieved by global supervisidiafg]. In these contributions, it is assumed that agents makepiexdent
observations and decisions, with instantaneous intemtag@mmunication. While simplifying the design

of distributed control, this assumption may be unrealistipractice, where controllers are linked by a
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physical network subject to delays. Hence, to model andaagppthese delays is essential for the correct
implementation of control strategies.

The communication problem in distributed control of malgent DES has been discussed by several
researchers. Kalyon et al7][propose a framework for the control of distributed systemsdeled as
communicating finite state machines with reliable unbodfel&O channels. They formulate a distributed
state avoidance control problem, and show that the existefia solution for the problem is undecidable.
Lin[ 8] investigates supervisory control of networked disct@tent systems which features communication
delays and data losses in observation and control. He asstimé the communication between a
supervisor and the plant is via a shared network and commtimic delays are bounded. Darondeau
and Rickerf] propose to synthesize distributed control starting fromanolithic supervisor (in the DES
sense) which can be represented as a distributed Petriocet; ets are linked by message passing to
effect token transfer required by transitions joining plathat have been distributed to distinct locations.
PN distributability is admitted somewhat to constrain gatigy; but the exact relation of this approach
to our own remains open to future research.

Research on communication problems in decentralized/tapdupervisory control has also been
reported in recent years. Taking delays into consideratmudes et al. JO] propose a 3-state data
transmission model, representing delays by timed eventis leiver and finite upper time bounds;
these events are incorporated into the plant and spedificatitomata, and the time bounds further
restricted by a supervisor synthesis procedure; maximahigsiveness and nonblocking, however, are
not guaranteed. In1fl] Barrett and Lafortune propose an information structuredetdor analysis and
synthesis of decentralized supervisory control, appleab principle to the case of communication
delays, but they assume that such delays are absent. Foitadliotass of specifications, Tripakis]]
formulates certain problems in decentralized control viittunded or unbounded communication delay,
modeling the system with communication by automata wittestaitput map. In this model the existence
of controllers in case of unbounded delay is undecidableoun paper, by contrast, we address this
guestion: does a given controller have the property of dedéystness (as we define it) or not? This
guestion is indeed decidable, and we provide an effectisetteanswer it. Schmidt et al.f] consider
a heterarchical (hierarchical/decentralized) architectequiring communication of shared events among
modules of the hierarchy. A communication model is deveadope which delay may affect system
operation unless suitable transmission deadlines are Ifneb, correct operation of the distributed
supervisors is achieved if the network is sufficiently f&s{.14] correct heterarchical operation is achieved

subject to a condition of “communication consistency”, blgieh the occurrence of low-level events is
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restricted by the feasibility of high-level events. Xu andriar [L5] consider monolithic supervisory
control with bounded communication deldymeasured by event count) between plant and controller; a
condition is derived for equality of controlled behavionsder delayd or with zero delay respectively;
verification is exponential inl. Hiraishi[16] proposes an automaton formalism for communication with
delay in decentralized control, and concludes semi-déditiaof the controller design problem in the
case ofk-bounded delay and in case an observability condition hfildstate-transition cycles. Ricker
and CaillaudL7] consider decentralized control (with a priori given indiwal observable event subsets)
in the case where co-observability fails and thereforeHistgervisor communication is needed for correct
global supervision. The issue is when, what, and to whom eangi@cal supervisor should communicate;
a solution is proposed to the protocol design problem. Inpayer this question does not arise because,
with supervisor localization, we already declare who comivates what to whom, and the problem is
then to analyze our existing ideal (instantaneous) comaatioin scheme to see if it is still correct in the
presence of delay.

Thus we consider distributed control with separately medebmmunication channels having unknown
unbounded delay, imposed on an existing distributed aachite known to be optimal and nonblocking
for zero delay. In this paper and its conference precursgr fve start from the DES distributed control
scheme called ‘supervisor localization’ reported3n€], which describes a systematic top-down approach
to design distributed controllers which collectively amlé global optimal and nonblocking supervision.
Briefly, we first synthesize a monolithic supervisor, or @itdively a set of decentralized supervisors,
assuming zero delay; then we apply supervisor localizatiodecompose each synthesized supervisor
into local controllers for individual plant components,this process determining the set of events that
need to be communicated. Next, and central to the preseet,pap propose a channel model for event
communication, and design a test to verify for which evehesdystem is delay-robust (as we define it
below).

The initial control problem is the standard ‘Ramadge-Waonh@W) problem [L9-21]. Here the plant
(DES to be controlled) is modeled as the synchronous praafiggveral DES agents (plant components),
say AGENT;, AGENT,, ..., that are independent, in the sense that their alphabetX,, ..., are
pairwise disjoint. In a logical sense these agents are difkespecificationSPEC;, SPEC,, ..., each
of which (typically) restricts the behavior of an appropgisubset of theAGENT; and is therefore
modeled over the union of the corresponding subfamily ofXheFor eachSPEC;, a ‘decentralized’
supervisory controlleiSUP; is computed in the same way as for a ‘monolithic’ supervisid;[ it

guarantees optimal (i.e. maximally permissive) and naclbig behavior of the relevant subfamily (the
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‘control scope’ of SPEC;) of the AGENT;. In general it will turn out that the synchronous product
of all the SUP; is blocking (e.g. may cause deadlock in the overall corgtblbehavior); in that case
one or more additional ‘coordinators’ must be adjoined titakly restrict the decentralized controlled
behavior (seef] for an example). Techniques for coordinator design ardlae in the literature (e.qg.
[22-25]) and in this paper we take them for granted. On achievingfsatory decentralized control we
finally ‘localize’ each decentralized supervisor, incliglithe coordinator(s), if any, to the agents that
fall within its control scope; the algorithm that achievésstis detailed in %], and we shall refer to
it as Localize The result ofLocalizeis that eachAGENT; is equipped with local controllers, one
for each of theSPEC; whose scope it falls within; in that sen®eGENT; is now ‘intelligent’ and
semi-autonomous, with controlled behavBJPLOC;, say, while the synchronous product behavior of
all the SUPLOGC,; is provably that of the monolithic supervisor for the RW pesh we began with.
Autonomy of theSUPLOC,; is qualified, in that normally the transition structure ote&UPLOC;
will include events from various otheAGENT}, with k& # i. The implementation of our distributed
control therefore requires instantaneous communicatypoAGENT), of ‘communication’ events (when
they occur, in its private alphabéi,) to SUPLOC,; so the latter can properly update its state. Think
of a group of motorists maneuvering through a congestedsiettion without benefit of external traffic
control, each instead depending solely on signals from {lgjaseighboring vehicles and on commonly
accepted protocols. In our DES model e&IHPLOC; can disable only its private controllable events,
in 33;, but the logic of disablement may well depend on observatiocritical events from certain other
AGENT} , as remarked above. It is clear that if these communicawassubject to indefinite time
delay, then control may become disrupted and the colledt@ravior logically unacceptable. Our first
aim is to devise a test to distinguish the latter case frontlibaign’ situation where delay is tolerable,
in the sense that ‘logical’ behavior is unaffected, everugfioin some practical sense behavior might be
degraded, for instance severely slowed dbwithis investigation would provide practitioners with uslef
information to implement distributed supervisors by comimation channels: ‘fast’ channels must be
assigned for communication of ‘delay-critical’ events,iMtislow’ channels suffice for ‘delay-robust’
events.

In Sect.lll, we introduce the model of our communication channel. Ad bd& seen, there is an

implicit constraint that a channeled event (i.e. a commation event transmitted by a channel with

Similar issues are addressed in the literature on ‘delsgrisitive’ asynchronous networks; for the definition s2@ pnd

for a useful summary27].



indefinite delay) can occur and be transmitted only whenh@naoel is available. This is similar to the
mechanism of “synchronous elastic circuits” or “latencgdnsitive systems” (e.g2§]); see Remark2
below for details. As a consequence, an uncontrollable rélad event may or may not be blocked by
its channel, the former case being undesirable. Our sedomdsao distinguish these two cases; when
an uncontrollable event is indeed blocked, we discuss hoyg Ibcan be delayed.

We proceed to a formal review of distributed control by swjsar localization on the assumption
of instantaneous inter-agent communication. Then we diokte inter-agent communication with delay,
modeled by a separate logical channel for each delayed coination event (i.e. channeled event).
As our main result, both a definition and a computational aestprovided for ‘delay-robustness’ of the
channeled distributed system with respect to an arbitralnget of communication events. In addition, we
employ the standard algorithm for checking controllapitid identify whether or not an uncontrollable
channeled event is blocked by its channel. These issuedlastated by a workcell model with three

communicating agents. Finally we present conclusions agdestions for future work.

II. PRELIMINARIES
A. Notation

Following [21] we recall various standard concepts and notation. ConaidgstemG of n component
DESG; = (Qi, X4, 1i, Gio, Qim), € N :={1,2,...,n}, whereQ); is the (finite) state sek;; is the (finite)
set of event labelsy; : Q; x X; — @Q; is the transition (partial) functiony;y is the initial state, and
Qim C Q is the set of marker states. Each eventsgis partitioned as the disjoint unicn; = ;. UX,,
whereX;. (resp.¥;,) is the subset of controllable (resp. uncontrollable) évdéor G;; the full event set
for G is the unionX = U{%;|i € N}.

Let ¥ denote the set of all finite strings of elementip including the empty string, and as usual
extend the transition function; to Q; x X}, by definingn;(qi,€) = ¢ , ni(qi,so) = 1:(ni(¢, $),0)
for all ¢; € Qi, s € £} ando € 3;. We write n;(gio, s)! to mean that;(gio, s) is defined. Theprefix
closureof a languagel. over X* is defined asL = {s € ¥*|su € L for some u € X*}. The closed
behaviorand marked behavioof G; are defined respectively b¥(G;) = {s € X!|ni(gi0,s)!} and
Lin(Gi) = {s € L(G4)[ni(gio, s) € Qim}-

As in [5, 6] we assume that thé; area priori independent, in the sense that their alphabgtare

pairwise disjoint. The systel@ representing their combined behavior is defined to be thygiclronous



productG = (Q,%,7,q0, Qm) = Sync(Gy,...,G,)% The closed behavior and marked behaviorGf
are L(G) = |{L(G;)]i € N} and L,,,(G) = |{L(G;)|: € N} where|| denotes synchronous product
of languages. Assume each is trim (i.e. reachable and coreachable); then by indeps®lé& is trim,
i.e., Ln,(G) = L(G).

Let X, C ¥ be a subset of events thought of as ‘observable’. We referahder to 21] for the
formal definition of natural projection” : ¥* — X*, DES isomorphismG-controllability, and the
supremal quasi-congruence relation. Simply stated, alpuojectionP on a strings € ¥* erases all the
occurrences o € ¥ in s such thato ¢ X,, namely Po = e (the empty string);P is implemented as
Project(G, Null[¥ — 3,]), which returns a (state-minimal) DEBG over £, such thatL,,(PG) =
PL,,(G)andL(PG) = PL(G). Two DES are isomorphic if they are identical up to relalglif states;
G-controllability is the property required for a sublangaag L,, (G) to be synthesizable by a supervisory
controller; while projection modulo supremal quasi-care@rce produces a (possibly nondeterministic)
abstraction (reduced version) of a DIES denotedSupqc(G, Null[¥—X,]), which preserves observable

transitions and the ‘observer’ properdy 30]. As detailed in P1] these operations are available in a

software implementation3[l] and will be referred to here as needed.

B. Distributed Control without Communication Delay

Next we summarize the distributed control theory (assumarg communication delay) reported i [
6]. First supposé: is to be controlled to satisfy a specification langudgg SPEC) C X* represented
by a DESSPEC. Denote byK C ¥* the supremal controllable sublanguagdgf(G)N L, (SPEC)(for
details seed1]). AssumeK is represented by the DESUP, i.e. SUP has closed and marked behavior

L(SUP) =K, L,(SUP)=K. (1)

Since G = Sync(Gy,...,Gy,) is the synchronous product of independent components we teee
implementSUP in distributed fashion by ‘localizingSUP to eachG; as proposed in5, 6]. For
this we bring in a family of local controllerf.OC = {LOC;|i € N}, one for eachG;, and define
L(LOC) = |[{L(LOC;)|i € N} and L,,,(LOC) = |[{L»,(LOC;)|i € N}. Itis shown in p, 6] that

L(G)N L(LOC) = L(SUP) (2a)

Lin(G) N Ly (LOC) = L,,(SUP) (2b)

2We may safely assume that the implementatiymc of synchronous product is always associative and comrmuetafibr

more on this technicality se@7], Sect. 3.3.



Here, the supervisory action GUP is fully distributed among the set of local controllers, leaxt-
ing independently and asynchronously, except for beinglsymized through ‘communication’ events.
Generally, each local controller has a much smaller statehse SUP and a smaller event subset of
3}, containing just the events of its corresponding plant comemt, together with those communication
events from other components that are essential to makeaotazontrol decisions. We remark that if
the system and its supervisor are large scale, we first ssizth@ set of decentralized supervisors to
achieve global optimality and nonblocking, and then applgesvisor localization to decompose each

decentralized supervisor in the set (as6i).[

1. DISTRIBUTED CONTROL WITH COMMUNICATION DELAY

Cai and Wonham4] discuss a boundary case of optimal distributed control ihdully-localizable
where inter-agent communication is not needed, namely lfffeabet of each local controlldtOC; is
simply ¥;, so thatLOC; observes only events in its own agé®t. In this case, no issue of delay will
arise. The more general and usual case is that inter-agemhuaaication is imperative.

For simplicity assume temporarily that the syst@ntonsists of two componen; andGo, and let the
monolithic supervisoSUP (in (1)) be given. By localization we compute local controll@&®C; with

event setroc, andLOC, with event set1,0c,; then the local controlled behaviors are represented
by
SUP1 = Sync(Gl, LOCl) (3)
SUP; = Sync(Gy, LOC,). 4

Let LOCSUP = Sync(SUP,, SUP,). By the localization theory of], 6] we know thatL.(LOCSUP) =
L(SUP) and L,,(LOCSUP) = L,,(SUP), namely, the synchronized behavior 8UP; and SUP»
agrees with that of the monolithic contrSIUP (in (1)).

In the general localization theory (instantaneous) iaggnt communication is both possible and nec-
essary, so the alphabgt,oc, of LOC; (resp.Xroc, of LOCs) will include elements§ommunication
event} from X, (resp.X;) as well as events from its ‘private’ alphaldef (resp.Xs). Let X ., 1 (resp.
Ycom,2) represent the set of communication events flom(resp.>), i.e Xcom1 = Xroc, — X1 (resp.

Yeom,2 = YL0C, — 22); then the set of communication eventsil®@ CSUP (i.e. SUP) is

Ecom = Ecom,l U Z‘com,2- (5)



By (3) and @), the alphabetgyp, of SUP; is

Ysupr, = 21U Zcom,15 (6)

and the alphabeXsyp, of SUPs is

ESUP2 = E2 U Ecom,2- (7)

We say that a communication event i, ; is importedfrom Go by LOC; (resp.X.om2, Gi1 and
LOCGC,).

Remarkl. For every state: of each controlleLOC,; (i € N), and each communication evenin LOC;
but imported from some other compondat (j # 4), if o is not defined atr, we add as-selfloop, i.e.
transition(z, o, z) to LOC,. Now, o is defined at every state &OC,. With this modification, the new
local controllersLOC,; are also control equivalent t8UP (becausd.OC; does not disable events
from other component&; ando will be disabled byLOC; if and only if it is disabled bySUP) and
the definition ofo at every state o1.OC; is consistent with the assumption tHa©C; may receiver

after indefinite communication delay.

Next we model the way selected communication events arerieghavith indefinite time delay and
call such eventshanneled eventtet X, represent the set of channeled events; gnNC Y.om (Zcom
is defined in §)). For example assume that communication eveimt X, is transmitted tad.OC; from
G, via a channel modeled as the (2-state) DEH(2,r, 1) in Fig. 13; thenr is a channeled event. In
the transition structure diOC1, hence also 08UP,, we replace every instance of evenith a new
eventr’, the ‘output’ of CH(2, r, 1) corresponding to input (we callr’ the signal evenof r); call these
modified modeld.OC/, SUP. Thus if and when- happens to occur (ix2) CH(2,,1) is driven by
synchronization from its initial state 0 into state 1; on ¢wentual (and spontaneous) execution of event
r’ in SUP, which reset€CH(2,r,1) to state 0, the execution of will be forced by synchronization in
LOC]. In the standard untimed model of DES employed here, thes'‘titelay’ between an occurrence
of » andr’ is unspecified and can be considered unbounded; indeedngdthour model so far implies

thatr” will cause an actual state change (as opposed to selfloopiibecsubsequent to the occurrence of

3Communications among local supervisors can be modeledfaretit ways, e.g.q1, 12, 32]. In our model channel capacity
(for each separate channeled event) is exactly 1 (everppsing the constraint that a given labeled event cannottbensemitted
unless its previous instance has been received and acldgedeby the intended recipient (see footndtethis constraint may
not be appropriate in all applications. We adopt this mo@ehlise its structure is reasonable, simple, and rendedssthiéuted

control problem (with unbounded communication delay) tabte.
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Fig. 1. Communication chann€H(2,r, 1), from agentG: to local controllelLOC; with channeled event (in the transition
diagram of a DES, the circle with» represents the initial state and a double circle representarker state). One may think
of the delay ofr’ as being thesumof the delay of (forward) event transmission plus the delagbackward) acknowledgement,
i.e. two delays lumped into one. Note that when even$ communicated to multiple local controllers, we emplopaate

channels with distinct signal events, as illustrated in. Bigpelow.

r in G, SUP’ might conceivably move to states (by events other tHamvherer’ is a selfloop and its
occurrence will not cause a state chang&81iP]. As a convention, the control statussdf(controllable
or uncontrollable) is taken to be that @f Suppose in particular thatin X, is controllable. Sinc&OC;
has ‘control authority’ only over controllable events is firivate alphabet;, LOC) never attempts to
disabler’ directly; ' can only be disabled implicitly by the ‘upstream’ disabletnby LOC, of r.

In generalLOC/, ‘knows’ thatr has occurred ifG, only when it executes’; meanwhile, other events
may have occurred iG2. The only constraint placed on events@ is thatr cannot occur again until
r’ has finally reseCH(2,r,1) and the communication cycle is ready to repeat. In other sjoedlent
r will be delayed in re-occurring until the channel used tms$rait eventr again becomes available.
If eventr is controllable, it can be disabled or delayed by the locaitmdler LOC,;* but if eventr
is uncontrollable, the constraint placed 6k will require thatr’ should reseCH(2,r,1) beforer is
enabled to occur again, possibly in violation of the intehdeeaning of ‘uncontrollable’. This issue will
be discussed in Secll-C. The channelCH(2,r,1) is not considered a control device, but rather an
intrinsic component of the physical system being modeledvili be ‘hard-wired’ into the model by

synchronous product witks; and Go.

Remark2. We note that our model of communication channel (Higis similar to the mechanism of
“synchronous elastic circuits” or “latency insensitivessyms” (e.g. 28]). A synchronous elastic circuit

is one whose behavior does not change despite latencieslélays) of communication channels. One

40ur model implicitly assumes that the sender (L& C:) may observe which of the two stat€3H(2,r, 1) is at. If
CH(2,r,1) is at state 1 (the channel is not availablY)C- disablesr; otherwiser is enabled. In a more fine-grained model
we may set’ = rj i, wherer), signals toLOC the occurrence of in Gz, while r}, represents an acknowledgement to
LOC: thatr5; has occurred irBSUP;. We prove in AppendixB that these two channel models are equivalent as far as the

unbounded delay-robust property is concerned.



method to build synchronous elastic circuits is “synchimelastic flow” pg], where the idea of “back

pressure” is used in a similar way to the “signal events” we imsour model of communication delay.

Continuing with this special case we consider the joint b&taof G, Go and CH(2,r,1) under

control of LOC) and LOC,, namely
SUP’ : = Sync(G1,LOC],CH(2,7,1),Gy,LOC,)
= Sync(SUP’,CH(2,7,1),SUP)) (8)

defined over the alphab&h U {r'} UX,. We refer toSUP’ as thechanneled behavioof SUP (in (1))

with » being the channeled event (i, = {r}).

A. Delay-robustness and Delay-criticality

In this subsection we formalize the definition and preseneffective computational test for delay-
robustness.

Of principal interest is whether or not the communicatiofagdéetween successive occurrences of
andr’ is tolerable in the intuitive sense indicated above.

Let X, be the set of new events introduced by the communicationreignin which each element

is the signal event of an event ., i.e.
Ysig = {0'|0 € Tep, 0’ is the signal event ofs}. (9)

In SUP’ (in (8)), T, = {r} andX,;, = {r'}. Then the event set BUP’ will be ¥’ = T U X, =
Y U{r'}. Let P : ¥* — ¥* be the natural projection of”* onto ¥*[21], i.e. P mapsr’ to ¢ (empty
string).

To define whether or n@UP’ with alphabet’ has the same behavior 8P, when viewed through
P, we require that

1. anythingSUP can do is theP-projection of somethin@UP’ can do SUP’ is ‘complete’); and

2. no P-projection of anythingSUP’ can do is disallowed b UP (SUP’ is ‘correct’).

For completeness we need at least the inclusions
PL(SUP’) D L(SUP) (10)
PL,,(SUP’) D L,,(SUP) (11)

In addition, however, we need the followirgpserver propertyf P with respect taSUP’ andSUP.
SupposeSUP’ executes string € L(SUP’), which will be viewed asPs € L(SUP). As SUP is

10



nonblocking, there exists) € ¥* such that(Ps)w € L,,(SUP). For any suchw ‘chosen’ by SUP,
completeness should require the abilityS#/P’ to provide a stringy € ¥* with the propertyPv = w
andsv € L,,(SUP’). Succinctly (cf. P1, 30])

(Vs € ©)(Yw € *) s € L(SUP') & (Ps)w € L,,(SUP)
=(Jv e X*) Pv=w & sv € L,,,(SUP). (12)
Remark3. In ([21], Chapt. 6),P is defined to be ard.,,(SUP’)-observerif
(Vs € ¥*)(Vw € ¥*) s € L(SUP') & (Ps)w € PL,,(SUP’)
=(FJv e X™) Pv=w & sv € L,,(SUP).

It is clear that whenPL,,,(SUP’) = L,,(SUP), the observer property aP with respect toSUP’ and
SUP is identical with theL,,(SUP’)-observer property of.

Briefly, we defineSUP’ to be completerelative toSUP if (10), (11) and (2) hold.

Dually, but more simply, we say th&UP’ is correctrelative toSUP if
PL(SUP’) C L(SUP) (13)
PL,,(SUP’) C L,,(SUP) (14)

To summarize, we make the following definition.

Definition 1. For given SUP’ in (8) and X.;, = {r}, SUP (in (1)) is delay-robustrelative to .,
providedSUP’ is complete and correct relative 8®JP, namely, conditions1(0)-(14) hold, or explicitly

PL(SUP') = L(SUP) (15)
PL,,(SUP') = L,,(SUP) (16)
P has the observer propertyd) with respect toSUP’ and SUP. (12bis)

We stress that in Definitiod (and its generalizations later) the natural projecti®ns fixed by the

choice of channeled events and structure of the commuaitatiodel. If the definition happens to fail

(for instance if the observer property fails), the only curehe present framework is to alter the set of

channeled events, in the worst case reducing it to the enaptytet is, declaring that all communication
events must be transmitted without delay.

The following example shows why the observer property idlyaegeeded; for if (5) and (L6) hold,
but (12) fails, SUP’ may have behavior which is distinguishable from thaS&iP.
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SUP,

SUP, 20 @

Fig. 2. Examplel: SUP; and SUP,

SUP’'

Fig. 3. Examplel: SUP and SUP’

Example 1. Let SUP; and SUP;, be the generators shown in Fig, assume event 20 iSUP; is
exported toSUP, i.e.,r = 20 andr’ = 120; SUP] is obtained by replacing0 in SUP; by 120, and
SUP' is obtained by§). By inspection of Fig3, (15) and (L6) are verified to hold. However, we can see
that (12) fails. Let s = 20.10.120.12 € L(SUP’); then Ps = 20.10.12. Now (Ps).11 = 20.10.12.11 €
L,,(SUP); but there does not exist a stringsuch thatPv = 11 and sv € L,,(SUP’). Thus, SUP
can execute 11 aftePs, but SUP’ can only execute after s. This means thaBUP’ has behavior

distinguishable from that d3UP.

SinceSUP is a nonblocking supervisor, delay-robustnesS&fP also requires tha8UP’ be non-

12
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)
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Fig. 4. Example2: SUP; and SUP,

11
‘
sup —»(0 ] O )

SUP'

Fig. 5. Example2: SUP and SUP’

blocking, i.e.

Ln(SUP’) = L(SUP), (17)

as can easily be derived frorh3),(15) and (L6). The following example shows that when delay-robustness

fails, transmission delay aof can lead to blocking irSUP”.

Example 2. Let SUP; and SUP; be the generators shown in Fig. and assume event 20 BUP,
is exported toSUPy, i.e.,r = 20 andr’ = 120; SUP] is obtained by replacing0 in SUP; by 120.
ThenSUP is nonblocking, buSUP’ obtained by @) is blocking, as shown in Fig5. Note that delay-
robustness fails becausgy fails. Indeed, string21.20.11 € L(SUP’) but P(21.20.11) = 21.20.11 ¢
L(SUP). To see whySUP’ is blocking, start from the initial state, and suppose ev&it and 20 have
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occurred inSUP,, but that SUP) has not executed the corresponding event 120. T$E#®; may
execute event 11, which is immediately observedS&yP-,; however, if11 occurs,SUP; and SUP,

cannot accomplish their task synchronously; hence thesysiocks.

Given SUP, X, X4y and SUP’, we wish to verify whether or nd8UP is delay-robust relative to
Y. For this we need the concept of “supremal quasi-congridiide 29] and the operatofupqc [21,
Sect. 6.7] which projects a giveDES over the alphabeE’ to QCDES, the corresponding quotient
DES over ¥* = P(X"*). We denote the counterpart computing procedure by

QCDES = Supqc(DES, Null[])

where Null[] is the event subsét’ — ¥ that P maps to the empty string; for details seeJ1]°. Let
QCDES = (Z,%,(, 20, Zm)- In generalQCDES will be nondeterministic with transition function
(:Z x¥* - Pwr(Z) and include silentd-) transitions. If no silent or nondeterministic transiton
happen to appear iIQ@CDES, the latter is said to be ‘structurally deterministic’. Fally, QCDES is

structurally deterministidf, for all z € Z ands € ¥*, we have

((z,8) #0 = |¢(z,8) = 1.

It is known that structural determinism da)CDES is equivalent to the condition thaP is an
L,,(DES)-observer (cf. 29, and 21], Theorem 6.7.1).

Given minimal-state deterministic generatgksand B over the same alphabet, we write C B iff
L,(A)C L,(B)andL(A) C L(B); and A ~ B to mean both A C B) and(B C A), i.e. A andB
are isomorphic. Clearly," is transitive.

Now let SUP = (X, %, ¢, 29, X,n) (in (1)), SUP’ = (Y, X', 1,40, Yim) (in (8)),

PSUP’ = Project(SUP’, Null[r']) (18)
QCSUP’ = Supqc(SUP’, Null[r']). (19)

Write QCSUP’ = (Y, %, 7, 7o, Y )
The following theorem provides an effective test for whetloe not the communication delay is

tolerable, i.e. SUP is delay-robust.

This procedure can also be phrased in terms of ‘bisimulatignivalence’$3], as explained in49]. We remark that the
algorithm for Supgc(DES, -) in [21], Sect. 6.7, can be estimated to have time complegitgn*) where(k, n) is the (alphabet,
state) size oDES. We note that 34] reports an algorithm with quadratic time complexity forrifing the observer property

alone.
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Theorem 1. SUP is delay-robust relative ta., (= {r}) if and only if QCSUP’ is structurally

deterministic, and isomorphic tS8UP.

As indicated aboveQCSUP’ can be computed bgupgc and isomorphism of DES can be verified
by Isomorph.® Hence, Theoreni provides an effective computational criterion for delapuistness.
Before Theoremni is proved, a special relation betweQCSUP’ and PSUP’ must be established; a
proof is in AppendixA.

Proposition 1. If QCSUP’ is structurally deterministic, then it is a canonical (nmmal-state) generator
for PL,,(SUP’).

Proof of Theorem: (If) From Propositiori,, QCSUP’ is a minimal state generator &L,,(SUP’).
S0, QCSUP’ =~ PSUP’. As QCSUP’ is isomorphic toSUP, QCSUP’ ~ SUP. Hence,SUP ~
PSUP/, i.e. (15) and (L6) both hold. For {2), sinceQCSUP’ is structurally deterministi€l, Theorem
6.7.1], P is an L,,(SUP’)-observer; by RemarB and (L6), P has the observer property with respect
to SUP’ and SUP. Thus by Definitionl, SUP is delay-robust relative t&.;.

(Only ify By Remark 3, conditions {2) and @6) imply that P is an L,,(SUP’)-observer; thus
QCSUP’ is deterministicp1]. By Proposition1, QCSUP’ ~ PSUP’. Equations {5) and (L6) say
that PSUP’ ~ SUP. HenceQCSUP’ ~ SUP. Finally, we conclude thaQCSUP’ is isomorphic to
SUP. ]

Remark4. In our 2-state channel mod€H(2,r, 1), the delay of (forward) event transmission and the
delay of (backward) acknowledgement are lumped into onegpesented by’. Here we consider a
3-state channel moda'CH(2,r, 1), as shown in Fig6, wherer}; signals toLOC; the occurrence of
r in Gg, while r{, represents an acknowledgemenlt®C, that LOC; has received the occurrence
of ». We show in the following that: iISUP is delay-robust relative to with respect toCH(2,r,1),
then SUP is delay-robust relative to with respect toaTCH(2,r, 1).

Here in the transition structure &fOC;, hence also oBUP,, we replace every instance of event
with 7%, ; call these modified modelELOC’ andTSUPY. If and when- happens to occulf CH(2, 7, 1)
is driven by synchronization from its initial state O intat 1; the execution of even}, represents that
TSUP) has ‘known’ the occurrence of, and the channel is brought into state 2 by synchronization;

the execution of|, acknowledges tha'SUP/ has received the occurrenceroéind resets the channel.

® For language equalitisomorphshould be applied to minimal (Nerode) state DES; see 84.%ect. 3.7.
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Fig. 6. 3-state Communication Channel ModCH(2, r, 1)

Now, the channeled behavior of the system with respect telia@mnelTCH(2,r,1) is
TSUP' = Sync(TSUP), TCH(2,r,1),SUP5) (20)
and its alphabet i&, = X U {r};,r],}. We prove in AppendiB that:

Proposition2. SUP is delay-robust relative to- with respect toCH(2,r, 1), iff SUP is delay-robust
relative tor with respect toTCH(2,r, 1).

We have now obtained an effective tool to determine whetherob SUP is delay-robust relative to
Y., = {r}. If SUP is not delay-robust relative tg we say that- is delay-criticalfor SUP. In that case,
communication of- (with delay, asr’) could result in violation of a specification. if is delay-critical,
and if such violation is inadmissible, thenmust be transmitted instantaneously to the agent (in this
case,LOC,) that imports it — where “instantaneous” must be quantifiadhe application-determined

time scale.

B. Delay-robustness for Multiple Events

In this subsection, we consider delay-robustness for pieltevents. First, we adopt the result of
Theoreml as the basis of a new (though equivalent) definition and extilay-robustness naturally
to multiple events. Then we prove that delay-robustnessafeset R, (of multiple events) implies that

delay-robustness holds for any subsetft

Definition 2. Let Ry C X5 be a subset of eventsimported fromG, by LOC; via their corresponding
channelsCH(2,r,1) (i.e. X, = Ry), and letSUP; be modified toSUP’ by replacing each by its

transmitted versiom’ as before. Let
SUP’ := Sync(SUPY, {CH(2,7,1)|r € Ry}, SUPy).

ThenSUP is delay-robust relative to the event subggt provided Supqgc(SUP’,
Null[{r'|r € Rs}]) is isomorphic toSUP.

16



202223 20212223 20212223

path (3)

path (2)

21,2223

20,23 202123 20212223
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Fig. 7. Example3: SUP; and SUP,

Note that the property dBUP described in Definitior® is stricter than in DefinitiorL: that SUP is
delay-robust with respect to each everd R, taken separately does not imply tt8#JP is delay-robust
with respect toR, as a subset; however, th&alUP is delay-robust with respect t&, does imply that
SUP is delay-robust with respect to each separate evenf?,. The former statement will be confirmed

by Example3 and the latter by Theorer

Example 3. In this exampleSUP is delay-robust with respect to events 21 and 23 separdtalys not
delay-robust with respect to the event $et,23}. Let SUP; and SUP; be the generators shown in
Fig. 7, where events 20,21,22,23 81UP, are exported t&8UP; and event 15 irBUP; is exported to
SUP,. Let events 21 and 23 be transmitted by communication chafig2,21,1) (with signal event
121) andCH(2,23,1) (with signal event 123) respectively. L&SUP’ (resp.BSUP)) be obtained
by replacing21 (resp. 23) inSUP; by 121 (resp. 123) andXSUP’ be obtained by simultaneously
replacing 21 and 23 iISUP; by 121 and 123. Let
SUP = Sync(SUP,SUPy)
ASUP’ = Sync(ASUP’, CH(2,21,1),SUP»)
BSUP’ = Sync(BSUP/, CH(2,23,1),SUP,)

XSUP’ = Sync(XSUP/,, CH(2,21,1), CH(2,23,1), SUP»),
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Fig. 8. Example3: SUP, ASUP’, BSUP’ and XSUP’

as shown in Fig8. One can verify that botl§upgc(ASUP’, Nuli[121]) and Supgc(BSUP’, Null[123])
are isomorphic t&8UP, i.e. SUP is delay-robust with respect to 21 and 23 separately. Howw&EP
is not delay-robust with respect to the event &2t, 23}. Take

s =15.23.20.123.21.22.121.15.
As in Fig. 8, s € L(XSUP’), but by projecting out 121 and 123,
Ps =15.23.20.21.22.15 ¢ L(SUP),

which implies thatP L(XSUP’) ¢ L(SUP) (whereP is the natural projection which projects 121 and
123 to the empty string).

Intuitively, one sees from Figl thatSUP; at its state 1 has three paths to choose from: paths (1) and
(2) are ‘safe’, but path (3) is ‘dangerous’ (because evenwillSoccur, which violatesSUP’s behavior).

Which pathSUP; chooses depends on the events imported f8IdP,. If event 21 alone is delayed,
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CH(i,r, j) CH(i,r,k)

Fig. 9. CH(i,r,j) and CH(i,r, k), with distinct signal events’ andr},

SUP; can choose only path (1); if event 23 alone is delay®dP; can choose either path (1) or (2);
thus delaying 21 and 23 individually leads only to ‘safe’hmatlf, however, events 21 and 23 are both
delayed,SUP; can choose any of the three paths including the ‘dangeraif’ (3).

Before addressing delay-robustness for event subsetsyteredeour definition to the general case with
n agentsG; (j € N = {1,2,...,n}), each with local controlleLOC; which imports channeled events
Yen(i,7) € E; from G; (i € I; C N). For this configuration we employ binary channels as befone
for eachr € ¥.4,(4,7). Thus an event € 3; that is channeled to bothOC; and LOC,, will employ
separate channeSH (i, r, j) andCH(i, r, k). Here the channel€H(i, r, j) andCH(i, r, k) are distinct
(see Fig.9): we use different signal event andr;, corresponding tor in CH(i,r, j) and CH(4, 7, k),
respectively; in this way, the channeled everay be received b.OC; and LOC,, in either order
and with unspecified delays. Of coursenight also be communicated (but with zero delay) fr@nto
other local controllerd.OC,; with [ # j, k.

For this architecture, Definitio2 is generalized in the obvious way. For eatlke N we compute
SUP; by relabeling each eventthat appears iSUP;, such that € X.,,(i, j) (i € I;), by its channeled
outputr’. SinceX;(i,7) C X; and theX; are pairwise disjoint, this relabeling is unambiguous. mhe

we compute
SUP’ = Sync(SUP;-, CH(i,r,j) | r € Een(i,7),i € I,j € N) (21)

Note that if for somej, I; = (), i.e. LOC; imports no events from other agent;, i # j, then
SUP) = SUP;.
With SUP = Sync(SUP; | j € N), we have the following definition.

Definition 3. SUP is delay-robust for distributed control ofi agents by localizatiorprovided the

projected channeled behavior

Supqc(SUP’, Null{r'|r € (i, j),i € I;,j € N}) (22)
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is deterministic, and isomorphic withUP.

The justification of this definition is merely a repetition the argument for two agents based on the
conditions (5), (16) and (L 2bis). Once the obvious generalization®P’ has been framed, as above,
the basic conditions just referenced are fully defined ad,\@med require no formal change. The final
result in terms ofSupqc is derived exactly as before.

We note that to verify delay-robustness in DefinitiBrwe need to computSUP’ as in @1). The
computation may be expensive when there is a large humbesrofmtinication channels. Nevertheless
SUP’ is implemented in a purely distributed fashion: distrilols&ipervisors and communication channels.
We shall investigate the computational issueS&fP’ in our future work, one promising approach being
to useState Tree Structurds85]. We also note in passing that all the above results can bendgtl to
decentralized controllers; for details see Appendix

In the foregoing notation now suppose tfUP is known to be delay-robust for a set of binary
channelsCH(i,r,j) with ¢ € I;, j € N, andr in some subseE.;(i,5) C ;. We shall prove that
SUP remains delay-robust when any one of these channels isaeglhy the ideal channel with zero
transmission delayAs a corollary, delay-robustness is preserved if the gsett (i, j) of channeled
events fromG; to LOC; is replaced by any subset. Focussing attentioS®iP; = Sync(G;,LOC,),
consider its environment = {SUP,,...,SUPy} with SUPg := Sync{SUP; | i = 2,...,N}.
We assume thaE is augmented to a channeled versiBh(say) having internal channeSH(i, r;;, j)
(6, =2,..,N,i # j,rij € Xep(i,j)), together with outgoing external chann€d(j,r;;,1) to LOC;
and incoming external channeSH(1,r;,7) from G;. Denote the totality ofE’s internal channels,
along with those fromG, by CHg. Write SUP g, := Sync(SUPY, ..., SUPy, CHg) where SUP/,
is SUP; with any eventr € X.,(4,j) replaced by’ (i = 1,...,N;j = 2,...,N;i # j) as prescribed
before. For the alphabet &UP 5 we have

Yp=U{%|i=2,..N} U { | reZu(ij);i=1,...N,j=2,...N,i#j}

Similarly let SUP’ denoteSUP; with channeled events;; € X.(j,1) (j = 2,...,N) replaced by
r}l, and letX] denote the corresponding alphabet. By assumption the ladpéa; (i = 1,...,N) are

pairwise disjoint, hence thE.(j,1) (j = 2,..., N) together withY; are pairwise disjoint. Write
Ech(E17 1) = U{Ech(jv 1) | ] = 27 7N}

For clarity assume_ ., (E,1) = {«, 8}; the extension to more than two events will be evident. Thus

a, 8 are the channeled events importedit®C; from its environmenSUP (actually SUP /), and
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appear inSUP’, asa/, 3. We can therefore writS UP’ in (22) in more detail as
SUP’ = Sync(SUP),CH(E,a,1),CH(E, 3,1),SUP ).

Notice thata, 8 belong toX g := ¥ U--- U Xy but notX;, whereasa/, 5’ appear inSUP’, and the
two channels but not ISUP ..
Now denote bySUP” the structureSUP’ but with the channeCH(FE, «, 1) replaced by one with

zero delay (and so eliminated from the channel formalisnhusT
SUP” = Sync(SUPY,CH(E, 3,1),SUP z)

where SUPY is SUP; with 3 replaced bys’ (but a left unchanged). We shall prove the following

result.

Theorem 2. If SUP is delay-robust with respect to the channel structuréS&fP’, then it remains so

with respect to that oSUP”.

The assertion is almost obvious from the intuition that ttaéesnent folSUP” should be derivable by
“taking the limit” at whichCH(FE, «, 1) operates with zero delay, namely by replacing the commtinita
eventa, when unchanneled, with the zero-delay channeled versiafy and finally projecting out’’. A

proof is given in AppendiD.

C. Blocking of Uncontrollable Events

The foregoing discussion of delay robustness covers chech@ents in general, regardless of their
control status, and is adequate if all channeled eventsemafipbe controllable. In the case of uncon-
trollable channeled events, however, we must additionatigmine whether channel delay violates the
conventional modeling assumption that uncontrollableneenay occur spontaneously at states where
they are enabled and should not be subject to external diseinit.

In our simplified model the transmission offrom G, to LOC; is completed (by event’) with
indefinite (unbounded) delay. A constraint imposed SUP’ by the channelCH(2,r,1) is thatr
cannot occur again untit’ has reseiCH(2,7,1) and the communication cycle is ready to repeat. If
r is controllable its re-occurrence can be disabled and heet@yed until after the occurrence of
corresponding to the previous occurrence off, however,r is uncontrollable, then once it is re-enabled
(by entrance ofSUP, to a state where: is defined) its re-occurrence cannot be externally delayed,

according to the usual modeling assumption on uncontiellalents. In this sense the introduction of
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Fig. 10. Examplet: SUP; andSUP,

NSUP

Fig. 11. Examplet: SUP’ and NSUP

CH(2,r,1) could conceivably conflict with the intention of the origifi2ES model. To address this issue
we examine whether or not communication delay of an unctable event might violate a modeling

assumption.

Example 4. For illustration, letSUP; and SUP, be the generators shown in Fi0. Assume event
20 in SUP; is exported toSUPy, i.e.,,r = 20 andr’ = 120; SUP is obtained by replacing0 in
SUP; by 120. As shown in Fig.11, SUP’ = Sync(SUP}, CH(2,20,1),SUP,) is easily verified to
be delay-robust with respect to eveltt. Define NSUP = Sync(SUP},SUP,). Let s = 20; then
5.20 € L(NSUP), but s.20 ¢ L(SUP’). SinceSUP’ = Sync(NSUP,CH(2,20,1)), event 20 is
blocked byCH(2,20,1).

This example shows a case where the reoccurrence of an woltalnie event is ‘blocked’ by its

channel, which demonstrates that communication delay ofiremontrollable event really violates the
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modeling assumption that uncontrollable events cannotiseblibd by any external agent. Now let
NSUP = Sync(SUP/,SUP»); (23)

then according tog)
SUP’ = Sync(NSUP,CH(2,r,1)). (24)

As before, writeX’ = ¥ U {7’} for the alphabet oSUP’, let P : ¥"* — ¥* be the natural projection
of ¥’* to ¥*, and define the new natural projectidth : ¥* — {r,r'}*. Now, for givenNSUP and
SUP’ as in @3) and @4), andr € X, if there existss € L(SUP’) such thatsr € L(NSUP), but
sr ¢ L(SUP’), then we say that is blockedby CH(2,r,1).

To check whether or not is blocked byCH(2,r,1), we check if P~ L(CH(2,r,1)) is NSUP-

controllable with respect to event i.e.
P7L(CH(2,7,1))r N L(NSUP) C P"'L(CH(2,7,1)).

For this, we employ the standard algorithm that checks otlability[ 21]; the algorithm has complexity
O(mn) wherem andn represent the state numbers@H(2,r, 1) and NSUP, respectively.

To summarize, for an uncontrollable eventif SUP is delay-robust (by Theorert) andr will not
be blocked byCH(2,,1) (by controllability checking algorithm), theBUP is said to be ‘unbounded’
delay-robust with respect to. Otherwise, there exists € L(SUP’) such thatsr € L(NSUP), but
sr ¢ L(SUP’). Thusr is blocked by the channel, which could violate the modelisguaption that
an uncontrollable event should never be prohibited or aalayy an external agent. However, if the
occurrence of” is executed byLOC; before the next occurrence of the controllers may still achieve
global optimal nonblocking supervision. In this case, wg gt SUP is ‘bounded’ delay-robust with
respect tor.8

We illustrate the foregoing results by an example adaptea fi21].

For the case described in SectiihB of transmitting multiple events by separate channels, wethe same method to
check if each event is blocked. Specifically, we check B! L(CH(s,r, j)) is NSUP-controllable with respect to, where
NSUP denotes the behavior of the system exclud@BL(i,r, j).

80ne way to determine a delay bound in terms of number of eveourcences is to find the shortest path between two

consecutive occurrences of evenin SUP. A more detailed study of this issue is left for future resbar
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Fig. 12. WORKCELL

IV. EXAMPLE - WORKCELL

A. Model Description and Controller Design

WORKCELL consists oROBOT, LATHE andFEEDER, with three buffersINBUF, LBUF
and SBBUF, connected as in Figl2. Labeled arrows denote synchronization on shared transiti
(events) in the corresponding component DES.

WORKCELL operates as followsFEEDER . acquires a new part from an infinite source (event
11) then stores it (event 12) in a 2-slot bufl@&BUF. ROBOT takes a new part froiNBUF (event
13) and stores it (event 14) in a 1-slot bufieBUF; if LBUF is already fulLROBOT may instead
take a new part froldNBUF (event 15) and store it (event 16) in a 1-slot ‘stand-by’ eu§BBUF.

If LBUF is empty and there’s already a part$BBUF, ROBOT first unloads the part IS BBUF
(event 17) and loads it iLBUF (event 18). fLATHE is idle and there exists a part hBUF,
LATHE takes that part and starts working on it (event 19), and wheshied exports it and returns to
idle (event 20). Event labels accord wiBi]: odd-(resp. even-) numbered events are controllablg(res
uncontrollable). The physical interpretations of events displayed in Tablé.

The specifications to be enforced are:SIPEC; says that a buffer must not overflow or underflow;
2) SPEC; says thalROBOT can loadSBBUF (event sequence 15.16) only whEBUTF is already
full; 3) SPEC; says thatROBOT can loadLBUF directly from INBUF (event sequence 13.14)
only whenSBBUF is empty; otherwise it must load fro®BBUF (event sequence 17.18). The DES

models of plant components and specifications are showngis. E8 and 14.
We first compute the monolithic supervisor by a standard otette.g. P1, 31]). The behavior of

WORKCELL is the synchronous product #®EEDER, ROBOT, and LATHE. As SPEC; is

automatically incorporated in the buffer models, the tetacificatioSPEC is the synchronous product
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TABLE 1. PHYSICAL INTERPRETATION OF EVENTS

Event label | Physical interpretation
11 FEEDER imports new part from infinite source
12 FEEDER loads new part ifNBUF
13 ROBOT takes part fromiINBUF for loading intoLBUF
14 ROBOT loads part fromINBUF into LBUF
15 ROBOT takes part fromrINBUF for loading into SBBUF
16 ROBOT loads part fromINBUF into SBBUF
17 ROBOT takes part fronSBBUF for loading intoLBUF
18 ROBOT loads part fromSBBUF into LBUF
19 LATHE loads part fromLBUF and starts working
20 LATHE exports finished part and returns to idle

ROBOT

Fig. 13. Plant models to be controlled

of INBUF, LBUF, SBBUF, SPEC,, and SPEC;. The monolithic supervisor iSUPER =
Supcon( WORKCELL, SPEC) with (state, transition) count (70, 153).

Next by use of procedurkocaliz§21, 31], we compute the localization UPER (in the sense
of [5, 6]) to each of the threeVORKCELL agents, to obtain local controlleBEEDERLOC,
ROBOTLOC andLATHELOC, as shown in Figl5. The local controlled behaviors are

FEEDERSUP = Sync(FEEDER, FEEDERLOC),
ROBOTSUP = Sync(ROBOT, ROBOTLOC),

LATHESUP = Sync(LATHE, LATHELOC).

From the transition structures shown in Figh, we see thaFEEDERLOC (FEEDERSUP) must
import events 13, 14, 15, 16, 17 and 18 frdROBOT, and 19 fromLATHE; ROBOTLOC
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Fig. 14. Model of Specifications

(ROBOTSUP) must import events 12 frolfEEDER, and 19 fromLATHE; and LATHELOC
(LATHESUP) must import events 11 and 12 froMEEDER, and 13, 14, 15, 16, 17 and 18 from
ROBOT.

B. lllustrative Cases

Based on the computed local controllers, we illustrate aw werification tools with the following

cases.

Casel. — Event 13

TakingFEEDERLOC for example, build a chann€H(R, 13, F'), as shown in Figl6, using a new
event label 113 to represent the corresponding channelibuipe 113 to replace 13 REEDERSUP
to obtainFEEDERSUP’, over the alphabef11,12,113,14,15,16,17,18 19

Now compute the channeled behavBWJPER’ according to

SUPER’ = Sync(FEEDERSUP’, CH(R, 13, ), ROBOTSUP, LATHESUP)

over the augmented alphabgtl, ..., 20, 113 and with (state, transition) count (124, 302). Next, to
check delay-robustness we projPER’ modulo supremal quasi-congruence with nulled event 113,

to get, say,
QCSUPER’ := Supqc(SUPER/, Null[113])

(deterministic, with size (70,153))
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1L14,16,17,1819 1315

FEEDERLOC

ROBOTLOC

LATHELOC

Fig. 15. Local Controller for each component. According tenfark 1, for every state of each controller, and each
communication event imported from some other component,dfis not defined at x, we add a-selfloop. Letx(x) be
the set of selfloops to be adjoined at statein FEEDERLOC, *(0) = {13,15,17,19}, %(3) = {13, 14,15, 16, 18},
x(4) = {13,14,15,16,17,18}; in ROBOTLOC, %(0) = {19}, (1) = {19}, *(2) = {12,19}, *(5) = {12},
*(7) = {19},%(9) = {19},%(10) = {12},%x(11) = {19}; in LATHELOGC, «(0) = {13, 15}, *(1) = {12,15}, *(2) = {15},
x(3) = {12,15}, x(4) = {13,14,15,16,17,18}x(5) = {12,13,14,16,17,18}x(6) = {13,14,16,17,18}x(7) =
{12, 13,14, 16,17, 18}.

Finally we verify thatQCSUPER’ is isomorphic toSUPER, and conclude tha&8UPER is delay-
robust with respect to the channeled communication of e¥8ritom ROBOT to FEEDERLOC. As
a physical interpretation, consider the case where evdnts2] 11, 12, 13 have occurred sequentially (i.e.

there exist two parts ilNBUF andROBOT has taken a part frodNBUF) and FEEDERSUP’
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Fig. 16. CH(R,13,F), CH(R, 15, F), andCH(R, 15, L)

has not executed the occurrence 113 of event 13. On the odeih&IEEDERSUP’ executes event 113
(i.e. it acknowledges the occurrence of event 13), it wikilele event 11 legally (according 8UPER).

On the other hand, FEEDERSUP’ does not execute event 113, thROBOT will load the part
into LBUF and take another part frofiNBUF (execute event 15). SEBEEDERSUP’ can enable
event 11 again, which is also legal accordingSPER. Hence, in this case, the channeled system
SUPER'’ can run ‘correctly’(no extra behavior violates the speatiien) and can ‘complete’ the given
task (with the help oSBBUF), i.e. the communication delay of event 13 is tolerable wéhpect to
SUPER.

By the same method, one can verify tIBTPER is delay-robust with respect event pEvidedit is
channeled only tt"! EEDERLOC; it must be communicated tATHELOC without delay. To verify
this, we have two separate chann&l&I(R, 15, F') and CH(R, 15, L), with distinct signal events 115
and 215 (see Fidl6). Taking the two channels separately, by Definitiband the same method as above
for event 13, we verify thaSUPER is delay-robust when 15 is communicated KREEDERLOC
by CH(R, 15, F'), but delay-critical tctLATHELOC by CH(R, 15, L). Moreover, by Definitior8 and
the procedure in Sechl-B, we verify thatSUPER is delay-critical when 15 is communicated to both

FEEDERLOC and LATHELOC.

Case2. — Events 13 and 15

This case shows th&UPER is delay-robust relative to the event 4a13, 15, with 13 and 15 both
channeled t6' EEDERLOC.

Consider the channeCH(R, 15, F') displayed in Fig.16, using the signal event 115 to represent
the corresponding channel output. Use labels 113, 115 taged3, 15 inFEEDERSUP to obtain
FEEDERSUP/, over the alphabef11,12,113, 14, 115,16,17,18 19

We compute the channeled behavBIUPER’ according to

SUPER’ = Sync(FEEDERSUP’,CH(R, 13, F), CH(R, 15, F),

ROBOTSUP,LATHESUP),
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212 316
CH(F,12,R) CH(R,16,L)

Fig. 17. CH(F,12, R) and CH(R, 16, L)

over the augmented alphabgtl, ..., 20, 113, 115and with (state, transition) count (180, 470). Next,
to check delay-robustness we proj@®/PER’ modulo supremal quasi-congruence with nulled events

113, 115, to get

QCSUPER' := Supqc(SUPER/, Null[113,115])

(deterministic, with size (70,153))

Finally QCSUPER!’ turns out to be isomorphic SUPER, and we conclude th&UPER is delay-
robust with respect to the channeled communication of evEit15 fromROBOT to FEEDERLOC.
Briefly, the reason is thaf EEDERSUP’ will enable event 11 after it executes event 113 or 115, and

ROBOT will remain idle if no more parts are loaded into the system. @vent 11 cannot occur again).

Case3. — Event 19

Event 19 channeled tROBOTLOC is shown, by computation, or directly by Definitidn to be
delay-critical with respect t6 UPER. By tracking the working process, we show that the indefinite
communication delay of event 19 may result in violatiorS&fEC,. Consider the following case: events
11,12,11,12,13,14,19 have occurred sequentially, ieretkexists one part ilNBUF, ROBOT has
loaded a part inNLBUF and LATHE has taken the part frolhRBUF (i.e. LBUF is now empty).
Since the transmission of event 19 is delayed unboundddBQBOT doesn't ‘know’ thatLATHE
has taken the part frolbBUF, it may take a new part froddNBUF (event 15) and load it into
SBBUF (event 16) according tROBOTSUP/, i.e. the event sequence 11.12.11.12.13.14.19.15.16

occurs iNWORKCELL with communication delay, violatin§PEC,. Hence event 19 is delay-critical.

Case4d. — Event 12
This case shows that although the occurrence of (uncoalie) event 12 (channelled ROBOTLOC)
may be blocked by its chann€lH(F, 12, R), as shown in Figl7, this will not violate the specifications.

According to Sectll-C, we check whethel.(CH(F, 12, R)) is controllable with respect to

NSUPER = Sync(FEEDERSUP, ROBOTSUP’, LATHESUP).
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In [31], we useCondat, which tabulates the set of events disabledd®(F, 12, R) with respect to
NSUPER, to implement the verification of the controllability fdr(CH(F, 12, R)).°

By using Condat, it turns out that event 12 is disabled at state 1 of
L(CH(F,12,R)). Physically, suppose 11, 12 and 11 have occurred sequgntial, FEEDER has
stored a part TNBUF and taken another part (event 11). After tHBEEDER may store the part in
INBUTF (event 12, which is uncontrollable). KOBOTSUP does not acknowledge the first occurrence
of 12, thenCH(F, 12, R) is at state 1, and thus cannot transmit the next occurrend.060, in the
channeled systetBUPER/, event 12 is blocked byCH(F, 12, R). If transmission of the first2 is
completed (i.e. event 212 occurs) before the second ocwearef event 12, then event 12 will not be
blocked. INSUPER, only event 11 occurs between two occurrences of event 1 e say that

SUPER is ‘1-bound’-delay-robust with respect to ever

Case5. — Event 16

This case shows that the occurrence of uncontrollable éd@@thanneled t. ATHELOC) will not
be blocked by its chann&’H(R, 16, L), shown in Fig.17.

Applying procedure&”ondat in [21] to CH(R, 16, L), we see that 16 will not be disabled; we conclude
that event 16 will not be blocked b§H(R, 16, L), andSUPER is unbounded-delay-robust with respect
to 16. To illustrate the conclusion, we consider the followingeathere exist two parts IINBUF and
one part iNLBUF (event sequence 11.12.11.12.13.14.11.12); R@OBOT takes a part froddiNBUF
(event 15) and places it IS BBUF (event 16). In Figl5, FEEDERLOC is at state 2 and is waiting
for the occurrence of event 13 or IRQBOT takes a part frorINBUF), and enables event 11;
ROBOTLOC is at state 8 and is waiting for the occurrence of LATTHE takes a part fronLBUF)
or the occurrence of event 12; ahdATHELOC is at state 1 and is waiting for the occurrence of event
19. Now, the occurrence of event 19 (which is enabledByTHELOC) will lead the controlled plant
to continue to operate. Even thoud ATHELOC does not receive the occurrence of 16, the system

does not block. Hence in this case the occurrence of eversti6tiblocked by its chann€@H(R, 16, L).

Case6. — All communication events
When all communication events are subject to delay throdgneels (i.eX., = Y.,), it can be
verified that delay-robustness SUPER in the strong sense of Definitiod fails, i.e. SUPER fails

to be delay-robust for distributed control by localization fact when all the channeled events except

® Here the alphabet oCH(F, 12, R) is {12,212}; before callingCondat, one should add the selfloop with events in
NSUPER but not in{12,212} at each state o€CH(F, 12, R).
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19 (channeled tROBOTLOC) are received without delay, Caéds reduced to Casg so SUPER
cannot be delay-robust with respect to the set of all comopatiain events, as asserted by Theorem 2 in

Sect.lll.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have studied distributed control obtaingdipervisor localization on the relaxed
assumption (compared to previous literatére]]) that inter-agent communication of selected ‘communi-
cation events’ (channeled events) may be subject to unkmiovendelays. For this distributed architecture
we have identified a property of ‘delay-robustness’ whiclkargmtees that the logical properties of our
delay-free distributed control (i.e. the original DES gfieations) continue to be enforced in the presence
of delay, albeit with possibly degraded temporal behawde. have shown that delay-robustness can be
effectively tested with polynomial complexity, and thatchutests serve to distinguish between events
that are delay-critical and those that are not. The caseathatncontrollable channeled event may be
blocked by its communication channel is identified by thevethm for checking controllability. A simple
workcell exemplifies the approach, showing how delay-ratess may depend on the subset of events
subject to delay, and that a given event may be delay-drittcaome choices of the delayed event subset
but not for others.

With the definitions and tests reported here as basic tasiste work should include the investigation
of alternative channel models and, of especial intereshajlinterconnection properties of a distributed
system of DES which render delay-robustness more or lesly lik be achieved. A quantitative approach

involving timed discrete-event systems could also be aadite extension.

APPENDIXA

PROOF OFPROPOSITION1

Recall thatSUP’ = (Y, X', n, 5o, Ym). According to natural projectio® : ¥* — ¥* which maps
(X' —¥) to ¢, definer/ : Y x ¥* — Pwr(Y) given by

0 (y,t) = {n(y, s)ls € ", n(y,s)! &Ps =t}. (25)

Let p be the supremal quasi-congruence¥onwith respect toSUP’, and defineP, : Y — Y/p =Y.
As in ([21], Chapt. 6),QCSUP’ = (Y, %,7,7y, Y ) is defined withij : Y x ¥* — Pwr(Y) given by

ﬁ(y7t) = U{Pp(n/(yat))ypp(y) = y}? (26)

Yo = Py(yo) andY,,, = P,(Yy,).
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Proof: We must prove thaQCSUP’ represents’L,,(SUP’) and is a canonical generator.

(1) We show thaQCSUP’ represents”L,,,(SUP’), i.e,
L,,(QCSUP') = PL,,(SUP/)

and

L(QCSUP') = PL(SUP).

(i) L(QCSUP’) C PL(SUP')

Lett € L(QCSUP’). We prove by induction that € PL(SUP’).

Base stept = e € PL(SUP’) trivially.

Inductive step: Suppose € L(QCSUP’), t € PL(SUP’), andta € L(QCSUP’); we must prove
ta € PL(SUP').

Sinceta € L(QCSUP’), we haven(7g,t)! and7(7g, ta)!. So, 3y € V) 7 = 7(7o,t) & 7(7,a).
We haveyy = P,yo. Sincet € PL(SUP’), (3s € L(SUP’)) Ps = t, i.e. n(yo,s)!. So,n(yo,s) €
7 (yo,t), i.e., ' (yo,t) # 0. Thus,y = P,/ (yo,t) becauseQCSUP’ is deterministic. Sincej(y, )!
andn’(yo, t) # 0, there existg € 1/ (yo,t) such thatj(y,a) = P,/ (y, ). Hence,n' (yo, ter)!. However,
according to 25)

77/(Z/0>t04) = {77(31073)|3 € 2*777(y078)!7p‘9 = tOé}.

Thus, (3s € L(SUP')) Ps = ta, sota € PL(SUP’).

(i) PL(SUP') C L(QCSUP)

Lett € PL(SUP’); we show that € L(QCSUP’).

Base stept = e € L(QCSUP’) trivially.

Inductive step: Supposingt € PL(SUP’), t € L(QCSUP’), andta € PL(SUP’), we show
ta € L(QCSUP)).

Sincet € PL(SUP’) andt € L(QCSUP’), n'(yo,t) # 0, T(70,t)}; letting ¥ = 7(vo,t), then
7 = P,/ (yo,t) becausdQCSUP’ is deterministic. Sincea € PL(SUP’), there exists’ € L(SUP’),
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i.e. n(yo, s’)! such thatPs’ = ta; thus

U, )ly" € 0’ (yo, 1)}
= ("W a)ls € 2,y =n(yo.s), Ps =t} (according to 25))
= {n((n(yo,s),v))lv € 2", n(n(yo,s),v)!, Ps =t, Pv = a}
= {n(yo, sv)|sv € =, n(yo, sv)!, P(sv) = ta}

# 0 (sincen(yo,s’)! and Ps’ = ta),

i.e. there existy € 7/ (yo,t) such thaty' (y, «)!. Then,P,y =7 due tog = P,n'(yo,t). Hence (7, a) =
Py (y,a) #0, i.e.,7(y, a)!. So,ta € L(QCSUP’).

(i) L,,(QCSUP’) C PL,,(SUP’)

For anyt € ¥*, if t € L,,(QCSUP’), then (Jy € Y) ¥ = 7Yy, t) & ¥ € Y., By (i), we
conclude that € PL(SUP’). Thus,n (yo,t) # (. BecauseQCSUP’ is deterministic, we know that
7 = Py (yo,t). SO, P,n (yo.t) € Y. Further,n'(yo,t) NY,, # 0, i.e., there exists € X™* such that
n(yo,5)! & n(yo,s) € Y, & Ps =t. Hence,s € L,,,(SUP’), thust = Ps € PL,,(SUP’).

(iv) PL,,(SUP’) C L,,(QCSUP’)

For anyt € *, if t € PL,,(SUP’), thenn/(yo,t)! & 7' (yo,t) N Yy, # 0. By (i), t € L(QCSUP’),

e., (FyeY) 7Ty, t)! & ¥ =7(Yy,t). SinceQCSUP’ is deterministicj = P,n'(yo,t). We conclude
that 2,0/ (yo, t) € Y., from o/ (yo,t) NY,, # 0. Hencey € Y, i.e.,t € L,,(QCSUP’).

2. We prove thaQCSUP’ is a canonical(minimal-state) generator.

Let v be a congruence ol defined according toj = 3/ (mod v) provided

(i) (vt € %) (y,1)! < 7y, 1)!

i)Vt € B) R(F,t) € Y © (Y, 1) € Y.

With reference to 1], Proposition 2.5.1), projection (mod) reducesQCSUP’ to a state-minimal
generator.

Define P, : Y — Y /v and writev o p = ker(P, o P,). Next we will prove thatv o p is a quasi-

congruence oY ,i.e., for ally,y’ € Y,

onPp(y):onpp(y/)i(vaez)onPpn(yaa) :PVOPM?(Z/,»O‘)-
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Now
PuOPp(y):PuOPp(y/)

= P,(Py(y)) = Pu(Bp(y))

= P,M(Py(y)),a) = P,M(P,(y)), @)

(cf. (ii) of Proposition 2.5.1 in21])

= Py(ﬁ(yv Oé)) = sz(n(ylv Oé))

= P,(Py(n(y,))) = P,(P,(n' (v, )))

= P,oPyn(y,a) =P, 0 P (y,«)

Hence,v o p is a quasi-congruence ori. Obviously, v o p is coarser tharp. However, p is the

supremal quasi-congruence & so for anyy,y’ €Y, if P,(P,(y)) = P,(P,(y')), i.e., (y,y') € vop,

then (y,y’) € p, which means thaP,(y) = P,(y'). Hence,v = L (namely all its cells are singletons).

We have shown tha CSUP’ is a canonical generator.

APPENDIX B

PROOF OFPROPOSITION2
For the proof, we need the natural projections:
Q X - ¥
Qp i — %
Qi S = (SU{rh})"
Q. (ZU{ry})" = B
Qep X — {r,r'}*

Qren 27 — {r,ry, o}

Thus Q/, = Q,4, Q.. According to the definition oCH(2,r,1) and TCH(2,r,1), L(CH(2,7,1)) =

(ror')* and L(TCH(2,7,1)) = (r.orhy.rig)*.
Let NSUP = Sync(SUP/, SUP,); then

L(SUP’) = L(NSUP) N Q_,' L(CH(2,7,1)),

L,(SUP’) = L,,,(NSUP) N Q' L, (CH(2,7,1)).
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Let TNSUP = Sync(TSUP/}, SUP,); then
L(TSUP') = Q. L(TNSUP) N Q7 L(TCH(2,7,1)), (28a)
Ly (TSUP') = Q' Ly (TNSUP) N Qpy, Ly (TCH(2, 7, 1)). (28b)

Since fromNSUP (resp. TNSUP) to TNSUP (resp.NSUP), only ' (resp.r%,) is replaced by

rh, (resp.r’), we still have the following results:
s =z1.r.x2 € LINSUP) & t = x1.r.29 € L(TNSUP) (29a)
s =z1.1.29.r" w3 € LINSUP) & t = z1.r.19.7%, .23 € L(TNSUP) (29b)
where the strings:1, x2, andxs are free ofr, ' andr},. Furthermore,

Q'L(SUP’) = Q'(L(NSUP) N Q_,' L(CH(2,7,1)))

= Q’(L(NSUP) N(E—={rp)rrE—{rh*r)*

= Qu, (L(TNSUP) N (S — {r})*r(X — {r})*r41)*) (30)
(From NSUP to TNSUP, ' is replaced byr,)
= Qr, (L(TNSUP) N Q,, (Q7L, L(TCH(2,7,1))))
Also, we need the following lemmas.

Lemma 1. (+/, ry, andri, insertion) Lets = x;.r.xzo € L(SUP) where the strings:, z, are free ofr;

thens’ = xq.r.r'.xy € L(SUP’), andt’ = z;.r.rh;,.rly.22 € L(TSUP’).
Proof. Immediate from the definition of relevant synchronous pridu

Lemma 2. Let s’ = xy.r.xe.r".23 € L,,(SUP’), where the strings;(: = 1,2,3) are free ofr,r’. For
anyrsi, T3 € (E — {T})* that SatiSfng = I31.232, t = xl.r.xg.rél.xgl.rb.wgg S Lm(SUP”). On the

other side, ift' = xy.r.wa.rhy.x31.7)5.2320 € Ly, (SUP”), thens' = xy.r.wg.r’ .w31.032 € L, (SUP’).

Proof. For the first part, it follows froms’ € L,,(SUP’) = L,,(NSUP) N Q' L.,(CH(2,7,1)) that
x1.1.22.7".23 € Ly (NSUP). By (29b), 21.7.29.7%, .23 € Ly (TNSUP). S0 Q. t' = w1.r.w2.7% .31
x32 € L,,(TNSUP), and thug’ € Q;liLm(TNSUP). Furthermore@Qr.nt’ = r.rh, .1}y € Ly, (TCH(2,
r,1)). Hence,t' € Q;éLm(TNSUP) N Q7 L (TCH(2,7,1) = L,,,(TSUP’). The argument for the

second part is similar.
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Proof of Proposition2. (If) We assume that

Q'L(SUP’) = L(SUP) (31a)
Q'L,(SUP’) = L,,,(SUP) (31b)
Q' has the observer property with respecStP’ and SUP. (31c)

It must be shown that the counterpart properties holdcfbrand TSUP’, namely

Q' L(TSUP’) = L(SUP) (32a)
Q7L (TSUP') = L,,(SUP) (32b)
Q' has the observer property with respectRBSUP’ and SUP. (32¢)

For (C) of (329,
QrL(TSUP') = Q7(Q,,! L(TNSUP) N Qr,, L(TCH(2,7,1)))
= (Qr,Qr,,) (Q; L(TNSUP) N Q7 L(TCH(2, 1, 1))
C Qy;, (L(TNSUP) N Q,, (@4t L(TCH(2, 1, 1))))
= Q'L(SUP') (By (30)
C L(SUP). (By (319)
For (D) of (329, if s = x1.r.xe € L(SUP), then applying Lemmd. to s with 75, andr}, we get that
t' = ay.1.r9).1]5.22 € L(TSUP’) and thens = Q7.(') , as claimed. The argument fo@2b) is similar.
For the observer property we have I81¢) that
(Vs' € L(ISUP")) (Vv € £9)Q'(s').v € L, (SUP) =
(I € (X)")s'v € L,(SUP') & Q'(v') = v
and must verify the counterpa3Zc, namely
(Vt' € L(TSUP"))(Vu € ¥)Q%(t').u € L,,(SUP) =
(T € (Z5))W . € L, (TSUP) & Qp(u') = w.
For the proof lett’ € L(TSUP’), u € ©*, Q) (t').u € L,,(SUP). Next we prove 32¢) from the
following three cases: (1 = x1.r.x2, (2 = z1.r.29.r%;, .25 and (3} = zy.r.xa.rh.x3.75.24, Where

zi(i = 1,2,3,4) are free ofr, r},, andr),. Note that since the re-transmissionrofill not start until

the last transmission is completed, in this proof we onlysider the transmission of one instancerof
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(1) By t' € L(TSUP’), we havet’ € Q;éL(TNSUP). Sincet’ is free ofr,, z1.1r.29 = Q,,t' €
L(TNSUP). By (299, z1.r.xs € L(NSUP). Also, Q. (z1.r.22) = r € L(CH(2,7,1)). So, s’ :=
z1.7.79 € LINSUP) N Q,'L(CH(2,7,1)) = L(SUP’). Definev = u; then Q'(s').v = Qp(t').u €
L,,(SUP). By (310, there exista/ € ™ such thatQ'v' = v ands’.v’ € L,,(SUP’), i.e. z1.r.as.v €
L,(SUP). By (27b), s'.v' € Q_;' L,,(CH(2,r,1)); thusv’ can be written as/.r’".v}, wherev| andv), are
free of . Namely,z;.r.zo.0} .70} € L,,(SUP’). By Lemmaz2, x1.r.x9.v}].rh;.riy.vh € Ly, (TSUP’).
Definew’ = v}.rh,.r,.v5; thenQpu' = vivh = Qv = v =u, andt’.w' € L,,(TSUP’), as required by
(320.

(2) Similar to case (1), we havé € L(TNSUP). By (29b), s’ := zy.r.ze.r’.x3 € L(NSUP).
Furthermore, sinc&)’s’ = r.o’ € L(CH(2,r,1)), s € L(SUP’). Definev = u; then Q'(s').v =
Qr(t').u € L, (SUP). By (310, there exista’ € X'* such thatQ’v' = v ands’.v’ € L,,(SUP’). By
(27, s'v' € Q' L, (CH(2,7,1)); thus' is free ofr/, i.e.v’ = v (In this proof only one instance of
r is taken into consideration). S@;.r.zs.r".z3.0" € L,,(SUP’). By Lemma2, z1.r.xe.1%,.x3.r}5.0" €
L,,(TSUP’). Defineu’ = ri,.v'; thenQfuw’ = v/ = v = w and¢'.w/ € L,,(TSUP’), as required by
(320.

() Lets" := zy.rxo.r’.x3.24. By (289, we haves' = Q,,,t' € L(TNSUP). Similar to case (2), if
definingv’ = u, then we can verify that;.r.xo.rhy.x3.71 240" € L, (TSUP’). Defineu’ = o/; then

Qv = =wandt'v’ € L,,,(TSUP’), as required by320).

(Only if) We assume that condition849-(320 hold; it must be shown that condition81@-(31¢)
hold.

For (C) of (319, let s’ € L(SUP’); we prove that)'s € L(SUP) from the following two cases: (1)
s’ = x1.1.19, and (2)s' = xy.r.w0.7" .23, Wherex, 21, x2, x3 are free ofr andr’.

(1) It follows from s’ € L(SUP’) that z;.r.zo € L(NSUP). By (299, we havet := zy.r.xo €
L(TNSUP), and thus: € Q;,' L(TNSUP). Also, Qreit = r € L(TCH(2,7,1)). So,t € L(TSUP’),
and thusQ’.t € Q.L(SUP’) C L(SUP). Hence, we also hav®'s’ =t = Q/.t € L(SUP).

(2) Similar to case (1), we have;.r.zs.r’.z3 € L(NSUP). By (29b), t := z1.r.ao.rh .3
L(TNSUP). Let t' := z1.rz9.ro1.23.75; thent’ € Q' L(TNSUP). Also, Qrent’ = 115,115 €
L(TCH(2,r,1)). So,¢ € L(TSUP’), and thusQ/t' € Q}.L(TSUP’) C L(SUP). Hence,Q's’ =
z1.1.22.23 = Q' € L(SUP).

(2) of (319 can be verified similar to the proof oD) of (32g. The argument for31b) is similar.

m
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For the observer property we have [82¢) that
(vt' € L(TSUP"))(Vu € £9)Q4(t').u € L,,(SUP) =
(I € () ' € L, (TSUP') & Qr(v) =u
and must verify the counterpa3Xc, namely
(Vs' € L(SUP))) (Vv € £9Q'(s').v € Ly, (SUP) =
(T € (X)*)s'v € Ly, (SUP') & Q' (V') = v.

For the proof lets’ € L(SUP’), v € ¥*, Q'(s').v € L,,(SUP). Next we prove §1¢) from the following
two cases: (1} = x1.1.29, (2)s' = x1.r.29.7" .23, Wherez; (i = 1,2,3) are free ofr andr’.

(1) Similar to case (1) in provingd) of (319, by s’ € L(SUP’), we havet’ := z1.r.z5 € L(TSUP’).
Defineu = v; then Q%-(t').u = Q'(s').v € L, (SUP). By (320, there existsu’ € X/. such that
Qru' = v andt'.w € L, (TSUP’). Namely, z1.r.z9.u’ € L,,(TSUP’). So by Qrep(z1.7.20.0") =
r.Qren(u') there must exist),ub,uy € X* such thatu' = uf.rh;.ug.rjy.us. Applying Lemmaz2,
zy.r.xo.uy . ubub € Ly, (SUPY). Definev’ = uf.r'.ub.ub; thenQ'v' = ) whuly = Q' = u = v, and
s'.v' € L,,(SUP’), as required by31c).

(2) Similar to case (2) in provingd) of (319, by s’ € L(SUP’), we havet' := xq.r.zy.rh.x3.r], €
L(TSUP’). Defineu = v; thenQ/-(¢').u = z1.1.29.23.0 = Q'(s')v € L,,(SUP). By (320, there exists
u' € ¥, such thatQ) v = v andt’v’ € L,,(TSUP’). Namely, z1.7.x5.701/.23.71 5.t € Ly, (TSUP’).
Since Qrep(x1.1.29.791 237 5.u") = (r.rh.r5).Qren(u), and only one instance af is taken into
consideratiory’ is free ofr),, andr}, (alsou’ is free ofr’); thusQ/.u’ = v/ = Q'u’. Applying Lemma2,
we obtain thatey.r.zq.r’.z3.u" € L,,(SUP’). Definev’ = «/; thenQ'v' = Qv = v = Qv = u =,

ands’.v' € L,,(SUP’), as required by310).

APPENDIXC

DELAY-ROBUSTNESS OFDECENTRALIZED CONTROLLERS

Here we show that the verification tool for delay-robustnekslistributed controllers can be used
without change to verify the delay-robustness of decemgdlsupervisors.

Let G be the DES to be controlled, addOC; and LOC, be two decentralized controllers, which
achieve global supervision with zero-delay communicatlat X;, ;, be the event set and observable
event set of LOC;, respectively(i = 1,2). Assume event € %; N (X9, — ¥1,), Which is not

observed byLOC;, but is observed by.OC,. Hence,r should be transmitted t&.OC;. We use
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the channelCH(2,r, 1), as shown in Figl, to transmitr and user’ to represent thalOC; receives
the occurrence of. Then, replacing by 7/, we obtainLOC/,. Let SUP = Sync(G,LOC,LOC,),

SUP’ = Sync(G,LOC),CH(2,r,1),LOCs), and QCSUP’ = Supqc(SUP’, Null[r']). Finally, by
Theoreml, if SUP ~ QCSUP’, SUP is delay-robust with respect tg or LOC; andLOC, achieve

global supervision with unbounded delay communication.

APPENDIXD
PROOF OFTHEOREM 2
The relevant natural projections are
P (3 U{d,fuSe) — *
P":(Zu{pUuxp)" — X"

Thus P’ (resp.P”) nulls {o/, '} (resp.{8'}) U{r'|r' € g }.

For the proof we assume that

P'L(SUP’) = L(SUP) (33a)
P'L,,(SUP’) = L,,(SUP) (33b)
P’ has the observer property with respectStP’ and SUP. (33c)

It must be shown that the counterpart properties holdifbrand SUP”, namely

P"L(SUP") = L(SUP) (34a)
P"L,,(SUP") = L,,(SUP) (34b)
P” has the observer property with respectSiP” and SUP. (34c¢)

We need the following lemmas.

Lemma 3. (¢/ insertion) Let s” = z.a.xz.8.2.8.x € L(SUP”) where the (generally distinct) strings

written z are free ofa, 3, f. Thens' := r.a.d/.x.f.2.8 .2 € L(SUP’).

Proof. Immediate from the definition of the relevant synchronousdpcts. O
Evidently Lemma3 extends to multiple appearancesaf 3, 3’ and arbitrary possible orderings of

the o with respect to thes, 5’; and holds withL replaced byL,,, throughout.

Lemma 4. (o/ deletion) Lett' = r.a.y.o’.z.8.2.8".2 € L,,(SUP’), where the strings:, y, > are free of

a, o, B, 8. Thent” := x.a.y.z.0.2.8 .2 € L,,(SUP”).
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Proof. Recall that the synchronous products defining(SUP’) and L,,,(SUP”) differ only in that
the latter omits the factod€H(E, a, 1), and inSUP/ « appears as iSUP; (and not asy’). The string
y is of form, saya;.b;.a2.b2, Wherea;, ay € (X7)* andby, by € X7, hence by definition of synchronous
product can be re-ordered as.as.b;.bo without affecting membership of in L,,(SUP’); next a.y
can be re-ordered iff asaj.as.a.by.by, and thena.y.o’ can be re-ordered as.as.a.c’.by.be, again
preserving membership of in L,,(SUP’). In this new ordering it is clear that deletion af converts
t' to a stringt” in L,,(SUP”). Reversing the ordering restores our origingl proving the claim. [

Proof of Theoren2. For (349 supposes” = z.a.z.3.x.8.x € L(SUP”). By Lemma3, s’ :=
r.a.o . z.B.x.f.x € L(SUP'), so by 839 P'(s') € L(SUP). Evidently P”(s") = P'(s') as required.
For the reverse inclusion, ¥ = z.a.z.f.2 € L(SUP) then applying Lemma to s with 5 we get that
s" = r.a.x.8.8'.x € L(SUP”) and thens = P"(s") , as claimed. The argument fo84b) is similar.
For the observer property we have [88¢) that

(Vs' € L(SUP"))(Vv € £*)P'(s').v € Ly (SUP) =
(T € (X)")s'v € L, (SUP') & P'(v') = v
and must verify the counterpai34c, namely
(Vs" € L(SUP"))(Vv € ¥*)P"(s").v € L,,(SUP) =
(" € (X")")s" " € L, (SUP") & P"(v") = w.
For the proof lets” € L(SUP”), v € ¥*, P"(s")w € L,,(SUP). By Lemma3 with o/-insertion
we obtains’ € L(SUP’) such thatP'(s') = P"(s"), so P'(s').v € L,,(SUP), and by B30 there is
v € (¥)* with .0 € L,,(SUP’) and P'(v') = v. Thusv' is of the formv' = y.a.y.o’.y.8.y.8 .y
(possibly with multiplea’s and 5’s in various interleavings). Define” = Q(v') where @ projectsa’
to the empty string. ThenP”(v") = P"Q(v') = P'(v') = v. Also, by Lemma4, s".v" = Q(s'v') €

QL,,(SUP’) C L,,(SUP”). Thusv” has the properties required iB4C), which completes the proof.
O
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