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Distributed Supervisory Control of Discrete-Event Systems

with Communication Delay

Renyuan Zhang, Kai Cai, Yongmei Gan, W.M. Wonham

Abstract

This paper identifies a property of delay-robustness in distributed supervisory control of discrete-event

systems (DES) with communication delays. In previous work adistributed supervisory control problem

has been investigated on the assumption that inter-agent communications take place with negligible

delay. From an applications viewpoint it is desirable to relax this constraint and identify communicating

distributed controllers which are delay-robust, namely logically equivalent to their delay-free counterparts.

For this we introduce inter-agent channels modeled as 2-state automata, compute the overall system

behavior, and present an effective computational test for delay-robustness. From the test it typically

results that the given delay-free distributed control is delay-robust with respect to certain communicated

events, but not for all, thus distinguishing events which are not delay-critical from those that are. The

approach is illustrated by a workcell model with three communicating agents.

I. INTRODUCTION

Distributed control is pervasive in engineering practice,either by geographical necessity or to cir-

cumvent the complexity of centralized (also called ‘monolithic’) control. Existing work on distributed

supervisory control of discrete-event systems (DES) has focused on synthesis of local controllers for

individual agents (plant components) such that the resulting controlled behavior is identical with that

achieved by global supervision[1–6]. In these contributions, it is assumed that agents make independent

observations and decisions, with instantaneous inter-agent communication. While simplifying the design

of distributed control, this assumption may be unrealisticin practice, where controllers are linked by a

R. Zhang is with School of Automation, Northwestern Polytechnical University, China; K. Cai is with Urban Research Plaza,

Osaka City University, Japan; Y. Gan is with School of Electrical Engineering, Xian Jiaotong University, China; and W.M.

Wonham is with the Systems Control Group, Department of Electrical and Computer Engineering, University of Toronto, Canada.

(Emails: ryzhang@nwpu.edu.cn; kai.cai@info.eng.osaka-cu.ac.jp; ymgan@mail.xjtu.edu.cn; wonham@control.utoronto.ca).

http://arxiv.org/abs/1207.5072v3


physical network subject to delays. Hence, to model and appraise these delays is essential for the correct

implementation of control strategies.

The communication problem in distributed control of multi-agent DES has been discussed by several

researchers. Kalyon et al. [7] propose a framework for the control of distributed systemsmodeled as

communicating finite state machines with reliable unbounded FIFO channels. They formulate a distributed

state avoidance control problem, and show that the existence of a solution for the problem is undecidable.

Lin[8] investigates supervisory control of networked discrete-event systems which features communication

delays and data losses in observation and control. He assumes that the communication between a

supervisor and the plant is via a shared network and communication delays are bounded. Darondeau

and Ricker[9] propose to synthesize distributed control starting from amonolithic supervisor (in the DES

sense) which can be represented as a distributed Petri net; local nets are linked by message passing to

effect token transfer required by transitions joining places that have been distributed to distinct locations.

PN distributability is admitted somewhat to constrain generality; but the exact relation of this approach

to our own remains open to future research.

Research on communication problems in decentralized/modular supervisory control has also been

reported in recent years. Taking delays into consideration, Yeddes et al. [10] propose a 3-state data

transmission model, representing delays by timed events with lower and finite upper time bounds;

these events are incorporated into the plant and specification automata, and the time bounds further

restricted by a supervisor synthesis procedure; maximal permissiveness and nonblocking, however, are

not guaranteed. In [11] Barrett and Lafortune propose an information structure model for analysis and

synthesis of decentralized supervisory control, applicable in principle to the case of communication

delays, but they assume that such delays are absent. For a limited class of specifications, Tripakis[12]

formulates certain problems in decentralized control withbounded or unbounded communication delay,

modeling the system with communication by automata with state output map. In this model the existence

of controllers in case of unbounded delay is undecidable. Inour paper, by contrast, we address this

question: does a given controller have the property of delay-robustness (as we define it) or not? This

question is indeed decidable, and we provide an effective test to answer it. Schmidt et al.[13] consider

a heterarchical (hierarchical/decentralized) architecture requiring communication of shared events among

modules of the hierarchy. A communication model is developed in which delay may affect system

operation unless suitable transmission deadlines are met.If so, correct operation of the distributed

supervisors is achieved if the network is sufficiently fast.In [14] correct heterarchical operation is achieved

subject to a condition of “communication consistency”, by which the occurrence of low-level events is
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restricted by the feasibility of high-level events. Xu and Kumar [15] consider monolithic supervisory

control with bounded communication delayd (measured by event count) between plant and controller; a

condition is derived for equality of controlled behaviors under delayd or with zero delay respectively;

verification is exponential ind. Hiraishi[16] proposes an automaton formalism for communication with

delay in decentralized control, and concludes semi-decidability of the controller design problem in the

case ofk-bounded delay and in case an observability condition holdsfor state-transition cycles. Ricker

and Caillaud[17] consider decentralized control (with a priori given individual observable event subsets)

in the case where co-observability fails and therefore inter-supervisor communication is needed for correct

global supervision. The issue is when, what, and to whom a given local supervisor should communicate;

a solution is proposed to the protocol design problem. In ourpaper this question does not arise because,

with supervisor localization, we already declare who communicates what to whom, and the problem is

then to analyze our existing ideal (instantaneous) communication scheme to see if it is still correct in the

presence of delay.

Thus we consider distributed control with separately modeled communication channels having unknown

unbounded delay, imposed on an existing distributed architecture known to be optimal and nonblocking

for zero delay. In this paper and its conference precursor [18], we start from the DES distributed control

scheme called ‘supervisor localization’ reported in [5, 6], which describes a systematic top-down approach

to design distributed controllers which collectively achieve global optimal and nonblocking supervision.

Briefly, we first synthesize a monolithic supervisor, or alternatively a set of decentralized supervisors,

assuming zero delay; then we apply supervisor localizationto decompose each synthesized supervisor

into local controllers for individual plant components, inthis process determining the set of events that

need to be communicated. Next, and central to the present paper, we propose a channel model for event

communication, and design a test to verify for which events the system is delay-robust (as we define it

below).

The initial control problem is the standard ‘Ramadge-Wonham’ (RW) problem [19–21]. Here the plant

(DES to be controlled) is modeled as the synchronous productof several DES agents (plant components),

sayAGENT1, AGENT2, ..., that are independent, in the sense that their alphabets Σ1, Σ2, ..., are

pairwise disjoint. In a logical sense these agents are linked by specificationsSPEC1, SPEC2, ..., each

of which (typically) restricts the behavior of an appropriate subset of theAGENTi and is therefore

modeled over the union of the corresponding subfamily of theΣi. For eachSPECj , a ‘decentralized’

supervisory controllerSUPj is computed in the same way as for a ‘monolithic’ supervisor [19]; it

guarantees optimal (i.e. maximally permissive) and nonblocking behavior of the relevant subfamily (the
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‘control scope’ ofSPECj) of the AGENTi. In general it will turn out that the synchronous product

of all the SUPj is blocking (e.g. may cause deadlock in the overall controlled behavior); in that case

one or more additional ‘coordinators’ must be adjoined to suitably restrict the decentralized controlled

behavior (see [6] for an example). Techniques for coordinator design are available in the literature (e.g.

[22–25]) and in this paper we take them for granted. On achieving satisfactory decentralized control we

finally ‘localize’ each decentralized supervisor, including the coordinator(s), if any, to the agents that

fall within its control scope; the algorithm that achieves this is detailed in [5], and we shall refer to

it as Localize. The result ofLocalize is that eachAGENTi is equipped with local controllers, one

for each of theSPECj whose scope it falls within; in that senseAGENTi is now ‘intelligent’ and

semi-autonomous, with controlled behaviorSUPLOCi, say, while the synchronous product behavior of

all the SUPLOCi is provably that of the monolithic supervisor for the RW problem we began with.

Autonomy of theSUPLOCi is qualified, in that normally the transition structure of each SUPLOCi

will include events from various otherAGENTk with k 6= i. The implementation of our distributed

control therefore requires instantaneous communication by AGENTk of ‘communication’ events (when

they occur, in its private alphabetΣk) to SUPLOCi so the latter can properly update its state. Think

of a group of motorists maneuvering through a congested intersection without benefit of external traffic

control, each instead depending solely on signals from (mostly) neighboring vehicles and on commonly

accepted protocols. In our DES model eachSUPLOCi can disable only its private controllable events,

in Σi, but the logic of disablement may well depend on observationof critical events from certain other

AGENTk , as remarked above. It is clear that if these communicationsare subject to indefinite time

delay, then control may become disrupted and the collectivebehavior logically unacceptable. Our first

aim is to devise a test to distinguish the latter case from the‘benign’ situation where delay is tolerable,

in the sense that ‘logical’ behavior is unaffected, even though in some practical sense behavior might be

degraded, for instance severely slowed down1. This investigation would provide practitioners with useful

information to implement distributed supervisors by communication channels: ‘fast’ channels must be

assigned for communication of ‘delay-critical’ events, while ‘slow’ channels suffice for ‘delay-robust’

events.

In Sect. III , we introduce the model of our communication channel. As will be seen, there is an

implicit constraint that a channeled event (i.e. a communication event transmitted by a channel with

1Similar issues are addressed in the literature on ‘delay-insensitive’ asynchronous networks; for the definition see [26] and

for a useful summary [27].
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indefinite delay) can occur and be transmitted only when its channel is available. This is similar to the

mechanism of “synchronous elastic circuits” or “latency insensitive systems” (e.g. [28]); see Remark2

below for details. As a consequence, an uncontrollable channeled event may or may not be blocked by

its channel, the former case being undesirable. Our second aim is to distinguish these two cases; when

an uncontrollable event is indeed blocked, we discuss how long it can be delayed.

We proceed to a formal review of distributed control by supervisor localization on the assumption

of instantaneous inter-agent communication. Then we introduce inter-agent communication with delay,

modeled by a separate logical channel for each delayed communication event (i.e. channeled event).

As our main result, both a definition and a computational testare provided for ‘delay-robustness’ of the

channeled distributed system with respect to an arbitrary subset of communication events. In addition, we

employ the standard algorithm for checking controllability to identify whether or not an uncontrollable

channeled event is blocked by its channel. These issues are illustrated by a workcell model with three

communicating agents. Finally we present conclusions and suggestions for future work.

II. PRELIMINARIES

A. Notation

Following [21] we recall various standard concepts and notation. Consider a systemG of n component

DESGi = (Qi,Σi, ηi, qi0, Qim), i ∈ N := {1, 2, ..., n}, whereQi is the (finite) state set,Σi is the (finite)

set of event labels,ηi : Qi × Σi → Qi is the transition (partial) function,qi0 is the initial state, and

Qim ⊆ Q is the set of marker states. Each event setΣi is partitioned as the disjoint unionΣi = Σic∪Σiu

whereΣic (resp.Σiu) is the subset of controllable (resp. uncontrollable) events for Gi; the full event set

for G is the unionΣ = ∪{Σi|i ∈ N}.

Let Σ∗

i denote the set of all finite strings of elements inΣi, including the empty stringǫ, and as usual

extend the transition functionηi to Qi × Σ∗

i , by definingηi(qi, ǫ) = qi , ηi(qi, sσ) = ηi(ηi(qi, s), σ)

for all qi ∈ Qi, s ∈ Σ∗

i and σ ∈ Σi. We write ηi(qi0, s)! to mean thatηi(qi0, s) is defined. Theprefix

closureof a languageL over Σ∗ is defined asL = {s ∈ Σ∗|su ∈ L for some u ∈ Σ∗}. The closed

behavior and marked behaviorof Gi are defined respectively byL(Gi) = {s ∈ Σ∗

i |ηi(qi0, s)!} and

Lm(Gi) = {s ∈ L(Gi)|ηi(qi0, s) ∈ Qim}.

As in [5, 6] we assume that theGi area priori independent, in the sense that their alphabetsΣi are

pairwise disjoint. The systemG representing their combined behavior is defined to be their synchronous
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productG = (Q,Σ, η, q0, Qm) = Sync(G1, ...,Gn)
2. The closed behavior and marked behavior ofG

areL(G) = ||{L(Gi)|i ∈ N} andLm(G) = ||{Lm(Gi)|i ∈ N} where || denotes synchronous product

of languages. Assume eachGi is trim (i.e. reachable and coreachable); then by independence,G is trim,

i.e., Lm(G) = L(G).

Let Σo ⊆ Σ be a subset of events thought of as ‘observable’. We refer thereader to [21] for the

formal definition of natural projectionP : Σ∗ → Σ∗

o, DES isomorphism,G-controllability, and the

supremal quasi-congruence relation. Simply stated, natural projectionP on a strings ∈ Σ∗ erases all the

occurrences ofσ ∈ Σ in s such thatσ /∈ Σo, namelyPσ = ǫ (the empty string);P is implemented as

Project(G, Null[Σ − Σo]), which returns a (state-minimal) DESPG over Σo such thatLm(PG) =

PLm(G) andL(PG) = PL(G). Two DES are isomorphic if they are identical up to relabeling of states;

G-controllability is the property required for a sublanguage ofLm(G) to be synthesizable by a supervisory

controller; while projection modulo supremal quasi-congruence produces a (possibly nondeterministic)

abstraction (reduced version) of a DESG, denotedSupqc(G, Null[Σ−Σo]), which preserves observable

transitions and the ‘observer’ property[29, 30]. As detailed in [21] these operations are available in a

software implementation [31] and will be referred to here as needed.

B. Distributed Control without Communication Delay

Next we summarize the distributed control theory (assumingzero communication delay) reported in [5,

6]. First supposeG is to be controlled to satisfy a specification languageLm(SPEC) ⊆ Σ∗ represented

by a DESSPEC. Denote byK ⊆ Σ∗ the supremal controllable sublanguage ofLm(G)∩Lm(SPEC)(for

details see [21]). AssumeK is represented by the DESSUP, i.e.SUP has closed and marked behavior

L(SUP) = K, Lm(SUP) = K. (1)

SinceG = Sync(G1, ...,Gn) is the synchronous product of independent components we seek to

implementSUP in distributed fashion by ‘localizing’SUP to eachGi as proposed in [5, 6]. For

this we bring in a family of local controllersLOC = {LOCi|i ∈ N}, one for eachGi, and define

L(LOC) = ‖{L(LOCi)|i ∈ N} andLm(LOC) = ‖{Lm(LOCi)|i ∈ N}. It is shown in [5, 6] that

L(G) ∩ L(LOC) = L(SUP) (2a)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (2b)

2We may safely assume that the implementationSync of synchronous product is always associative and commutative; for

more on this technicality see [21], Sect. 3.3.
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Here, the supervisory action ofSUP is fully distributed among the set of local controllers, each act-

ing independently and asynchronously, except for being synchronized through ‘communication’ events.

Generally, each local controller has a much smaller state set thanSUP and a smaller event subset of

Σ, containing just the events of its corresponding plant component, together with those communication

events from other components that are essential to make correct control decisions. We remark that if

the system and its supervisor are large scale, we first synthesize a set of decentralized supervisors to

achieve global optimality and nonblocking, and then apply supervisor localization to decompose each

decentralized supervisor in the set (as in [6]).

III. D ISTRIBUTED CONTROL WITH COMMUNICATION DELAY

Cai and Wonham [5] discuss a boundary case of optimal distributed control that is fully-localizable

where inter-agent communication is not needed, namely the alphabet of each local controllerLOCi is

simply Σi, so thatLOCi observes only events in its own agentGi. In this case, no issue of delay will

arise. The more general and usual case is that inter-agent communication is imperative.

For simplicity assume temporarily that the systemG consists of two componentsG1 andG2, and let the

monolithic supervisorSUP (in (1)) be given. By localization we compute local controllersLOC1 with

event setΣLOC1
andLOC2 with event setΣLOC2

; then the local controlled behaviors are represented

by

SUP1 = Sync(G1,LOC1) (3)

SUP2 = Sync(G2,LOC2). (4)

LetLOCSUP = Sync(SUP1,SUP2). By the localization theory of [5, 6] we know thatL(LOCSUP) =

L(SUP) andLm(LOCSUP) = Lm(SUP), namely, the synchronized behavior ofSUP1 andSUP2

agrees with that of the monolithic controlSUP (in (1)).

In the general localization theory (instantaneous) inter-agent communication is both possible and nec-

essary, so the alphabetΣLOC1
of LOC1 (resp.ΣLOC2

of LOC2) will include elements (communication

events) from Σ2 (resp.Σ1) as well as events from its ‘private’ alphabetΣ1 (resp.Σ2). Let Σcom,1 (resp.

Σcom,2) represent the set of communication events fromΣ2 (resp.Σ1), i.e Σcom,1 = ΣLOC1
−Σ1 (resp.

Σcom,2 = ΣLOC2
− Σ2); then the set of communication events inLOCSUP (i.e. SUP) is

Σcom = Σcom,1 ∪ Σcom,2. (5)
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By (3) and (4), the alphabetΣSUP1
of SUP1 is

ΣSUP1
= Σ1 ∪ Σcom,1, (6)

and the alphabetΣSUP2
of SUP2 is

ΣSUP2
= Σ2 ∪ Σcom,2. (7)

We say that a communication event inΣcom,1 is imported from G2 by LOC1 (resp.Σcom,2, G1 and

LOC2).

Remark1. For every statex of each controllerLOCi (i ∈ N ), and each communication eventσ in LOCi

but imported from some other componentGj (j 6= i), if σ is not defined atx, we add aσ-selfloop, i.e.

transition(x, σ, x) to LOCi. Now, σ is defined at every state ofLOCi. With this modification, the new

local controllersLOCi are also control equivalent toSUP (becauseLOCi does not disable eventsσ

from other componentsGj andσ will be disabled byLOCj if and only if it is disabled bySUP) and

the definition ofσ at every state ofLOCi is consistent with the assumption thatLOCi may receiveσ

after indefinite communication delay.

Next we model the way selected communication events are imported with indefinite time delay and

call such eventschanneled events. Let Σch represent the set of channeled events; thenΣch ⊆ Σcom (Σcom

is defined in (5)). For example assume that communication eventr in Σ2 is transmitted toLOC1 from

G2 via a channel modeled as the (2-state) DESCH(2, r, 1) in Fig. 13; then r is a channeled event. In

the transition structure ofLOC1, hence also ofSUP1, we replace every instance of eventr with a new

eventr′, the ‘output’ ofCH(2, r, 1) corresponding to inputr (we callr′ thesignal eventof r); call these

modified modelsLOC′

1, SUP′

1. Thus if and whenr happens to occur (inG2) CH(2, r, 1) is driven by

synchronization from its initial state 0 into state 1; on theeventual (and spontaneous) execution of event

r′ in SUP′

1, which resetsCH(2, r, 1) to state 0, the execution ofr′ will be forced by synchronization in

LOC′

1. In the standard untimed model of DES employed here, the ‘time delay’ between an occurrence

of r andr′ is unspecified and can be considered unbounded; indeed, nothing in our model so far implies

thatr′ will cause an actual state change (as opposed to selfloop) because, subsequent to the occurrence of

3Communications among local supervisors can be modeled in different ways, e.g. [11, 12, 32]. In our model channel capacity

(for each separate channeled event) is exactly 1 (event), imposing the constraint that a given labeled event cannot be retransmitted

unless its previous instance has been received and acknowledged by the intended recipient (see footnote4); this constraint may

not be appropriate in all applications. We adopt this model because its structure is reasonable, simple, and renders thedistributed

control problem (with unbounded communication delay) tractable.
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r

'r

0 1

Fig. 1. Communication channelCH(2, r, 1), from agentG2 to local controllerLOC1 with channeled eventr (in the transition

diagram of a DES, the circle with→ represents the initial state and a double circle representsa marker state). One may think

of the delay ofr′ as being thesumof the delay of (forward) event transmission plus the delay of (backward) acknowledgement,

i.e. two delays lumped into one. Note that when eventr is communicated to multiple local controllers, we employ separate

channels with distinct signal events, as illustrated in Fig. 9 below.

r in G2, SUP′

1 might conceivably move to states (by events other thanr′) wherer′ is a selfloop and its

occurrence will not cause a state change inSUP′

1. As a convention, the control status ofr′ (controllable

or uncontrollable) is taken to be that ofr. Suppose in particular thatr in Σ2 is controllable. SinceLOC1

has ‘control authority’ only over controllable events in its private alphabetΣ1, LOC′

1 never attempts to

disabler′ directly; r′ can only be disabled implicitly by the ‘upstream’ disablement by LOC2 of r.

In generalLOC′

1 ‘knows’ thatr has occurred inG2 only when it executesr′; meanwhile, other events

may have occurred inG2. The only constraint placed on events inG2 is thatr cannot occur again until

r′ has finally resetCH(2, r, 1) and the communication cycle is ready to repeat. In other words, event

r will be delayed in re-occurring until the channel used to transmit eventr again becomes available.

If event r is controllable, it can be disabled or delayed by the local controller LOC2;4 but if eventr

is uncontrollable, the constraint placed onG2 will require thatr′ should resetCH(2, r, 1) beforer is

enabled to occur again, possibly in violation of the intended meaning of ‘uncontrollable’. This issue will

be discussed in Sect.III-C . The channelCH(2, r, 1) is not considered a control device, but rather an

intrinsic component of the physical system being modeled; it will be ‘hard-wired’ into the model by

synchronous product withG1 andG2.

Remark2. We note that our model of communication channel (Fig.1) is similar to the mechanism of

“synchronous elastic circuits” or “latency insensitive systems” (e.g. [28]). A synchronous elastic circuit

is one whose behavior does not change despite latencies (i.e. delays) of communication channels. One

4Our model implicitly assumes that the sender (i.e.LOC2) may observe which of the two statesCH(2, r, 1) is at. If

CH(2, r, 1) is at state 1 (the channel is not available),LOC2 disablesr; otherwiser is enabled. In a more fine-grained model

we may setr′ = r′21r
′

12 wherer′21 signals toLOC
′

1 the occurrence ofr in G2, while r′12 represents an acknowledgement to

LOC2 that r′21 has occurred inSUP
′

1. We prove in AppendixB that these two channel models are equivalent as far as the

unbounded delay-robust property is concerned.
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method to build synchronous elastic circuits is “synchronous elastic flow” [28], where the idea of “back

pressure” is used in a similar way to the “signal events” we use in our model of communication delay.

Continuing with this special case we consider the joint behavior of G1, G2 andCH(2, r, 1) under

control ofLOC′

1 andLOC2, namely

SUP′ : = Sync(G1,LOC′

1,CH(2, r, 1),G2 ,LOC2)

= Sync(SUP′

1,CH(2, r, 1),SUP2) (8)

defined over the alphabetΣ1 ∪{r′}∪Σ2. We refer toSUP′ as thechanneled behaviorof SUP (in (1))

with r being the channeled event (i.e.Σch = {r}).

A. Delay-robustness and Delay-criticality

In this subsection we formalize the definition and present aneffective computational test for delay-

robustness.

Of principal interest is whether or not the communication delay between successive occurrences ofr

andr′ is tolerable in the intuitive sense indicated above.

Let Σsig be the set of new events introduced by the communication channels, in which each element

is the signal event of an event inΣch, i.e.

Σsig = {σ′|σ ∈ Σch, σ
′ is the signal event ofσ}. (9)

In SUP′ (in (8)), Σch = {r} andΣsig = {r′}. Then the event set ofSUP′ will be Σ′ = Σ ∪ Σsig =

Σ ∪ {r′}. Let P : Σ′∗ → Σ∗ be the natural projection ofΣ′∗ onto Σ∗[21], i.e. P mapsr′ to ǫ (empty

string).

To define whether or notSUP′ with alphabetΣ′ has the same behavior asSUP, when viewed through

P , we require that

1. anythingSUP can do is theP -projection of somethingSUP′ can do (SUP′ is ‘complete’); and

2. noP -projection of anythingSUP′ can do is disallowed bySUP (SUP′ is ‘correct’).

For completeness we need at least the inclusions

PL(SUP′) ⊇ L(SUP) (10)

PLm(SUP′) ⊇ Lm(SUP) (11)

In addition, however, we need the followingobserver propertyof P with respect toSUP′ andSUP.

SupposeSUP′ executes strings ∈ L(SUP′), which will be viewed asPs ∈ L(SUP). As SUP is
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nonblocking, there existsw ∈ Σ∗ such that(Ps)w ∈ Lm(SUP). For any suchw ‘chosen’ bySUP,

completeness should require the ability ofSUP′ to provide a stringv ∈ Σ′∗ with the propertyPv = w

andsv ∈ Lm(SUP′). Succinctly (cf. [21, 30])

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP′) & (Ps)w ∈ Lm(SUP)

⇒(∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP′). (12)

Remark3. In ([21], Chapt. 6),P is defined to be anLm(SUP′)-observerif

(∀s ∈ Σ′∗)(∀w ∈ Σ∗) s ∈ L(SUP′) & (Ps)w ∈ PLm(SUP′)

⇒(∃v ∈ Σ′∗) Pv = w & sv ∈ Lm(SUP′).

It is clear that whenPLm(SUP′) = Lm(SUP), the observer property ofP with respect toSUP′ and

SUP is identical with theLm(SUP′)-observer property ofP .

Briefly, we defineSUP′ to becompleterelative toSUP if (10), (11) and (12) hold.

Dually, but more simply, we say thatSUP′ is correct relative toSUP if

PL(SUP′) ⊆ L(SUP) (13)

PLm(SUP′) ⊆ Lm(SUP) (14)

To summarize, we make the following definition.

Definition 1. For givenSUP′ in (8) and Σch = {r}, SUP (in (1)) is delay-robustrelative toΣch

providedSUP′ is complete and correct relative toSUP, namely, conditions (10)-(14) hold, or explicitly

PL(SUP′) = L(SUP) (15)

PLm(SUP′) = Lm(SUP) (16)

P has the observer property (12) with respect toSUP′ andSUP. (12bis)

We stress that in Definition1 (and its generalizations later) the natural projectionP is fixed by the

choice of channeled events and structure of the communication model. If the definition happens to fail

(for instance if the observer property fails), the only curein the present framework is to alter the set of

channeled events, in the worst case reducing it to the empty set, that is, declaring that all communication

events must be transmitted without delay.

The following example shows why the observer property is really needed; for if (15) and (16) hold,

but (12) fails, SUP′ may have behavior which is distinguishable from that ofSUP.
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Example 1. Let SUP1 andSUP2 be the generators shown in Fig.2; assume event 20 inSUP2 is

exported toSUP1, i.e., r = 20 andr′ = 120; SUP′

1 is obtained by replacing20 in SUP1 by 120, and

SUP′ is obtained by (8). By inspection of Fig.3, (15) and (16) are verified to hold. However, we can see

that (12) fails. Let s = 20.10.120.12 ∈ L(SUP′); thenPs = 20.10.12. Now (Ps).11 = 20.10.12.11 ∈

Lm(SUP); but there does not exist a stringv such thatPv = 11 and sv ∈ Lm(SUP′). Thus,SUP

can execute 11 afterPs, but SUP′ can only executeǫ after s. This means thatSUP′ has behavior

distinguishable from that ofSUP.

SinceSUP is a nonblocking supervisor, delay-robustness ofSUP also requires thatSUP′ be non-

12
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blocking, i.e.

Lm(SUP′) = L(SUP′), (17)

as can easily be derived from (12),(15) and (16). The following example shows that when delay-robustness

fails, transmission delay ofr can lead to blocking inSUP′.

Example 2. Let SUP1 andSUP2 be the generators shown in Fig.4, and assume event 20 inSUP2

is exported toSUP1, i.e., r = 20 and r′ = 120; SUP′

1 is obtained by replacing20 in SUP1 by 120.

ThenSUP is nonblocking, butSUP′ obtained by (8) is blocking, as shown in Fig.5. Note that delay-

robustness fails because (15) fails. Indeed, string21.20.11 ∈ L(SUP′) but P (21.20.11) = 21.20.11 /∈

L(SUP). To see whySUP′ is blocking, start from the initial state, and suppose events 21 and 20 have

13



occurred inSUP2 but thatSUP′

1 has not executed the corresponding event 120. ThenSUP′

1 may

execute event 11, which is immediately observed bySUP2; however, if11 occurs,SUP′

1 andSUP2

cannot accomplish their task synchronously; hence the system blocks.

GivenSUP, Σch, Σsig andSUP′, we wish to verify whether or notSUP is delay-robust relative to

Σch. For this we need the concept of “supremal quasi-congruence” [ 21, 29] and the operatorSupqc [21,

Sect. 6.7] which projects a givenDES over the alphabetΣ′ to QCDES, the corresponding quotient

DES overΣ∗ = P (Σ′∗). We denote the counterpart computing procedure by

QCDES = Supqc(DES, Null[])

whereNull[] is the event subsetΣ′ − Σ that P maps to the empty stringǫ; for details see [21]5. Let

QCDES = (Z,Σ, ζ, z0, Zm). In generalQCDES will be nondeterministic with transition function

ζ : Z × Σ∗ → Pwr(Z) and include silent (ǫ−) transitions. If no silent or nondeterministic transitions

happen to appear inQCDES, the latter is said to be ‘structurally deterministic’. Formally, QCDES is

structurally deterministicif, for all z ∈ Z ands ∈ Σ∗, we have

ζ(z, s) 6= ∅ ⇒ |ζ(z, s)| = 1.

It is known that structural determinism ofQCDES is equivalent to the condition thatP is an

Lm(DES)-observer (cf. [29], and [21], Theorem 6.7.1).

Given minimal-state deterministic generatorsA andB over the same alphabet, we writeA ⊆ B iff

Lm(A) ⊆ Lm(B) andL(A) ⊆ L(B); andA ≈ B to mean both(A ⊆ B) and(B ⊆ A), i.e. A andB

are isomorphic. Clearly, “≈” is transitive.

Now let SUP = (X,Σ, ξ, x0,Xm) (in (1)), SUP′ = (Y,Σ′, η, y0, Ym) (in (8)),

PSUP′ = Project(SUP′, Null[r′]) (18)

QCSUP′ = Supqc(SUP′, Null[r′]). (19)

Write QCSUP′ = (Y ,Σ, η, y0, Y m).

The following theorem provides an effective test for whether or not the communication delay is

tolerable, i.e.,SUP is delay-robust.

5This procedure can also be phrased in terms of ‘bisimulationequivalence’[33], as explained in [29]. We remark that the

algorithm forSupqc(DES, ·) in [21], Sect. 6.7, can be estimated to have time complexityO(kn4) where(k, n) is the (alphabet,

state) size ofDES. We note that [34] reports an algorithm with quadratic time complexity for verifying the observer property

alone.
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Theorem 1. SUP is delay-robust relative toΣch (= {r}) if and only if QCSUP′ is structurally

deterministic, and isomorphic toSUP.

As indicated above,QCSUP′ can be computed bySupqc and isomorphism of DES can be verified

by Isomorph.6 Hence, Theorem1 provides an effective computational criterion for delay-robustness.

Before Theorem1 is proved, a special relation betweenQCSUP′ andPSUP′ must be established; a

proof is in AppendixA.

Proposition 1. If QCSUP′ is structurally deterministic, then it is a canonical (minimal-state) generator

for PLm(SUP′).

Proof of Theorem1: (If) From Proposition1,QCSUP′ is a minimal state generator ofPLm(SUP′).

So,QCSUP′ ≈ PSUP′. As QCSUP′ is isomorphic toSUP, QCSUP′ ≈ SUP. Hence,SUP ≈

PSUP′, i.e. (15) and (16) both hold. For (12), sinceQCSUP′ is structurally deterministic[21, Theorem

6.7.1],P is anLm(SUP′)-observer; by Remark3 and (16), P has the observer property with respect

to SUP′ andSUP. Thus by Definition1, SUP is delay-robust relative toΣch.

(Only if) By Remark 3, conditions (12) and (16) imply that P is an Lm(SUP′)-observer; thus

QCSUP′ is deterministic[21]. By Proposition1, QCSUP′ ≈ PSUP′. Equations (15) and (16) say

thatPSUP′ ≈ SUP. HenceQCSUP′ ≈ SUP. Finally, we conclude thatQCSUP′ is isomorphic to

SUP.

Remark4. In our 2-state channel modelCH(2, r, 1), the delay of (forward) event transmission and the

delay of (backward) acknowledgement are lumped into one, asrepresented byr′. Here we consider a

3-state channel modelTCH(2, r, 1), as shown in Fig.6, wherer′
21

signals toLOC1 the occurrence of

r in G2, while r′
12

represents an acknowledgement toLOC2 that LOC1 has received the occurrence

of r. We show in the following that: ifSUP is delay-robust relative tor with respect toCH(2, r, 1),

thenSUP is delay-robust relative tor with respect toTCH(2, r, 1).

Here in the transition structure ofLOC1, hence also ofSUP1, we replace every instance of eventr

with r′
21

; call these modified modelsTLOC′

1 andTSUP′

1. If and whenr happens to occur,TCH(2, r, 1)

is driven by synchronization from its initial state 0 into state 1; the execution of eventr′
21

represents that

TSUP′

1 has ‘known’ the occurrence ofr, and the channel is brought into state 2 by synchronization;

the execution ofr′
12

acknowledges thatTSUP′

1 has received the occurrence ofr and resets the channel.

6 For language equalityIsomorphshould be applied to minimal (Nerode) state DES; see e.g. [21] Sect. 3.7.
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Now, the channeled behavior of the system with respect to thechannelTCH(2, r, 1) is

TSUP′ = Sync(TSUP′

1,TCH(2, r, 1),SUP2) (20)

and its alphabet isΣ′

T = Σ ∪ {r′
21
, r′

12
}. We prove in AppendixB that:

Proposition2. SUP is delay-robust relative tor with respect toCH(2, r, 1), iff SUP is delay-robust

relative tor with respect toTCH(2, r, 1).

We have now obtained an effective tool to determine whether or not SUP is delay-robust relative to

Σch = {r}. If SUP is not delay-robust relative tor, we say thatr is delay-critical for SUP. In that case,

communication ofr (with delay, asr′) could result in violation of a specification. Ifr is delay-critical,

and if such violation is inadmissible, thenr must be transmitted instantaneously to the agent (in this

case,LOC1) that imports it – where “instantaneous” must be quantified on the application-determined

time scale.

B. Delay-robustness for Multiple Events

In this subsection, we consider delay-robustness for multiple events. First, we adopt the result of

Theorem1 as the basis of a new (though equivalent) definition and extend delay-robustness naturally

to multiple events. Then we prove that delay-robustness fora setR2 (of multiple events) implies that

delay-robustness holds for any subset ofR2.

Definition 2. Let R2 ⊆ Σ2 be a subset of eventsr imported fromG2 by LOC1 via their corresponding

channelsCH(2, r, 1) (i.e. Σch = R2), and letSUP1 be modified toSUP′

1 by replacing eachr by its

transmitted versionr′ as before. Let

SUP′ := Sync(SUP′

1, {CH(2, r, 1)|r ∈ R2},SUP2).

ThenSUP is delay-robust relative to the event subsetR2 providedSupqc(SUP′,

Null[{r′|r ∈ R2}]) is isomorphic toSUP.
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Note that the property ofSUP described in Definition2 is stricter than in Definition1: thatSUP is

delay-robust with respect to each eventr ∈ R2 taken separately does not imply thatSUP is delay-robust

with respect toR2 as a subset; however, thatSUP is delay-robust with respect toR2 does imply that

SUP is delay-robust with respect to each separate eventr ∈ R2. The former statement will be confirmed

by Example3 and the latter by Theorem2.

Example 3. In this exampleSUP is delay-robust with respect to events 21 and 23 separately,but is not

delay-robust with respect to the event set{21, 23}. Let SUP1 andSUP2 be the generators shown in

Fig. 7, where events 20,21,22,23 inSUP2 are exported toSUP1 and event 15 inSUP1 is exported to

SUP2. Let events 21 and 23 be transmitted by communication channel CH(2, 21, 1) (with signal event

121) andCH(2, 23, 1) (with signal event 123) respectively. LetASUP′

1 (resp.BSUP′

1) be obtained

by replacing21 (resp. 23) inSUP1 by 121 (resp. 123) andXSUP′

1 be obtained by simultaneously

replacing 21 and 23 inSUP1 by 121 and 123. Let

SUP = Sync(SUP1,SUP2)

ASUP′ = Sync(ASUP′

1,CH(2, 21, 1),SUP2)

BSUP′ = Sync(BSUP′

1,CH(2, 23, 1),SUP2)

XSUP′ = Sync(XSUP′

1,CH(2, 21, 1),CH(2, 23, 1),SUP2),

17



15 20 21 2223

0 1 2 3 4 5SUP

15 20 21

22

23

0 1 2 3 4

6

7

5

22

121

121

'ASUP

15
123

21 22

23

0 1

6 12

7 10 13

3 5 8 11

123 123

20

20

21

21 22

22 123
'BSUP

15

123

21

22

23
0 1

3 5 13

21

121

20

20

123

22

21 22
19 23

15

18

16

22

21

22

6
121

123
123

123
123121

121 15

22

123

123

121 22

121

'XSUP

2

4

7

11

10

9

8

12

14

15

17

20

2

4 9

Fig. 8. Example3: SUP, ASUP
′, BSUP

′ andXSUP
′

as shown in Fig.8. One can verify that bothSupqc(ASUP′, Null[121]) andSupqc(BSUP′, Null[123])

are isomorphic toSUP, i.e.SUP is delay-robust with respect to 21 and 23 separately. However, SUP

is not delay-robust with respect to the event set{21, 23}. Take

s = 15.23.20.123.21.22.121.15.

As in Fig. 8, s ∈ L(XSUP′), but by projecting out 121 and 123,

Ps = 15.23.20.21.22.15 /∈ L(SUP),

which implies thatPL(XSUP′) * L(SUP) (whereP is the natural projection which projects 121 and

123 to the empty stringǫ).

Intuitively, one sees from Fig.7 thatSUP1 at its state 1 has three paths to choose from: paths (1) and

(2) are ‘safe’, but path (3) is ‘dangerous’ (because event 15will occur, which violatesSUP’s behavior).

Which pathSUP1 chooses depends on the events imported fromSUP2. If event 21 alone is delayed,
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SUP1 can choose only path (1); if event 23 alone is delayed,SUP1 can choose either path (1) or (2);

thus delaying 21 and 23 individually leads only to ‘safe’ paths. If, however, events 21 and 23 are both

delayed,SUP1 can choose any of the three paths including the ‘dangerous’ path (3).

Before addressing delay-robustness for event subsets, we extend our definition to the general case with

n agentsGj (j ∈ N = {1, 2, ..., n}), each with local controllerLOCj which imports channeled events

Σch(i, j) ⊆ Σi from Gi (i ∈ Ij ⊂ N ). For this configuration we employ binary channels as before, one

for eachr ∈ Σch(i, j). Thus an eventr ∈ Σi that is channeled to bothLOCj andLOCk will employ

separate channelsCH(i, r, j) andCH(i, r, k). Here the channelsCH(i, r, j) andCH(i, r, k) are distinct

(see Fig.9): we use different signal eventsr′j andr′k corresponding tor in CH(i, r, j) andCH(i, r, k),

respectively; in this way, the channeled eventr may be received byLOCj andLOCk in either order

and with unspecified delays. Of courser might also be communicated (but with zero delay) fromGi to

other local controllersLOCl with l 6= j, k.

For this architecture, Definition2 is generalized in the obvious way. For eachj ∈ N we compute

SUP′

j by relabeling each eventr that appears inSUPi, such thatr ∈ Σch(i, j) (i ∈ Ij), by its channeled

output r′. SinceΣch(i, j) ⊆ Σi and theΣi are pairwise disjoint, this relabeling is unambiguous. Then

we compute

SUP′ = Sync(SUP′

j ,CH(i, r, j) | r ∈ Σch(i, j), i ∈ Ij , j ∈ N) (21)

Note that if for somej, Ij = ∅, i.e. LOCj imports no events from other agentsGi, i 6= j, then

SUP′

j = SUPj.

With SUP = Sync(SUPj | j ∈ N), we have the following definition.

Definition 3. SUP is delay-robust for distributed control ofn agents by localizationprovided the

projected channeled behavior

Supqc(SUP′, Null{r′|r ∈ Σch(i, j), i ∈ Ij , j ∈ N}) (22)
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is deterministic, and isomorphic withSUP.

The justification of this definition is merely a repetition ofthe argument for two agents based on the

conditions (15), (16) and (12bis). Once the obvious generalization ofSUP′ has been framed, as above,

the basic conditions just referenced are fully defined as well, and require no formal change. The final

result in terms ofSupqc is derived exactly as before.

We note that to verify delay-robustness in Definition3 we need to computeSUP′ as in (21). The

computation may be expensive when there is a large number of communication channels. Nevertheless

SUP′ is implemented in a purely distributed fashion: distributed supervisors and communication channels.

We shall investigate the computational issue ofSUP′ in our future work, one promising approach being

to useState Tree Structures[35]. We also note in passing that all the above results can be extended to

decentralized controllers; for details see AppendixC.

In the foregoing notation now suppose thatSUP is known to be delay-robust for a set of binary

channelsCH(i, r, j) with i ∈ Ij , j ∈ N , and r in some subsetΣch(i, j) ⊆ Σi. We shall prove that

SUP remains delay-robust when any one of these channels is replaced by the ideal channel with zero

transmission delay. As a corollary, delay-robustness is preserved if the givensetΣch(i, j) of channeled

events fromGi to LOCj is replaced by any subset. Focussing attention onSUP1 = Sync(G1,LOC1),

consider its environmentE = {SUP2, . . . ,SUPN} with SUPE := Sync{SUPi | i = 2, . . . , N}.

We assume thatE is augmented to a channeled versionE′ (say) having internal channelsCH(i, rij , j)

(i, j = 2, ..., N, i 6= j, rij ∈ Σch(i, j)), together with outgoing external channelsCH(j, rj1, 1) to LOC1

and incoming external channelsCH(1, r1i, i) from G1. Denote the totality ofE’s internal channels,

along with those fromG1, by CHE. Write SUPE′ := Sync(SUP′

2, ...,SUP′

N ,CHE) whereSUP′

j

is SUPj with any eventr ∈ Σch(i, j) replaced byr′ (i = 1, ..., N ; j = 2, ..., N ; i 6= j) as prescribed

before. For the alphabet ofSUPE′ we have

ΣE′ = ∪{Σi | i = 2, ..., N} ∪ {r′ | r ∈ Σch(i, j); i = 1, ..., N, j = 2, ..., N, i 6= j}.

Similarly let SUP′

1 denoteSUP1 with channeled eventsrj1 ∈ Σch(j, 1) (j = 2, ..., N) replaced by

r′j1, and letΣ′

1
denote the corresponding alphabet. By assumption the alphabetsΣi (i = 1, ..., N) are

pairwise disjoint, hence theΣch(j, 1) (j = 2, ..., N) together withΣ1 are pairwise disjoint. Write

Σch(E, 1) = ∪{Σch(j, 1) | j = 2, ..., N}.

For clarity assumeΣch(E, 1) = {α, β}; the extension to more than two events will be evident. Thus

α, β are the channeled events imported toLOC1 from its environmentSUPE (actuallySUPE′), and
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appear inSUP′

1 asα′, β′. We can therefore writeSUP′ in (22) in more detail as

SUP′ = Sync(SUP′

1,CH(E,α, 1),CH(E, β, 1),SUPE′).

Notice thatα, β belong toΣE := Σ2 ∪ · · · ∪ ΣN but notΣ1, whereasα′, β′ appear inSUP′

1 and the

two channels but not inSUPE′ .

Now denote bySUP′′ the structureSUP′ but with the channelCH(E,α, 1) replaced by one with

zero delay (and so eliminated from the channel formalism). Thus

SUP′′ = Sync(SUP′′

1 ,CH(E, β, 1),SUPE′)

whereSUP′′

1 is SUP1 with β replaced byβ′ (but α left unchanged). We shall prove the following

result.

Theorem 2. If SUP is delay-robust with respect to the channel structure ofSUP′, then it remains so

with respect to that ofSUP′′.

The assertion is almost obvious from the intuition that the statement forSUP′′ should be derivable by

“taking the limit” at whichCH(E,α, 1) operates with zero delay, namely by replacing the communication

eventα, when unchanneled, with the zero-delay channeled versionα.α′, and finally projecting outα′. A

proof is given in AppendixD.

C. Blocking of Uncontrollable Events

The foregoing discussion of delay robustness covers channeled events in general, regardless of their

control status, and is adequate if all channeled events happen to be controllable. In the case of uncon-

trollable channeled events, however, we must additionallyexamine whether channel delay violates the

conventional modeling assumption that uncontrollable events may occur spontaneously at states where

they are enabled and should not be subject to external disablement.

In our simplified model the transmission ofr from G2 to LOC1 is completed (by eventr′) with

indefinite (unbounded) delay. A constraint imposed onSUP′ by the channelCH(2, r, 1) is that r

cannot occur again untilr′ has resetCH(2, r, 1) and the communication cycle is ready to repeat. If

r is controllable its re-occurrence can be disabled and hencedelayed until after the occurrence ofr′

corresponding to the previous occurrence ofr. If, however,r is uncontrollable, then once it is re-enabled

(by entrance ofSUP2 to a state wherer is defined) its re-occurrence cannot be externally delayed,

according to the usual modeling assumption on uncontrollable events. In this sense the introduction of
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CH(2, r, 1) could conceivably conflict with the intention of the original DES model. To address this issue

we examine whether or not communication delay of an uncontrollable event might violate a modeling

assumption.

Example 4. For illustration, letSUP1 andSUP2 be the generators shown in Fig.10. Assume event

20 in SUP2 is exported toSUP1, i.e., r = 20 and r′ = 120; SUP′

1 is obtained by replacing20 in

SUP1 by 120. As shown in Fig.11, SUP′ = Sync(SUP′

1,CH(2, 20, 1),SUP2) is easily verified to

be delay-robust with respect to event20. DefineNSUP = Sync(SUP′

1,SUP2). Let s = 20; then

s.20 ∈ L(NSUP), but s.20 /∈ L(SUP′). SinceSUP′ = Sync(NSUP,CH(2, 20, 1)), event 20 is

blocked byCH(2, 20, 1).

This example shows a case where the reoccurrence of an uncontrollable event is ‘blocked’ by its

channel, which demonstrates that communication delay of anuncontrollable event really violates the
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modeling assumption that uncontrollable events cannot be disabled by any external agent. Now let

NSUP = Sync(SUP′

1,SUP2); (23)

then according to (8)

SUP′ = Sync(NSUP,CH(2, r, 1)). (24)

As before, writeΣ′ = Σ ∪ {r′} for the alphabet ofSUP′, let P : Σ′∗ → Σ∗ be the natural projection

of Σ′∗ to Σ∗, and define the new natural projectionPr : Σ′∗ → {r, r′}∗. Now, for givenNSUP and

SUP′ as in (23) and (24), and r ∈ Σu, if there existss ∈ L(SUP′) such thatsr ∈ L(NSUP), but

sr /∈ L(SUP′), then we say thatr is blockedby CH(2, r, 1).

To check whether or notr is blocked byCH(2, r, 1), we check ifP−1
r L(CH(2, r, 1)) is NSUP-

controllable with respect to eventr, i.e.

P−1

r L(CH(2, r, 1))r ∩ L(NSUP) ⊆ P−1

r L(CH(2, r, 1)).

For this, we employ the standard algorithm that checks controllability[21]; the algorithm has complexity

O(mn) wherem andn represent the state numbers ofCH(2, r, 1) andNSUP, respectively.7

To summarize, for an uncontrollable eventr, if SUP is delay-robust (by Theorem1) andr will not

be blocked byCH(2, r, 1) (by controllability checking algorithm), thenSUP is said to be ‘unbounded’

delay-robust with respect tor. Otherwise, there existss ∈ L(SUP′) such thatsr ∈ L(NSUP), but

sr /∈ L(SUP′). Thus r is blocked by the channel, which could violate the modeling assumption that

an uncontrollable event should never be prohibited or delayed by an external agent. However, if the

occurrence ofr′ is executed byLOC1 before the next occurrence ofr, the controllers may still achieve

global optimal nonblocking supervision. In this case, we say that SUP is ‘bounded’ delay-robust with

respect tor.8

We illustrate the foregoing results by an example adapted from [21].

7For the case described in SectionIII-B of transmitting multiple events by separate channels, we use the same method to

check if each eventr is blocked. Specifically, we check ifP−1

r
L(CH(i, r, j)) is NSUP-controllable with respect tor, where

NSUP denotes the behavior of the system excludingCH(i, r, j).

8One way to determine a delay bound in terms of number of event occurrences is to find the shortest path between two

consecutive occurrences of eventr in SUP. A more detailed study of this issue is left for future research.
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IV. EXAMPLE - WORKCELL

A. Model Description and Controller Design

WORKCELL consists ofROBOT,LATHE andFEEDER, with three buffers,INBUF, LBUF

and SBBUF, connected as in Fig.12. Labeled arrows denote synchronization on shared transitions

(events) in the corresponding component DES.

WORKCELL operates as follows:FEEDER acquires a new part from an infinite source (event

11) then stores it (event 12) in a 2-slot bufferINBUF. ROBOT takes a new part fromINBUF (event

13) and stores it (event 14) in a 1-slot bufferLBUF; if LBUF is already full,ROBOT may instead

take a new part fromINBUF (event 15) and store it (event 16) in a 1-slot ‘stand-by’ buffer SBBUF.

If LBUF is empty and there’s already a part inSBBUF, ROBOT first unloads the part inSBBUF

(event 17) and loads it inLBUF (event 18). IfLATHE is idle and there exists a part inLBUF,

LATHE takes that part and starts working on it (event 19), and when finished exports it and returns to

idle (event 20). Event labels accord with[31]: odd-(resp. even-) numbered events are controllable (resp.

uncontrollable). The physical interpretations of events are displayed in TableI.

The specifications to be enforced are: 1)SPEC1 says that a buffer must not overflow or underflow;

2) SPEC2 says thatROBOT can loadSBBUF (event sequence 15.16) only whenLBUF is already

full; 3) SPEC3 says thatROBOT can loadLBUF directly from INBUF (event sequence 13.14)

only whenSBBUF is empty; otherwise it must load fromSBBUF (event sequence 17.18). The DES

models of plant components and specifications are shown in Figs. 13 and14.

We first compute the monolithic supervisor by a standard method (e.g. [21, 31]). The behavior of

WORKCELL is the synchronous product ofFEEDER, ROBOT, andLATHE. As SPEC1 is

automatically incorporated in the buffer models, the totalspecificationSPEC is the synchronous product
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TABLE I. PHYSICAL INTERPRETATION OF EVENTS

Event label Physical interpretation

11 FEEDER imports new part from infinite source

12 FEEDER loads new part inINBUF

13 ROBOT takes part fromINBUF for loading intoLBUF

14 ROBOT loads part fromINBUF into LBUF

15 ROBOT takes part fromINBUF for loading intoSBBUF

16 ROBOT loads part fromINBUF into SBBUF

17 ROBOT takes part fromSBBUF for loading intoLBUF

18 ROBOT loads part fromSBBUF into LBUF

19 LATHE loads part fromLBUF and starts working

20 LATHE exports finished part and returns to idle

11

0 1

19

20

0 1

15

0 1

12

2

3

16

18

17

13 14

FEEDER LATHE

ROBOT

Fig. 13. Plant models to be controlled

of INBUF, LBUF, SBBUF, SPEC2, and SPEC3. The monolithic supervisor isSUPER =

Supcon(WORKCELL,SPEC) with (state, transition) count (70, 153).

Next by use of procedureLocalize[21, 31], we compute the localization ofSUPER (in the sense

of [5, 6]) to each of the threeWORKCELL agents, to obtain local controllersFEEDERLOC,

ROBOTLOC andLATHELOC, as shown in Fig.15. The local controlled behaviors are

FEEDERSUP = Sync(FEEDER,FEEDERLOC),

ROBOTSUP = Sync(ROBOT,ROBOTLOC),

LATHESUP = Sync(LATHE,LATHELOC).

From the transition structures shown in Fig.15, we see thatFEEDERLOC (FEEDERSUP) must

import events 13, 14, 15, 16, 17 and 18 fromROBOT, and 19 fromLATHE; ROBOTLOC

25



10 2

13,1513,15

12 12

10

17

16

10

19

14,18

10

19

14,18

10

17

16

16 14

INBUF

SBBUF LBUF

2SPEC 3SPEC

Fig. 14. Model of Specifications

(ROBOTSUP) must import events 12 fromFEEDER, and 19 fromLATHE; andLATHELOC

(LATHESUP) must import events 11 and 12 fromFEEDER, and 13, 14, 15, 16, 17 and 18 from

ROBOT.

B. Illustrative Cases

Based on the computed local controllers, we illustrate our new verification tools with the following

cases.

Case1. – Event 13

TakingFEEDERLOC for example, build a channelCH(R, 13, F ), as shown in Fig.16, using a new

event label 113 to represent the corresponding channel output; use 113 to replace 13 inFEEDERSUP

to obtainFEEDERSUP′, over the alphabet{11,12,113,14,15,16,17,18,19}.

Now compute the channeled behaviorSUPER′ according to

SUPER′ = Sync(FEEDERSUP′,CH(R, 13, F ),ROBOTSUP,LATHESUP)

over the augmented alphabet{11, ..., 20, 113} and with (state, transition) count (124, 302). Next, to

check delay-robustness we projectSUPER′ modulo supremal quasi-congruence with nulled event 113,

to get, say,

QCSUPER′ := Supqc(SUPER′, Null[113])

(deterministic, with size (70, 153))
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Fig. 15. Local Controller for each component. According to Remark 1, for every statex of each controller, and each

communication eventσ imported from some other component, ifσ is not defined at x, we add aσ-selfloop. Let∗(x) be

the set of selfloops to be adjoined at statex. In FEEDERLOC, ∗(0) = {13, 15, 17, 19}, ∗(3) = {13, 14, 15, 16, 18},

∗(4) = {13, 14, 15, 16, 17, 18}; in ROBOTLOC, ∗(0) = {19}, ∗(1) = {19}, ∗(2) = {12, 19}, ∗(5) = {12},

∗(7) = {19},∗(9) = {19},∗(10) = {12},∗(11) = {19}; in LATHELOC, ∗(0) = {13, 15}, ∗(1) = {12, 15}, ∗(2) = {15},

∗(3) = {12, 15}, ∗(4) = {13, 14, 15, 16, 17, 18},∗(5) = {12, 13, 14, 16, 17, 18},∗(6) = {13, 14, 16, 17, 18},∗(7) =

{12, 13, 14, 16, 17, 18}.

Finally we verify thatQCSUPER′ is isomorphic toSUPER, and conclude thatSUPER is delay-

robust with respect to the channeled communication of event13 fromROBOT to FEEDERLOC. As

a physical interpretation, consider the case where events 11, 12, 11, 12, 13 have occurred sequentially (i.e.

there exist two parts inINBUF andROBOT has taken a part fromINBUF) andFEEDERSUP′
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Fig. 16. CH(R, 13, F ), CH(R, 15, F ), andCH(R, 15, L)

has not executed the occurrence 113 of event 13. On the one hand, if FEEDERSUP′ executes event 113

(i.e. it acknowledges the occurrence of event 13), it will enable event 11 legally (according toSUPER).

On the other hand, ifFEEDERSUP′ does not execute event 113, thenROBOT will load the part

into LBUF and take another part fromINBUF (execute event 15). SoFEEDERSUP′ can enable

event 11 again, which is also legal according toSUPER. Hence, in this case, the channeled system

SUPER′ can run ‘correctly’(no extra behavior violates the specification) and can ‘complete’ the given

task (with the help ofSBBUF), i.e. the communication delay of event 13 is tolerable withrespect to

SUPER.

By the same method, one can verify thatSUPER is delay-robust with respect event 15providedit is

channeled only toFEEDERLOC; it must be communicated toLATHELOC without delay. To verify

this, we have two separate channels,CH(R, 15, F ) andCH(R, 15, L), with distinct signal events 115

and 215 (see Fig.16). Taking the two channels separately, by Definition1 and the same method as above

for event 13, we verify thatSUPER is delay-robust when 15 is communicated toFEEDERLOC

by CH(R, 15, F ), but delay-critical toLATHELOC by CH(R, 15, L). Moreover, by Definition3 and

the procedure in Sect.III-B , we verify thatSUPER is delay-critical when 15 is communicated to both

FEEDERLOC andLATHELOC.

Case2. – Events 13 and 15

This case shows thatSUPER is delay-robust relative to the event set{13, 15}, with 13 and 15 both

channeled toFEEDERLOC.

Consider the channelCH(R, 15, F ) displayed in Fig.16, using the signal event 115 to represent

the corresponding channel output. Use labels 113, 115 to replace 13, 15 inFEEDERSUP to obtain

FEEDERSUP′, over the alphabet{11,12,113, 14, 115,16,17,18,19}.

We compute the channeled behaviorSUPER′ according to

SUPER′ = Sync(FEEDERSUP′,CH(R, 13, F ),CH(R, 15, F ),

ROBOTSUP,LATHESUP),
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Fig. 17. CH(F, 12, R) andCH(R, 16, L)

over the augmented alphabet{11, ..., 20, 113, 115} and with (state, transition) count (180, 470). Next,

to check delay-robustness we projectSUPER′ modulo supremal quasi-congruence with nulled events

113, 115, to get

QCSUPER′ := Supqc(SUPER′, Null[113, 115])

(deterministic, with size (70, 153))

Finally QCSUPER′ turns out to be isomorphic toSUPER, and we conclude thatSUPER is delay-

robust with respect to the channeled communication of events 13, 15 fromROBOT to FEEDERLOC.

Briefly, the reason is thatFEEDERSUP′ will enable event 11 after it executes event 113 or 115, and

ROBOT will remain idle if no more parts are loaded into the system (i.e. event 11 cannot occur again).

Case3. – Event 19

Event 19 channeled toROBOTLOC is shown, by computation, or directly by Definition1, to be

delay-critical with respect toSUPER. By tracking the working process, we show that the indefinite

communication delay of event 19 may result in violation ofSPEC2. Consider the following case: events

11,12,11,12,13,14,19 have occurred sequentially, i.e. there exists one part inINBUF, ROBOT has

loaded a part inLBUF and LATHE has taken the part fromLBUF (i.e. LBUF is now empty).

Since the transmission of event 19 is delayed unboundedly, if ROBOT doesn’t ‘know’ thatLATHE

has taken the part fromLBUF, it may take a new part fromINBUF (event 15) and load it into

SBBUF (event 16) according toROBOTSUP′, i.e. the event sequence 11.12.11.12.13.14.19.15.16

occurs inWORKCELL with communication delay, violatingSPEC2. Hence event 19 is delay-critical.

Case4. – Event 12

This case shows that although the occurrence of (uncontrollable) event 12 (channelled toROBOTLOC)

may be blocked by its channelCH(F, 12, R), as shown in Fig.17, this will not violate the specifications.

According to SectIII-C , we check whetherL(CH(F, 12, R)) is controllable with respect to

NSUPER = Sync(FEEDERSUP,ROBOTSUP′,LATHESUP).
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In [31], we useCondat, which tabulates the set of events disabled inCH(F, 12, R) with respect to

NSUPER, to implement the verification of the controllability forL(CH(F, 12, R)).9

By usingCondat, it turns out that event 12 is disabled at state 1 of

L(CH(F, 12, R)). Physically, suppose 11, 12 and 11 have occurred sequentially, i.e., FEEDER has

stored a part inINBUF and taken another part (event 11). After that,FEEDER may store the part in

INBUF (event 12, which is uncontrollable). IfROBOTSUP does not acknowledge the first occurrence

of 12, thenCH(F, 12, R) is at state 1, and thus cannot transmit the next occurrence of12. So, in the

channeled systemSUPER′, event 12 is blocked byCH(F, 12, R). If transmission of the first12 is

completed (i.e. event 212 occurs) before the second occurrence of event 12, then event 12 will not be

blocked. InSUPER, only event 11 occurs between two occurrences of event 12; thus we say that

SUPER is ‘1-bound’-delay-robust with respect to event12.

Case5. – Event 16

This case shows that the occurrence of uncontrollable event16 (channeled toLATHELOC) will not

be blocked by its channelCH(R, 16, L), shown in Fig.17.

Applying procedureCondat in [21] to CH(R, 16, L), we see that 16 will not be disabled; we conclude

that event 16 will not be blocked byCH(R, 16, L), andSUPER is unbounded-delay-robust with respect

to 16. To illustrate the conclusion, we consider the following case: there exist two parts inINBUF and

one part inLBUF (event sequence 11.12.11.12.13.14.11.12); thenROBOT takes a part fromINBUF

(event 15) and places it inSBBUF (event 16). In Fig.15, FEEDERLOC is at state 2 and is waiting

for the occurrence of event 13 or 15 (ROBOT takes a part fromINBUF), and enables event 11;

ROBOTLOC is at state 8 and is waiting for the occurrence of 19 (LATHE takes a part fromLBUF)

or the occurrence of event 12; andLATHELOC is at state 1 and is waiting for the occurrence of event

19. Now, the occurrence of event 19 (which is enabled byLATHELOC) will lead the controlled plant

to continue to operate. Even thoughLATHELOC does not receive the occurrence of 16, the system

does not block. Hence in this case the occurrence of event 16 is not blocked by its channelCH(R, 16, L).

Case6. – All communication events

When all communication events are subject to delay through channels (i.e.Σch = Σcom), it can be

verified that delay-robustness ofSUPER in the strong sense of Definition3 fails, i.e.SUPER fails

to be delay-robust for distributed control by localization. In fact when all the channeled events except

9 Here the alphabet ofCH(F, 12, R) is {12, 212}; before callingCondat, one should add the selfloop with events in

NSUPER but not in{12, 212} at each state ofCH(F, 12, R).
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19 (channeled toROBOTLOC) are received without delay, Case6 is reduced to Case3; soSUPER

cannot be delay-robust with respect to the set of all communication events, as asserted by Theorem 2 in

Sect.III .

V. CONCLUSIONS AND FUTURE WORK

In this paper we have studied distributed control obtained by supervisor localization on the relaxed

assumption (compared to previous literature[5, 6]) that inter-agent communication of selected ‘communi-

cation events’ (channeled events) may be subject to unknowntime delays. For this distributed architecture

we have identified a property of ‘delay-robustness’ which guarantees that the logical properties of our

delay-free distributed control (i.e. the original DES specifications) continue to be enforced in the presence

of delay, albeit with possibly degraded temporal behavior.We have shown that delay-robustness can be

effectively tested with polynomial complexity, and that such tests serve to distinguish between events

that are delay-critical and those that are not. The case thatan uncontrollable channeled event may be

blocked by its communication channel is identified by the algorithm for checking controllability. A simple

workcell exemplifies the approach, showing how delay-robustness may depend on the subset of events

subject to delay, and that a given event may be delay-critical for some choices of the delayed event subset

but not for others.

With the definitions and tests reported here as basic tools, future work should include the investigation

of alternative channel models and, of especial interest, global interconnection properties of a distributed

system of DES which render delay-robustness more or less likely to be achieved. A quantitative approach

involving timed discrete-event systems could also be an attractive extension.

APPENDIX A

PROOF OFPROPOSITION1

Recall thatSUP′ = (Y,Σ′, η, y0, Ym). According to natural projectionP : Σ′∗ → Σ∗ which maps

(Σ′ −Σ) to ǫ, defineη′ : Y × Σ∗ → Pwr(Y ) given by

η′(y, t) = {η(y, s)|s ∈ Σ′∗, η(y, s)! &Ps = t}. (25)

Let ρ be the supremal quasi-congruence onY with respect toSUP′, and definePρ : Y → Y/ρ = Y .

As in ([21], Chapt. 6),QCSUP′ = (Y ,Σ, η, y0, Y m) is defined withη : Y × Σ∗ → Pwr(Y ) given by

η(y, t) :=
⋃

{Pρ(η
′(y, t))|Pρ(y) = y}, (26)

y0 = Pρ(y0) andY m = Pρ(Ym).
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Proof: We must prove thatQCSUP′ representsPLm(SUP′) and is a canonical generator.

(1) We show thatQCSUP′ representsPLm(SUP′), i.e,

Lm(QCSUP′) = PLm(SUP′)

and

L(QCSUP′) = PL(SUP′).

(i) L(QCSUP′) ⊆ PL(SUP′)

Let t ∈ L(QCSUP′). We prove by induction thatt ∈ PL(SUP′).

Base step: t = ǫ ∈ PL(SUP′) trivially.

Inductive step: Supposet ∈ L(QCSUP′), t ∈ PL(SUP′), andtα ∈ L(QCSUP′); we must prove

tα ∈ PL(SUP′).

Since tα ∈ L(QCSUP′), we haveη(y0, t)! and η(y0, tα)!. So, (∃y ∈ Y ) y = η(y0, t) & η(y, α)!.

We havey0 = Pρy0. Since t ∈ PL(SUP′), (∃s ∈ L(SUP′)) Ps = t, i.e. η(y0, s)!. So, η(y0, s) ∈

η′(y0, t), i.e., η′(y0, t) 6= ∅. Thus,y = Pρη
′(y0, t) becauseQCSUP′ is deterministic. Sinceη(y, α)!

andη′(y0, t) 6= ∅, there existsy ∈ η′(y0, t) such thatη(y, α) = Pρη
′(y, α). Hence,η′(y0, tα)!. However,

according to (25)

η′(y0, tα) = {η(y0, s)|s ∈ Σ∗, η(y0, s)!, Ps = tα}.

Thus,(∃s ∈ L(SUP′)) Ps = tα, so tα ∈ PL(SUP′).

(ii) PL(SUP′) ⊆ L(QCSUP′)

Let t ∈ PL(SUP′); we show thatt ∈ L(QCSUP′).

Base step: t = ǫ ∈ L(QCSUP′) trivially.

Inductive step: Supposingt ∈ PL(SUP′), t ∈ L(QCSUP′), and tα ∈ PL(SUP′), we show

tα ∈ L(QCSUP′)).

Since t ∈ PL(SUP′) and t ∈ L(QCSUP′), η′(y0, t) 6= ∅, η(y0, t)!; letting y = η(y0, t), then

y = Pρη
′(y0, t) becauseQCSUP′ is deterministic. Sincetα ∈ PL(SUP′), there existss′ ∈ L(SUP′),
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i.e. η(y0, s′)! such thatPs′ = tα; thus

⋃

{η′(y′, α)|y′ ∈ η′(y0, t)}

=
⋃

{η′(y′, α)|s ∈ Σ′∗, y′ = η(y0, s), Ps = t} (according to (25))

= {η((η(y0, s), v))|v ∈ Σ′∗, η(η(y0, s), v)!, Ps = t, Pv = α}

= {η(y0, sv)|sv ∈ Σ′∗, η(y0, sv)!, P (sv) = tα}

6= ∅ (sinceη(y0, s
′)! andPs′ = tα),

i.e. there existsy ∈ η′(y0, t) such thatη′(y, α)!. Then,Pρy = y due toy = Pρη
′(y0, t). Hence,η(y, α) =

Pρη
′(y, α) 6= ∅, i.e., η(y, α)!. So, tα ∈ L(QCSUP′).

(iii) Lm(QCSUP′) ⊆ PLm(SUP′)

For any t ∈ Σ∗, if t ∈ Lm(QCSUP′), then (∃y ∈ Y ) y = η(y0, t) & y ∈ Y m. By (i), we

conclude thatt ∈ PL(SUP′). Thus,η′(y0, t) 6= ∅. BecauseQCSUP′ is deterministic, we know that

y = Pρη
′(y0, t). So,Pρη

′(y0, t) ∈ Y m. Further,η′(y0, t) ∩ Ym 6= ∅, i.e., there existss ∈ Σ′∗ such that

η(y0, s)! & η(y0, s) ∈ Ym & Ps = t. Hence,s ∈ Lm(SUP′), thust = Ps ∈ PLm(SUP′).

(iv) PLm(SUP′) ⊆ Lm(QCSUP′)

For anyt ∈ Σ∗, if t ∈ PLm(SUP′), thenη′(y0, t)! & η′(y0, t) ∩ Ym 6= ∅. By (ii), t ∈ L(QCSUP′),

i.e., (∃y ∈ Y ) η(y0, t)! & y = η(y0, t). SinceQCSUP′ is deterministic,y = Pρη
′(y0, t). We conclude

thatPρη
′(y0, t) ∈ Y m from η′(y0, t) ∩ Ym 6= ∅. Hence,y ∈ Y m, i.e., t ∈ Lm(QCSUP′).

2. We prove thatQCSUP′ is a canonical(minimal-state) generator.

Let ν be a congruence onY defined according to:y ≡ y′ (mod ν) provided

(i) (∀t ∈ Σ∗) η(y, t)! ⇔ η(y′, t)!

(ii)(∀t ∈ Σ∗) η(y, t) ∈ Y m ⇔ η(y′, t) ∈ Y m.

With reference to ([21], Proposition 2.5.1), projection (modν) reducesQCSUP′ to a state-minimal

generator.

DefinePν : Y → Y /ν and writeν ◦ ρ = ker(Pν ◦ Pρ). Next we will prove thatν ◦ ρ is a quasi-

congruence onY ,i.e., for all y, y′ ∈ Y ,

Pν ◦ Pρ(y) = Pν ◦ Pρ(y
′) ⇒ (∀α ∈ Σ)Pν ◦ Pρη(y, α) = Pν ◦ Pρη(y

′, α).
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Now

Pν ◦ Pρ(y) = Pν ◦ Pρ(y
′)

⇒ Pν(Pρ(y)) = Pν(Pρ(y
′))

⇒ Pν(η(Pρ(y)), α) = Pν(η(Pρ(y
′)), α)

(cf. (ii) of Proposition 2.5.1 in [21])

⇒ Pν(η(y, α)) = Pν(η(y′, α))

⇒ Pν(Pρ(η
′(y, α))) = Pν(Pρ(η

′(y′, α)))

⇒ Pν ◦ Pρη
′(y, α) = Pν ◦ Pρη

′(y′, α)

Hence,ν ◦ ρ is a quasi-congruence onY . Obviously, ν ◦ ρ is coarser thanρ. However,ρ is the

supremal quasi-congruence onY , so for anyy, y′ ∈ Y , if Pν(Pρ(y)) = Pν(Pρ(y
′)), i.e., (y, y′) ∈ ν ◦ ρ,

then (y, y′) ∈ ρ, which means thatPρ(y) = Pρ(y
′). Hence,ν = ⊥ (namely all its cells are singletons).

We have shown thatQCSUP′ is a canonical generator.

APPENDIX B

PROOF OFPROPOSITION2

For the proof, we need the natural projections:

Q′ :Σ′∗ → Σ∗

Q′

T :Σ′∗

T → Σ∗

Qr′
12
:Σ′∗

T → (Σ ∪ {r′21})
∗

Qr′
21
:(Σ ∪ {r′21})

∗ → Σ∗

Qch :Σ′∗ → {r, r′}∗

QTch :Σ′∗

T → {r, r′21, r
′

12}
∗.

ThusQ′

T = Qr′
21
Qr′

12
. According to the definition ofCH(2, r, 1) andTCH(2, r, 1), L(CH(2, r, 1)) =

(r.r′)∗ andL(TCH(2, r, 1)) = (r.r′
21
.r′
12
)∗.

Let NSUP = Sync(SUP′

1,SUP2); then

L(SUP′) = L(NSUP) ∩Q−1

ch L(CH(2, r, 1)), (27a)

Lm(SUP′) = Lm(NSUP) ∩Q−1

ch Lm(CH(2, r, 1)). (27b)
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Let TNSUP = Sync(TSUP′

1,SUP2); then

L(TSUP′) = Q−1

r′
12

L(TNSUP) ∩Q−1

TchL(TCH(2, r, 1)), (28a)

Lm(TSUP′) = Q−1

r′
12

Lm(TNSUP) ∩Q−1

TchLm(TCH(2, r, 1)). (28b)

Since fromNSUP (resp.TNSUP) to TNSUP (resp.NSUP), only r′ (resp.r′
21

) is replaced by

r′
21

(resp.r′), we still have the following results:

s = x1.r.x2 ∈ L(NSUP) ⇔ t = x1.r.x2 ∈ L(TNSUP) (29a)

s = x1.r.x2.r
′.x3 ∈ L(NSUP) ⇔ t = x1.r.x2.r

′

21.x3 ∈ L(TNSUP) (29b)

where the stringsx1, x2, andx3 are free ofr, r′ andr′
21

. Furthermore,

Q′L(SUP′) = Q′
(

L(NSUP) ∩Q−1

ch L(CH(2, r, 1))
)

= Q′
(

L(NSUP) ∩ ((Σ − {r})∗.r(Σ− {r})∗.r′)∗

= Qr′
21

(

L(TNSUP) ∩ ((Σ − {r})∗.r(Σ− {r})∗.r′
21
)∗
)

(30)

(FromNSUP to TNSUP, r′ is replaced byr′
21

)

= Qr′
21

(

L(TNSUP) ∩Qr′
12
(Q−1

TchL(TCH(2, r, 1)))
)

Also, we need the following lemmas.

Lemma 1. (r′, r′
21

and r′
12

insertion) Let s = x1.r.x2 ∈ L(SUP) where the stringsx1, x2 are free ofr;

thens′ = x1.r.r
′.x2 ∈ L(SUP′), and t′ = x1.r.r

′

21
.r′
12
.x2 ∈ L(TSUP′).

Proof. Immediate from the definition of relevant synchronous product.

Lemma 2. Let s′ = x1.r.x2.r
′.x3 ∈ Lm(SUP′), where the stringsxi(i = 1, 2, 3) are free ofr, r′. For

anyx31, x32 ∈ (Σ−{r})∗ that satisfyx3 = x31.x32, t′ := x1.r.x2.r
′

21
.x31.r

′

12
.x32 ∈ Lm(SUP′′). On the

other side, ift′ = x1.r.x2.r
′

21
.x31.r

′

12
.x32 ∈ Lm(SUP′′), thens′ = x1.r.x2.r

′.x31.x32 ∈ Lm(SUP′).

Proof. For the first part, it follows froms′ ∈ Lm(SUP′) = Lm(NSUP) ∩Q−1

ch Lm(CH(2, r, 1)) that

x1.r.x2.r
′.x3 ∈ Lm(NSUP). By (29b), x1.r.x2.r′21.x3 ∈ Lm(TNSUP). SoQr′

12
t′ = x1.r.x2.r

′

21
.x31.

x32 ∈ Lm(TNSUP), and thust′ ∈ Q−1

r′
12

Lm(TNSUP). Furthermore,QTcht
′ = r.r′

21
.r′
12

∈ Lm(TCH(2,

r, 1)). Hence,t′ ∈ Q−1

r′
12

Lm(TNSUP) ∩Q−1

TchLm(TCH(2, r, 1) = Lm(TSUP′). The argument for the

second part is similar.
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Proof of Proposition2. (If) We assume that

Q′L(SUP′) = L(SUP) (31a)

Q′Lm(SUP′) = Lm(SUP) (31b)

Q′ has the observer property with respect toSUP′ andSUP. (31c)

It must be shown that the counterpart properties hold forQ′

T andTSUP′, namely

Q′

TL(TSUP′) = L(SUP) (32a)

Q′

TLm(TSUP′) = Lm(SUP) (32b)

Q′

T has the observer property with respect toTSUP′ andSUP. (32c)

For (⊆) of (32a),

Q′

TL(TSUP′) = Q′

T

(

Q−1

r′
12

L(TNSUP) ∩Q−1

TchL(TCH(2, r, 1))
)

= (Qr′
21
Qr′

12
)
(

Q−1

r′
12

L(TNSUP) ∩Q−1

TchL(TCH(2, r, 1))
)

⊆ Qr′
21

(

L(TNSUP) ∩Qr′
12
(Q′′−1

TchL(TCH(2, r, 1)))
)

= Q′L(SUP′) (By (30))

⊆ L(SUP). (By (31a))

For (⊇) of (32a), if s = x1.r.x2 ∈ L(SUP), then applying Lemma1 to s with r′
21

andr′
12

we get that

t′ = x1.r.r
′

21
.r′
12
.x2 ∈ L(TSUP′) and thens = Q′

T (t
′) , as claimed. The argument for (32b) is similar.

For the observer property we have by (31c) that

(∀s′ ∈ L(SUP′))(∀v ∈ Σ∗)Q′(s′).v ∈ Lm(SUP) ⇒

(∃v′ ∈ (Σ′)∗)s′.v′ ∈ Lm(SUP′) & Q′(v′) = v

and must verify the counterpart (32c), namely

(∀t′ ∈ L(TSUP′))(∀u ∈ Σ∗)Q′

T (t
′).u ∈ Lm(SUP) ⇒

(∃u′ ∈ (Σ′

T )
∗)t′.u′ ∈ Lm(TSUP′) & Q′

T (u
′) = u.

For the proof lett′ ∈ L(TSUP′), u ∈ Σ∗, Q′

T (t
′).u ∈ Lm(SUP). Next we prove (32c) from the

following three cases: (1)t′ = x1.r.x2, (2)t′ = x1.r.x2.r
′

21
.x3 and (3)t′ = x1.r.x2.r

′

21
.x3.r

′

12
.x4, where

xi(i = 1, 2, 3, 4) are free ofr, r′
21

, andr′
21

. Note that since the re-transmission ofr will not start until

the last transmission is completed, in this proof we only consider the transmission of one instance ofr.
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(1) By t′ ∈ L(TSUP′), we havet′ ∈ Q−1

r′
12

L(TNSUP). Sincet′ is free of r′
12

, x1.r.x2 = Qr12t
′ ∈

L(TNSUP). By (29a), x1.r.x2 ∈ L(NSUP). Also, Qch(x1.r.x2) = r ∈ L(CH(2, r, 1)). So, s′ :=

x1.r.x2 ∈ L(NSUP) ∩ Q−1

ch L(CH(2, r, 1)) = L(SUP′). Define v = u; then Q′(s′).v = Q′

T (t
′).u ∈

Lm(SUP). By (31c), there existsv′ ∈ Σ′∗ such thatQ′v′ = v ands′.v′ ∈ Lm(SUP′), i.e. x1.r.x2.v ∈

Lm(SUP′). By (27b), s′.v′ ∈ Q−1

ch Lm(CH(2, r, 1)); thusv′ can be written asv′
1
.r′.v′

2
wherev′

1
andv′

2
are

free of r′. Namely,x1.r.x2.v′1.r
′v′

2
∈ Lm(SUP′). By Lemma2, x1.r.x2.v′1.r

′

21
.r′
12
.v′

2
∈ Lm(TSUP′).

Defineu′ = v′
1
.r′
21
.r′
12
.v′

2
; thenQ′

Tu
′ = v′

1
v′
2
= Q′v′ = v = u, andt′.u′ ∈ Lm(TSUP′), as required by

(32c).

(2) Similar to case (1), we havet′ ∈ L(TNSUP). By (29b), s′ := x1.r.x2.r
′.x3 ∈ L(NSUP).

Furthermore, sinceQ′s′ = r.r′ ∈ L(CH(2, r, 1)), s′ ∈ L(SUP′). Define v = u; then Q′(s′).v =

QT (t
′).u ∈ Lm(SUP). By (31c), there existsv′ ∈ Σ′∗ such thatQ′v′ = v and s′.v′ ∈ Lm(SUP′). By

(27b), s′.v′ ∈ Q−1

ch Lm(CH(2, r, 1)); thusv′ is free ofr′, i.e. v′ = v (In this proof only one instance of

r is taken into consideration). So,x1.r.x2.r′.x3.v′ ∈ Lm(SUP′). By Lemma2, x1.r.x2.r′21.x3.r
′

12
.v′ ∈

Lm(TSUP′). Defineu′ = r′
12
.v′; thenQ′

Tu
′ = v′ = v = u and t′.u′ ∈ Lm(TSUP′), as required by

(32c).

(3) Let s′ := x1.r.x2.r
′.x3.x4. By (28a), we haves′ = Qr′

12
t′ ∈ L(TNSUP). Similar to case (2), if

defining v′ = u, then we can verify thatx1.r.x2.r′21.x3.r
′

12
x4.v

′ ∈ Lm(TSUP′). Defineu′ = v′; then

Q′

Tu
′ = v′ = u and t′u′ ∈ Lm(TSUP′), as required by (32c).

(Only if) We assume that conditions (32a)-(32c) hold; it must be shown that conditions (31a)-(31c)

hold.

For (⊆) of (31a), let s′ ∈ L(SUP′); we prove thatQ′s ∈ L(SUP) from the following two cases: (1)

s′ = x1.r.x2, and (2)s′ = x1.r.x2.r
′.x3, wherex, x1, x2, x3 are free ofr andr′.

(1) It follows from s′ ∈ L(SUP′) that x1.r.x2 ∈ L(NSUP). By (29a), we havet := x1.r.x2 ∈

L(TNSUP), and thust ∈ Q−1

r′
12

L(TNSUP). Also,QTcht = r ∈ L(TCH(2, r, 1)). So,t ∈ L(TSUP′),

and thusQ′

T t ∈ Q′

TL(SUP′) ⊆ L(SUP). Hence, we also haveQ′s′ = t = Q′

T t ∈ L(SUP).

(2) Similar to case (1), we havex1.r.x2.r′.x3 ∈ L(NSUP). By (29b), t := x1.r.x2.r
′

21
.x3 ∈

L(TNSUP). Let t′ := x1.r.x2.r21′ .x3.r
′

12
; then t′ ∈ Q−1

r′
12

L(TNSUP). Also, QTcht
′ = r.r.′

21
.r′
12

∈

L(TCH(2, r, 1)). So, t′ ∈ L(TSUP′), and thusQ′

T t
′ ∈ Q′

TL(TSUP′) ⊆ L(SUP). Hence,Q′s′ =

x1.r.x2.x3 = Q′

T t
′ ∈ L(SUP).

(⊇) of (31a) can be verified similar to the proof of (⊇) of (32a). The argument for (31b) is similar.
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For the observer property we have by (32c) that

(∀t′ ∈ L(TSUP′))(∀u ∈ Σ∗)Q′

T (t
′).u ∈ Lm(SUP) ⇒

(∃u′ ∈ (Σ′

T )
∗)t′.u′ ∈ Lm(TSUP′) & Q′

T (u
′) = u

and must verify the counterpart (31c), namely

(∀s′ ∈ L(SUP′))(∀v ∈ Σ∗)Q′(s′).v ∈ Lm(SUP) ⇒

(∃v′ ∈ (Σ′)∗)s′.v′ ∈ Lm(SUP′) & Q′(v′) = v.

For the proof lets′ ∈ L(SUP′), v ∈ Σ∗, Q′(s′).v ∈ Lm(SUP). Next we prove (31c) from the following

two cases: (1)s′ = x1.r.x2, (2)s′ = x1.r.x2.r
′.x3, wherexi(i = 1, 2, 3) are free ofr andr′.

(1) Similar to case (1) in proving (⊆) of (31a), by s′ ∈ L(SUP′), we havet′ := x1.r.x2 ∈ L(TSUP′).

Define u = v; then Q′

T (t
′).u = Q′(s′).v ∈ Lm(SUP). By (32c), there existsu′ ∈ Σ′

T such that

Q′

Tu
′ = u and t′.u′ ∈ Lm(TSUP′). Namely,x1.r.x2.u′ ∈ Lm(TSUP′). So byQTch(x1.r.x2.u

′) =

r.QTch(u
′) there must existu′

1
, u′

2
, u′

3
∈ Σ∗ such thatu′ = u′

1
.r′
21
.u2.r

′

12
.u3. Applying Lemma 2,

x1.r.x2.u
′

1
.r′.u′

2
.u′

3
∈ Lm(SUP′). Definev′ = u′

1
.r′.u′

2
.u′

3
; thenQ′v′ = u′

1
.u′

2
.u′

3
= Q′

Tu
′ = u = v, and

s′.v′ ∈ Lm(SUP′), as required by (31c).

(2) Similar to case (2) in proving (⊆) of (31a), by s′ ∈ L(SUP′), we havet′ := x1.r.x2.r
′

21
.x3.r

′

12
∈

L(TSUP′). Defineu = v; thenQ′

T (t
′).u = x1.r.x2.x3.v = Q′(s′)v ∈ Lm(SUP). By (32c), there exists

u′ ∈ Σ′

T such thatQ′

Tu
′ = u and t′u′ ∈ Lm(TSUP′). Namely,x1.r.x2.r21′ .x3.r

′

12
.u′ ∈ Lm(TSUP′).

Since QTch(x1.r.x2.r21′ .x3.r
′

12
.u′) = (r.r′

21
.r′
12
).QTch(u

′), and only one instance ofr is taken into

consideration,u′ is free ofr′
21

, andr′
12

(alsou′ is free ofr′); thusQ′

Tu
′ = u′ = Q′u′. Applying Lemma2,

we obtain thatx1.r.x2.r′.x3.u′ ∈ Lm(SUP′). Definev′ = u′; thenQ′v′ = Q′u′ = u′ = Q′

Tu
′ = u = v,

ands′.v′ ∈ Lm(SUP′), as required by (31c).

APPENDIX C

DELAY-ROBUSTNESS OFDECENTRALIZED CONTROLLERS

Here we show that the verification tool for delay-robustnessof distributed controllers can be used

without change to verify the delay-robustness of decentralized supervisors.

Let G be the DES to be controlled, andLOC1 andLOC2 be two decentralized controllers, which

achieve global supervision with zero-delay communication. Let Σi, Σio be the event set and observable

event set ofLOCi, respectively(i = 1, 2). Assume eventr ∈ Σ1 ∩ (Σ2o − Σ1o), which is not

observed byLOC1, but is observed byLOC2. Hence,r should be transmitted toLOC1. We use
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the channelCH(2, r, 1), as shown in Fig.1, to transmitr and user′ to represent thatLOC1 receives

the occurrence ofr. Then, replacingr by r′, we obtainLOC′

1. Let SUP = Sync(G,LOC1,LOC2),

SUP′ = Sync(G,LOC′

1,CH(2, r, 1),LOC2), andQCSUP′ = Supqc(SUP′, Null[r′]). Finally, by

Theorem1, if SUP ≈ QCSUP′, SUP is delay-robust with respect tor, or LOC1 andLOC2 achieve

global supervision with unbounded delay communication.

APPENDIX D

PROOF OFTHEOREM 2

The relevant natural projections are

P ′ :(Σ1 ∪ {α′, β′} ∪ ΣE′)∗ → Σ∗

P ′′ :(Σ1 ∪ {β′} ∪ ΣE′)∗ → Σ∗.

ThusP ′ (resp.P ′′) nulls {α′, β′} (resp.{β′}) ∪{r′|r′ ∈ ΣE′}.

For the proof we assume that

P ′L(SUP′) = L(SUP) (33a)

P ′Lm(SUP′) = Lm(SUP) (33b)

P ′ has the observer property with respect toSUP′ andSUP. (33c)

It must be shown that the counterpart properties hold forP ′′ andSUP′′, namely

P ′′L(SUP′′) = L(SUP) (34a)

P ′′Lm(SUP′′) = Lm(SUP) (34b)

P ′′ has the observer property with respect toSUP′′ andSUP. (34c)

We need the following lemmas.

Lemma 3. (α′ insertion) Let s′′ = x.α.x.β.x.β′.x ∈ L(SUP′′) where the (generally distinct) strings

written x are free ofα, β, β′. Thens′ := x.α.α′.x.β.x.β′.x ∈ L(SUP′).

Proof. Immediate from the definition of the relevant synchronous products. �

Evidently Lemma3 extends to multiple appearances ofα, β, β′ and arbitrary possible orderings of

theα with respect to theβ, β′; and holds withL replaced byLm throughout.

Lemma 4. (α′ deletion) Let t′ = x.α.y.α′.z.β.z.β′.z ∈ Lm(SUP′), where the stringsx, y, z are free of

α, α′, β, β′. Thent′′ := x.α.y.z.β.z.β′.z ∈ Lm(SUP′′).
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Proof. Recall that the synchronous products definingLm(SUP′) andLm(SUP′′) differ only in that

the latter omits the factorCH(E,α, 1), and inSUP′′

1 α appears as inSUP1 (and not asα′). The string

y is of form, saya1.b1.a2.b2, wherea1, a2 ∈ (Σ′

1
)∗ andb1, b2 ∈ Σ∗

E′ , hence by definition of synchronous

product can be re-ordered asa1.a2.b1.b2 without affecting membership oft′ in Lm(SUP′); next α.y

can be re-ordered int′ as a1.a2.α.b1.b2, and thenα.y.α′ can be re-ordered asa1.a2.α.α′.b1.b2, again

preserving membership oft′ in Lm(SUP′). In this new ordering it is clear that deletion ofα′ converts

t′ to a stringt′′ in Lm(SUP′′). Reversing the ordering restores our originalt′′, proving the claim. �

Proof of Theorem2. For (34a) supposes′′ = x.α.x.β.x.β′.x ∈ L(SUP′′). By Lemma 3, s′ :=

x.α.α′.x.β.x.β′.x ∈ L(SUP′), so by (33a) P ′(s′) ∈ L(SUP). EvidentlyP ′′(s′′) = P ′(s′) as required.

For the reverse inclusion, ifs = x.α.x.β.x ∈ L(SUP) then applying Lemma3 to s with β we get that

s′′ = x.α.x.β.β′.x ∈ L(SUP′′) and thens = P ′′(s′′) , as claimed. The argument for (34b) is similar.

For the observer property we have by (33c) that

(∀s′ ∈ L(SUP′))(∀v ∈ Σ∗)P ′(s′).v ∈ Lm(SUP) ⇒

(∃v′ ∈ (Σ′)∗)s′.v′ ∈ Lm(SUP′) & P ′(v′) = v

and must verify the counterpart (34c), namely

(∀s′′ ∈ L(SUP′′))(∀v ∈ Σ∗)P ′′(s′′).v ∈ Lm(SUP) ⇒

(∃v′′ ∈ (Σ′′)∗)s′′.v′′ ∈ Lm(SUP′′) & P ′′(v′′) = v.

For the proof lets′′ ∈ L(SUP′′), v ∈ Σ∗, P ′′(s′′).v ∈ Lm(SUP). By Lemma 3 with α′-insertion

we obtains′ ∈ L(SUP′) such thatP ′(s′) = P ′′(s′′), so P ′(s′).v ∈ Lm(SUP), and by (33c) there is

v′ ∈ (Σ′)∗ with s′.v′ ∈ Lm(SUP′) andP ′(v′) = v. Thus v′ is of the formv′ = y.α.y.α′.y.β.y.β′.y

(possibly with multipleα’s and β’s in various interleavings). Definev′′ = Q(v′) whereQ projectsα′

to the empty stringǫ. ThenP ′′(v′′) = P ′′Q(v′) = P ′(v′) = v. Also, by Lemma4, s′′.v′′ = Q(s′.v′) ∈

QLm(SUP′) ⊆ Lm(SUP′′). Thusv′′ has the properties required in (34c), which completes the proof.

�
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