
HAL Id: hal-01699902
https://hal.science/hal-01699902

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line compositional controller synthesis for AGV
Johan Girault, Jean-Jacques Loiseau, Olivier Henri Roux

To cite this version:
Johan Girault, Jean-Jacques Loiseau, Olivier Henri Roux. On-line compositional controller synthesis
for AGV. Discrete Event Dynamic Systems, 2016, 26 (4), pp.583-610. �hal-01699902�

https://hal.science/hal-01699902
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

On-line compositional controller synthesis for AGV?

Johan Girault · Jean-Jacques Loiseau ·
Olivier H. Roux

Received: date / Accepted: date

Abstract This paper deals with the on-line design of a supervisor to co-
ordinate an automated guided vehicle (AGV) fleet. This supervisor ensures
the system safety (no collision) and a good coordination between vehicles (no
blocking situations). It is the so-called Wonham-Ramadge supervisor, it is the
least restrictive, and ensures controllability and nonblocking. We propose a
compositional procedure to resolve this problem allowing an efficient on-line
synthesis. A calculation on the fly is made at every attribution of a new mis-
sion for an AGV, to actualize the supervisor and adapt it to the new situation.
This compositional approach allows to increase the number of AGV taken on
compared to the monolithic approach. We show on some tests the efficiency
of this method for the on-line synthesis of supervisor to coordinate a fleet of
mobile robots for real cases.

Keywords finite automata · control · Automated Guided Vehicle · supervi-
sory control · on-line synthesis

1 Introduction

Automated Guided Vehicle (AGV) systems are widely spread in automatic
material handling systems and production workshops. Compared to other so-
lutions, such as the use of treadmills, the main advantage is to increase the
system’s flexibility and its operation requires a more complex control system.

? This paper is an extended version of Girault et al (2013) and was selected by the
conference MSR’13 for this submission to the journal DEDS.

Johan Girault · Jean-Jacques Loiseau · Olivier H. Roux
Ecole Centrale de Nantes, IRCCyN, UMR CNRS 6597
1, rue de la Noë
44 321 Nantes, France
E-mail: {johan.girault, jean-jacques.loiseau, olivier-h.roux}@irccyn.ec-nantes.fr

2 Johan Girault et al.

When designing a system for automated guided vehicles, it is required to
make a good conflict-free routing of AGVs and to dispatch tasks (Reveliotis.
2000). The design of AGV fleet control systems has been the subject of many
academic studies. Many solutions are based on the scheduling theory (Maza.
2003; Breton et al. 2006) where the authors merge predictive scheduling tech-
niques with on-line reroutings to take into account breakdowns or delay which
may occur in the system.

An alternative approach rests on the supervisory control theory, which is
based on the use of state-transition models, such as finite automata. The su-
pervisory control theory has been developed since the seminal work about 30
years ago (Wonham and Ramadge. 1984; Ramadge and Wonham. 1987). It
has become a basic paradigm for the control of discrete event systems (DES).
It essentially allows to design a supervisor to prevent conflicts. In an AGV
system, it amounts to avoid collisions between vehicles and to avoid blocking
situations. It naturally applies to a modeling of AGV systems with finite au-
tomata, but a similar approach was proposed in Krogh and Holloway (1991)
with Petri net modeling.

The supervisory control theory has a main advantage, it is maximally per-
missive. Therefore, it gives a maximum freedom degree compatible with the
avoidance of conflicts. This permissiveness allows the system to have high flex-
ibility. The supervisor implemented in this paper is designed for operation in
real time. Distributed control design for DES in the supervisory control theory
(SCT) framework has been studied in Cai and Wonham (2010). The central
problem investigated is how to synthesize local controllers for individual inde-
pendent agents in the context of AGV systems. Another approach has been
proposed in Arnaud et al (2009), where the objective function is to minimize
the energy expenditure. The main problem is the state-space explosion prob-
lem which depends on the number of AGVs in the system. Indeed, in this
paper, it is impossible to synthesize a supervisor for four or more AGVs. This
problem occurs when the product of the components (AGVs) results in an
automaton with a huge number of states.

Compositional or modular approaches can help to overcome the problem
of state space explosion. The modular supervisory control offers significant
gains in computational complexity (Wonham and Ramadge. 1988; Queiroz
and Cury. 2000). In Hill and Tilbury (2006), language projections are used
to simplify finite-state machines during synthesis and to construct modular
supervisors. To ensure that nonblocking and maximal permissiveness are pre-
served, the observer property and output-control consistency are imposed as
additional requirements on the projection. Another compositional synthesis
approach is used (Flordal et al. 2007; Malik and Flordal. 2008; Mohajerani
et al. 2011) to remove unnecessary information and to reduce the size of
systems. In Flordal et al (2007) and Malik and Flordal (2008), the authors
propose automata equivalence for supervisor synthesis, where the synthesis
is considered in a nondeterministic setting and leads to some problems when
interpreting result and ensuring maximal permissiveness. The supervisor re-
turned may be an over-approximation of the least restrictive solution that is

On-line compositional controller synthesis for AGV? 3

not automatically nonblocking. These problems are overcome in Mohajerani
et al (2011), where synthesis abstraction is used to abstract automata. The
method requires all automata and their abstraction results to be deterministic,
which makes some desirable abstraction impossible. Actually, the approach to
perform synthesis in several steps as proposed in this paper is described as
abstraction and called “halfway synthesis” in the papers cited here. In our
case, we do not use any abstraction. We calculate the supervisor using an
iterative method and the synthesized previous supervisor. The supervisor is
recalculated on-line when a change arises on the configuration of the AGV
system.

This paper proposes a solution to the problem of supervisor synthesis using
a compositional/incremental method. The specification is expressed in the
form of pairs of forbidden states and the supervisor is synthesized on the
fly. On our examples, our method allows to reduce the state-space explosion
problem, which is well known for the supervisor synthesis.

1.1 Motivations

In the industrial world, a circuit is designed to define the traffic lanes of AGVs.
These lanes allow to access different storage areas as shown in Fig. 1. Lettered
nodes represent intersections and each lane is divided into sections. There
are four workstations (F , H, J and L) that represent where AGVs pick up or
drop cargo. Nodes {A,C, T,Q} represent the entrances of the area and nodes
{B,D, S,R} the exits of the area.

In the industrial environment (Fig. 1), we can extend this scheme with
twenty or more workstations. It then becomes very difficult to manage the
traffic in this area to ensure the absence of conflict (see section 2.4) between
AGVs. As the number of AGVs wishing to access the area increases, blocking
situations are more likely to happen. A blocking situation on an industrial
site can stop the production of the company between ten and twenty minutes,
which is not admissible for a manufacturer.

1.2 Our contribution

In this paper, using a compositional incremental approach, we propose to de-
sign the supervisor representing the largest behaviour (or the least restrictive)
which is nonblocking and controllable for an AGV system. More precisely, we
aim to generate the supervisor and compose intermediate supervisors step by
step adding an AGV at every step to build the final supervisor. The synthe-
sized supervisor is the same as the monolithic supervisor of Ramadge and
Wonham but its computation is more effective in terms of time and memory.
We call it modified monolithic supervisor.

The structure of this paper is as follows. Firstly, in section 2, we present the
basic concept of the SCT and the synthesis of supervisor for an AGV system

4 Johan Girault et al.

Fig. 1 An example of a storage area.

with forbidden states. In section 3, we propose a compositional approach to
synthesize on-line a supervisor, we prove the compositionality and we discuss
about the complexity. Finally, in section 4, this approach is applied to real
cases from industrial world.

2 Notations and preliminaries

This section presents notations and mathematical framework used in this pa-
per. We will consider DES modeled by automata in the context of the SCT put
forth by Ramadge and Wonham (Ramadge and Wonham. 1989; Cassandras
and Lafortune. 2006).

2.1 Finite automata

A discrete event system is a dynamic system in which state changes occur at
discrete points in time. They can be represented by an automaton denoted by
G, which is defined as usually as a five-tuple.

Definition 1 G = (Q,Σ, δ, q0, Qm), where :

On-line compositional controller synthesis for AGV? 5

– Q is the finite set of states,
– Σ is the finite set of events,
– δ : Q×Σ → Q is the transition function,
– q0 ∈ Q is the initial state,
– Qm ⊆ Q is the set of marked states (final states).

In this paper, all automata are deterministic. Each σ ∈ Σ is a label as-
sociated with an event. The occurrence of an event corresponds to system
changing by passing from one state to another. δ(x, σ) = y means that there
is a transition labelled by event σ from state x to y. In general, δ is a partial
function on its domain. We write δ(x, σ)! if ∃y ∈ Q : δ(x, σ) = y. Let Σ∗ de-
note the set of all finite strings s of elements of Σ, including the empty string,
ε. For the sake of convenience, δ is extended from domain Q × Σ to domain
Q×Σ∗ in the following recursive manner:

δ(x, ε) = x

δ(x, sσ) = δ(δ(x, s), σ) : s ∈ Σ∗, σ ∈ Σ .

A string σ1σ2...σn ∈ Σ∗ is often called a word. We call a valid trace a
path from the initial state to a marked state (δ(q0, s) = y where s ∈ Σ∗ and

y ∈ Qm). We denote x
s−→ y ⇔ δ(x, s) = y where x, y ∈ Q, as a shorthand.

Note that if the states set Q = ∅ is empty, then G is the empty automa-
ton. The term “empty automaton” refers to an automaton whose state space
is empty; an empty automaton necessarily generates and marks the empty set.

In the sequel, we denote B \ A, the relative complement of A in B where
A and B are sets of state. Formally, B \A = {x ∈ B : x /∈ A}. In other words,
the relative complement of A with respect to a set B is the set of elements
in B but not in A. Then, the notation δ|A, means that we are restricting δ
to the domain A. Formally, consider the previous automaton G, then we have
δ|A(x, σ) = y iff ∃y : δ(x, σ) = y and x, y ∈ A.

Definition 2 (Language generated and marked)
The language generated by an automaton G is denoted by L(G).

L(G) = {s ∈ Σ∗ : δ(q0, s)!} .

The language marked by G is:

Lm(G) = {s ∈ L(G) : δ(q0, s) ∈ Qm} .

The language L(G) represents all the paths that can be followed along the
automaton starting from the initial state, while the second language Lm(G) is
the subset of L(G) (we indeed have Lm(G) ⊆ L(G)) corresponding to paths
ending in a marked state and starting from the initial state. The marked
language is also called the language recognized by the automaton. Hereinafter
we denote that L = L(G) and Lm = Lm(G).

6 Johan Girault et al.

Definition 3 (Prefix-closure)
Let L ⊆ Σ∗ a language, its prefix-closure denoted L, is defined as

L = {s ∈ Σ∗ : ∃t ∈ Σ∗(st ∈ L)} .

In general, we have L ⊆ L.

The notation L represents the set of all prefixes of string in the language L.
In the sequel, |Q| denotes the number of states of the set Q and |δ| denotes
the number of transitions of the considered automaton.

2.2 Operations on automata

To analyze DES modeled by automata, some operations on automata are used
in this paper and presented in this section.

2.2.1 Accessible part of an automaton

The accessible part of an automaton is composed of all the states that are
accessible or reachable from q0 by some words in L(G). When we “delete”
a state, we also delete all the transitions that are attached to this state. We
denote this operation by Ac(G), where Ac stands for taking the “accessible”
part (Cassandras and Lafortune. 2006). The Ac(G) operation is defined as:

Ac(G) = (Qac, Σ, δac, q0, Qac,m)

Qac = {q ∈ Q : ∃s ∈ Σ∗, δ(q0, s) = q}
Qac,m = Qm ∩Qac
δac = δ|Qac×Σ→Qac

Clearly, the Ac operation has no effect on L(G) and Lm(G). Thus, from now
on, we will always assume, without loss of generality, that an automaton is
accessible, that is, G = Ac(G).

2.2.2 Coaccessible part of an automaton

A state q is said to be coaccessible, if there exists a path in the automaton G
from state q to a marked state qm ∈ Qm. We denote the operation of deleting
all the states of G that are not coaccessible by CoAc(G), where CoAc stands
for taking the coaccessible part (Cassandras and Lafortune. 2006). This oper-
ation is defined as follows:

CoAc(G) = (Qcoac, Σ, δcoac, q0,coac, Qm) where

Qcoac ⊆ Q = {q ∈ Q : ∃s ∈ Σ∗, δ(q, s) ∈ Qm}

q0,coac =

{
q0 if q0 ∈ Qcoac
undefined otherwise

δcoac = δ|Qcoac×Σ→Qcoac

On-line compositional controller synthesis for AGV? 7

If G = CoAc(G), then G is said to be coaccessible.

2.2.3 Trim operation

An automaton which is both accessible and coaccessible is said to be trim
(Cassandras and Lafortune. 2006). We define the Trim operation by:

Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)]

where the commutativity of Ac and CoAc is easily verified. An automaton
is nonblocking if every state permits to access to a marked state. A trim
automaton is nonblocking. Note that applying only the CoAc operation is
sufficient for an automaton to be nonblocking.

2.2.4 Composition of automata

A system may be composed of several subsystems. Each subsystem is repre-
sented by an automaton. We can design the whole process by the composition
of all subsystems.

Definition 4 (Composition of automata)
Consider two automata A = (QA, ΣA, δA, q0,A, Qm,A) and B = (QB , ΣB , δB ,
q0,B , Qm,B) where ΣA and ΣB are disjoints. The composition of A and B is
the automaton:

A ‖ B = (QA ×QB , ΣA ∪ΣB , δAB , q0,AB , Qm,A ×Qm,B) ,

where

- the initial state is q0,AB = (q0,A, q0,B) ,
- for all (x, y) ∈ QA ×QB and for all (x′, y′) ∈ QA ×QB , we have

δAB((x, y), σ) = (x′, y′) iff

{
y = y′ and δA(x, σ) = x′, σ ∈ ΣA
x = x′ and δB(y, σ) = y′, σ ∈ ΣB

This composition can be generalized to an arbitrary number of automata.
It is well known that this operation is associative and commutative.

2.3 Supervisory control theory

Supervisory control theory (Wonham and Ramadge. 1984; Ramadge and Won-
ham. 1987; 1989) permits to design a supervisor from an automaton M =
(Q,Σ, δ, q0, Qm) which represents the system. The set Σ is assumed to be sep-
arated into two distinct subsets: the set Σc of controllable events and the set
Σu of uncontrollable events. This supervisor is an automaton representing the
largest behavior for the considered system and respecting the defined specifi-
cations. It generates the supremal controllable sublanguage, usually denoted

8 Johan Girault et al.

K↑. Specifications can be defined by a list of forbidden states or a language.
Let M be the system. Assume it is not satisfactory, then it must be modified
by control. We have to construct a “supervisor” in order to alter the behav-
ior of M . We denote S(M) the automaton that represents this supervisor. It
generates a sublanguage of L(M), that is L(S(M)). The sublanguage corre-
sponding to paths which end in a marked state is denoted Lm(S(M)). Overall,
we have the set inclusions:

∅ ⊆ Lm(S(M)) ⊆ Lm(S(M)) ⊆ L(S(M)) ⊆ L(M) .

For a better understanding of this article, we recall the concept of controlla-
bility defined in (Cassandras and Lafortune. 2006):

Definition 5 (Controllability)
Let K and L = L be languages over event set Σ. Let Σu be a designated
subset of Σ. K is said to be controllable with respect to L and Σu if

KΣu ∪ L ⊆ K

By definition, controllability is a property of the prefix-closure of a language.
Thus K is controllable if and only if K is controllable. For this paper, we need
a nonblocking supervisor, the definition is as follows:

Definition 6 (Nonblocking in controlled system)
The DES S(M) is nonblocking if:

L(S(M)) = Lm(S(M)) .

We have to extend this definition if we have a set of uncontrollable events
in M . To deal with uncontrollability, we recall the nonblocking controllability
theorem (Cassandras and Lafortune. 2006) :

Theorem 1 (Nonblocking controllability theorem)
Consider the language K ⊆ Lm(M) where K 6= ∅. There exists a nonblocking
supervisor S for M such that:

Lm(S(M)) = K and L(S(M)) = K

if and only if the two following conditions hold:

- Controllability: KΣu ∩ L(M) ⊆ K
- Lm(M)-closure: K = K ∩ Lm(M)

As it is well-known, the family of controllable and Lm(M) − closed sub-
languages of Lm(M) is closed for the union of languages. As a consequence,
if this family is non empty, it contains a supremal element that is a maxi-
mally permissive nonblocking supervisor. To build such a supervisor, simply
apply the fixpoint procedure of Wonham and Ramadge (1984) (more details
in section 2.4.4). Suppress the forbidden states (list of states) and keep the
accessible and coaccessible part of the resulting automaton. If the system con-
tains uncontrollable events, we remove also states that lead to a forbidden
state through a series of uncontrollable events and apply the Trim operation.

On-line compositional controller synthesis for AGV? 9

2.4 AGV fleet system

Nowadays, a common approach to ensure that the system is nonblocking, is to
define the area like a zone of mutual exclusion which prevents any AGV from
getting into the area if an AGV is already inside (only one AGV in the area).
We have to define the initial and the final state and only apply the Trim oper-
ation. This method ensures to never stop the production process and in some
cases it will even maintain an acceptable production rate. However, this is not
entirely satisfactory, so we need to make a choice: either we guarantee no block-
ing and a continuous production or we propose to upgrade this approach, by
proposing to allow others AGVs to go inside the area. This permits to increase
the production, but brings the risk of blocking situations. Using the supervi-
sory control theory of Ramadge and Wonham, we guarantee no conflict and
the most permissive behavior. However, if there are too many AGVs, we can
have a long computation time due to a combinatorial explosion (see section 3).

An AGV system is composed of a set of vehicles traveling on a circuit to
accomplish various missions. Various tasks consist in delivering or picking-up
manufactured part at different locations of the circuit. For the system working
correctly, the AGV fleet must be coordinated with a supervisor. The AGV
fleet control uses several steps. Firstly, the system must assign different tasks
to available AGVs that have no current jobs and are waiting for a mission.
This function is not treated in this article, missions are assumed to be already
dispatched. Then, the supervisor must define a path for each vehicle on the
circuit, avoiding conflicts, to guarantee a secure behavior of the production
process. There are two types of conflicts :

- a collision, when two or more vehicles collide.
- a blocking situation, when there is no solution (no path, apart those leading

to a collision) to achieve the mission. Fig. 2 illustrates a simple blocking
situation between two AGVs.

Fig. 2 Blocking situation between 2 AGVs

To optimize the system behavior and allow a fluid circulation of AGVs, the
supervisory control theory is a good solution since it will generate the most
permissive supervisor.

10 Johan Girault et al.

2.4.1 Basic model

Fig. 3 One AGV’s template

A model representing the movements of vehicles on the circuit is designed.
Each AGV, which is an autonomous process in the overall process, is repre-
sented as a template. The circuit, according to its physical configuration, is
partitioned into sections and intersections. Each time an AGV moves in a new
intersection or in a new section, a new state in the template is occupied, which

On-line compositional controller synthesis for AGV? 11

reflects a change of the model’s state. The template associated to the circuit
shown in Fig. 1 is represented in Fig. 3 that we denote T = (QT , ΣT , δT , ∅, ∅),
where the initial state and the final state are not defined. It is the physical
position of the AGV (resp. its mission) that will determine the initial state
(resp. the final state).

For practical reasons, each state that represents a section in the template
is named XYi where X is the beginning of the section, Y the end and i
the number of the AGV. For each section, we have two transitions, the first
input transition CXY is controllable and represents the AGV moving on the
section between X and Y from X to Y , and the second output transition UY
is uncontrollable and represents the AGV arriving at the intersection Y . For
example, if the location CM1 is set, then the AGV1 is moving on the section
between C and M from C to M , we fired the transition CCM . The transitions
of the different AGVs are independent, therefore it is necessary to name them
differently. The transitions of the AGV number i are denoted CiXY and UiXY .
The different alphabets Σi are separated.

All AGV templates are similar (same states and edges), except for the ini-
tial state q0 that can be linked to any state according to AGVs positions on
the circuit and the final state qm which depends on their mission. This state
q0 (resp. qm) allows a dynamic definition of the initial (resp. final) state for
each template. Each state in Fig. 3 represents the presence of the AGV on an
intersection, a section or a workstation.

In the sequel, we consider a system M with n AGVs that run on the
same circuit which is represented by a template as described previously. The
automaton Gi = (Qi, Σi, δi, q0,i, qm,i) represents the automaton of AGVi on
the circuit where q0,i is the initial state (represents the starting position of the
AGV on the circuit) and qm,i the final state (the goal of the AGV). Since each
AGV moves on the same circuit, we can represent the system as follows :

M = G1 ‖ G2 ‖ ... ‖ Gn .

where Gi represents the automaton of AGVi, for i = 1 to n. We have Qi = QT
because AGVs move on the same circuit. A state of M is of the form:

(x1, x2, ..., xn) ∈ QM .

where xi ∈ QT , for i = 1 to n, is the position of AGVi on the circuit and the
positions xi are arranged in ascending order according to the number of AGV.

2.4.2 The waiting states and exit states

In the case of the circuit represented in Fig. 3, the entrances of the area are
represented by the states {A,C, T,D} whereas the exits are represented by the
states {B,D, S,R}. The states {W1,W2,W3, W4} represent the first physical

12 Johan Girault et al.

point outside the area and before its associated entrance (e.g. the state W1 is
associated to the entrance A). We name this set of states the waiting states,
denoted W, since an AGV that is in one of these states is waiting for the
authorization to go inside the area. Therefore, we define a controllable event
okji ∈ Σc and that means the AGVi has the authorization to go inside the
area and it is physically at the Entrancej . In other words, it means that a
supervisor was designed for all AGVs already inside the area and the new AGV.
If no solution exists with the new AGV, then it will wait in this waiting state
until a solution is found.

The states {Z1, Z2, Z3, Z4} in Fig. 3, represent the first physical point
outside the area and after its associated exit (e.g. the state Z1 is associated to
the exit B). We name this set of states the exit states, denoted E. Moreover,
we define an uncontrollable event exitji ∈ Σu and that means the AGVi has left
the area by the Exitj . If an AGV has left the area, the supervisor does not care
anymore and has to remove it. For example, consider two AGVs where AGV1
is in M and AGV2 is in R (the system is in the state (M1, R2)). AGV2 is leaving
the area, when it will be in the exit state Z4, then the system will be in the state
(M1, Z4). Therefore we have the state equality (M1, Z4) = (M1, ∅2) = (M1),
since the AGV2 is out of the area. Note that all waiting states and exit states
are safe, i.e., no collisions can appear with any AGVs (more details in the next
section 2.4.3).

2.4.3 The specification

Our aim is to avoid blocking situations (see Fig. 2) and thus remove all paths
that lead to a blocking situation and that do not permit to reach the final state.

The first step preliminary to the synthesis of a supervision system, con-
sists in the determination of possible conflicts that leads to the specification.
A supervisor, we has to express the specifications that must be satisfied. It
consists in a list of forbidden states. Unlike most modular approaches, we have
a single global specification and not a specification for local agents. This prob-
lem is dealt in Komenda et al (2008) for modular systems. The global system

is
n
∩
i=1
P−1i L(Gi) (where Pi is the canonical projection

n
∪
i=1
Σ∗ → Σ∗i) that is a

language over Σ =
n
∪
i=1
Σi, and we have only one specification Spec ⊆ Σ∗.

Each AGV has only one alphabet. In our case, we want AGVs to be alone on
a section or an intersection (beginning/end of a section). We need to delete
all states (and associated controllable transitions) q = (x1, x2, ..., xn) of the
automaton M where:

∃i, j ∈ [1, n] : xi = xj .

We say that the states xi and xj are conflicting. Moreover, we say that two
states are conflicting if there is a collision between both AGVs. Furthermore,
the designer of the circuit has to apply a procedure to add the couple of states
where a risk of collision exists. For example, consider the configuration shown

On-line compositional controller synthesis for AGV? 13

in Fig. 4 where two AGVs are moving in a area (AGV1 and AGV2). In Fig. 4(a),
there is no conflict, both AGVs are in their workstation and AGV2 can get out
without any problem. Its path is drawn by a series of rectangles representing
the physical size of the AGV on the circuit, we note no collision between both
AGVs. In contrast, in Fig. 4(b), AGV2 must exit through the bottom of the
area. By zooming the Fig. 4(b), we see a collision between both AGVs in Fig.
4(c). In accordance with the template automaton T , the states LP and J are
conflicting for example and many others. The set of forbidden states I(T) is
defined as follows:

I(T) = {(xi, xj) : xi, xj are conflicting,(xi, xj) ∈ QT ×QT }

I(T) is a list of pairs of states that are conflicting as described above. We
generate this list of forbidden states from the template automaton T , the
shape and the size of the AGVs.

(a) No conflict (b) Collision (c) Zoom on collision (b)

Fig. 4 Example of potential conflict

In the previous section, we talked about the safety of waiting states de-
noted W and exit states denoted E of a template automaton. In the sequel, we
assume that all waiting states and exit states are safe. We can now formalize
this statement as follows.

∀(xi, xj) ∈ I(T), xi, xj /∈ E ∪W

where E ∪W ⊆ QT . In other words, a waiting state or an exit state can not
be conflicting with any states of the template.

2.4.4 Synthesis of supervisor with forbidden states

Once we have the specification, we have to synthesize the supervisor. It can
be calculated using the standard fixpoint algorithm of the supremal control-

14 Johan Girault et al.

lable sublanguage (Cassandras and Lafortune. 2006), usually denoted the ↑ C
operation.

Consider the previous automaton M , where M = (Q,Σ, δ, q0, Qm). Let Γ :
Q→ 2Σ be the active event function where Γ (q) = {σ ∈ Σ : δ(q, σ)!, q ∈ Q}.
In words, Γ (q) is the set of all events σ for which δ(q, σ) is defined. We denote
ΓM the active event function restricted to the automaton M . We present the
Standard Algorithm for ↑ C applied to M where the specification is a list of
forbidden states in Algorithm 1.

Algorithm 1 Standard Algorithm for ↑ C
Step 0:
Let M = (Q,Σ, δ, q0, Qm)
Set Ĩ(T) = {(x1, . . . , xn) ∈ Q : ∃i, j, (xi, xj) ∈ I(T)}
Set Q0 = Q \ Ĩ(T)
Set S0 = (Q0, Σ, δ0, q0,0, Qm,0) where δ0 = δ|Q0

, q0,0 = q0, Qm,0 = Qm)
Set i = 0
Step 1:

Q′i = {q ∈ Qi : ΓM (q) ∩Σu ⊆ ΓSi
(q)}

δ′i = δi|Q′i
Q′m,i = Qm,i ∩Q′i

Step 2:

Si+1 = Trim(Q′i, Σ, δ
′
i, q0, Q

′
m,i) .

If Si+1 is the empty automaton, i.e., qo is deleted in the above calculation, then S(M) = ∅
and STOP.
Otherwise, set

Si+1 =: (Qi+1, Σ, δi+1, q0, Qm,i+1)

Step 3:
If Si+1 = Si, then S(M) = Si+1 and STOP.
Otherwise, set i← i+ 1, and go to Step 1.

All states removed during the operation are named “bad states” since they
can lead to a conflict in the system. The initial Step 0 removes the forbidden
states of the set I(T). The Step 1 removes all uncontrollable states due to
controllability issues, i.e., all states that lead to a bad state via a sequence of
uncontrollable events. The Step 2 removes all states due to nonblocking issues,
i.e., all states that are not coaccessible (nonblocking issues) and not accessible
(unnecessary states). Moreover, it checks if we obtain the empty automaton
(no solution). Finally, the Step 3 checks the end of the operation. Note that an
empty solution, say S(M) = ∅, means that there exists no supervisor able to
coordinate the AGV fleet to ensure the absence of conflict. The necessary and
sufficient condition for the existence of a supervisor (and for the admissibility
of the considered AGV set) is that S(M) 6= ∅.

We note that L(S(M)) = Lm(S(M)). For example, we consider a fleet of
three AGVs moving on the circuit as shown in Fig. 3. This automaton has 54
states and 68 transitions. To obtain the automaton M which represents the

On-line compositional controller synthesis for AGV? 15

overall system (all behaviors), we do the composition of the automata Gi, i ∈
{1; 2; 3}. The automaton M has 157, 464 (543) states and 594, 864 (3×542×68)
transitions. The supervisor S(M) ensures no conflict between AGVs and S(M)
is maximally permissive and controllable. If no solution exists, then S(M) = ∅.

3 Compositional approach and synthesis of supervisor

3.1 Basic idea

The main difficulty to design such a supervisor is the great number of states
and the computation time. Consider the previous system M with n AGVs. The
automaton M represents all the behaviors on the circuit, and it has |Q|n states
and n×|Q|n−1×|δ| transitions. We easily see that the complexity is exponen-
tial and is depending on the number of AGVs. In many cases, if n ≤ 3 there
is no problem, but for n ≥ 4 we can meet the state-space explosion problem
or a long computation time. To reduce this problem, we use a compositional
approach. When a new task is assigned to an AGV, we synthesize the new
controller from the previous controller and thus we reduce the computational
time. This approach reduces the intermediate state-space, it is maximally per-
missive and may be faster than the standard approach (monolithic approach).
We synthesize a new supervisor step by step, where each step adds a new AGV
and compose it with the previous supervisor.

For example, consider a system with four AGVs modeled by G1, G2, G3

and G4, we have M = G1 ‖ G2 ‖ G3 ‖ G4. Let S(M) ⊆ M , the supervisor of
M . We will demonstrate that:

S(M) = S(S(S(S(G1) ‖ G2) ‖ G3) ‖ G4)

= S(S(G1 ‖ G2) ‖ S(G3 ‖ G4))

= S(G1 ‖ G2 ‖ G3 ‖ G4) .

3.2 Compositional synthesis

Consider a system with n AGVs and the automatonGi = (Qi, Σi, δi, q0,i, Qm,i)
that represents the i’th AGV where i ∈ [1, n]. Let SG(M) = (QSG(M), ΣSG(M),
δSG(M), q0,SG(M), Qm,SG(M)) be the supervisor obtained with the monolithic
approach. Let SC(M) = (QSC(M), ΣSC(M), δSC(M), q0,SC(M), Qm,SC(M)) be
the supervisor obtained with the compositional approach as described in Fig.
5(a). The synthesis algorithm is Algorithm 2.

We obtain:

SC(M) = S(S(S(. . . S(S(G1) ‖ G2) ‖ . . .) ‖ Gn−1) ‖ Gn)

= S(S(S(. . . S(G1 ‖ G2) ‖ . . .) ‖ Gn−1) ‖ Gn)

The second equality is equivalent since S(G1) represents the supervisor for
only one AGV, therefore, there is no conflict and S(G1) = G1.

16 Johan Girault et al.

S(G1) G2 G3 Gn

‖

S

S(G1||G2) ‖

S

S(S2 ‖ G3) ‖

S

S(. . .) ‖

S

S(Sn−1 ‖ Gn)

S1

S2

S3

Sn

(a) Sk+1 from Sk

G1 G2 G3 G4 . . . Gn−1 Gn

‖ ‖ ‖ ‖

S S S S

S(G1 ‖ G2) S(G3 ‖ G4) . . . S(Gn−1 ‖ Gn)

‖ ‖

S S

S(S1 ‖ S2)
. . . S(· · · ‖ Sn/2)

S

Sfinal

.
.
.

S1 S2

Sn/2

S1,2

(b) Synthesis in pairs

Fig. 5 Compositional synthesis

Algorithm 2 – Synthesis algorithm of SC
G← {G1;G2; . . . ;Gn−1;Gn} G is the set of AGVs’ automata
SC ← S(G1) Synthesis supervisor of G1

G← G \ {G1} Automaton G1 of the set G is removed
while G 6= ∅ do
x← get(G) get(G) return an element of G
SC ← S(SC ‖ x) (the leftmost in the case of Fig. 5(a))
G← G \ {x}

end while

Theorem 2 SG(M) = SC(M) .

Proof For this proof, we will denote SC(M) = SC and SG(M) = SG as short-
hand. To prove this theorem, we have to demonstrate that SC and SG have
equal state sets, alphabets, transition relations, initial states, and marked state
sets. By definition of the composition, SC and SG have the same initial state
and the same alphabet. We will first prove that they have the same state set
(potentially the empty set). By definition, the monolithic supervisor SG is
sound and complete. We will prove that the compositional supervisor SC is
sound (i.e. QSC

⊆ QSG
) and complete too (i.e. QSC

⊇ QSG
). We will denote

Sk = (QSk
, ΣSk

, δSk
, q0,Sk

, Qm,Sk
) the compositional supervisor for the first k

AGVs where Sk+1 = S(Sk ‖ Gk+1) (by definition of the compositional synthe-
sis) and k ∈ [1, n]. Moreover, consider two automata A and B, we will denote
QA‖B , the state set of the automaton A ‖ B. Let k ∈ [1, n] where n is the num-
ber of AGVs. We define the following projection Pk : QM −→ Q1 × · · · ×Qk:

Pk(x1, . . . , xn) = (x1, . . . , xk) .

where Pk(q) represents the k first states of q, and consequently, the states of
the k first AGVs.

On-line compositional controller synthesis for AGV? 17

1. The soundness
By definition of the synthesis of supervisor (see section 2.4.4), the com-
positional supervisor SC is sound since it removes all bad states and is
nonblocking. Therefore we have the following inclusion: QSC

⊆ QSG
.

2. The completeness
Now, we need to prove that SC is complete, i.e., QSC

⊇ QSG
. We will

prove this result by induction on the number of AGVs k ∈ [1, n]. We
have to show that for every state q = (x1, . . . , xn) ∈ QSG

, the part of q
Pk(q) = (x1, . . . , xk) ∈ QSk

(for the rest of the proof, we denote qk = Pk(q)
as shorthand). In other words, for every state q of themonolithic supervisor
SG, the part qk of q is a state of the compositional supervisor Sk thus every
state q of SG is a state of Sn = SC . Formally, we have to prove:

∀q ∈ QSG
,∀k ∈ [1, n], qk ∈ QSk

(1)

Clearly, nothing is to be shown for k = 1 as S1 = G1 contains all the
possible states x1 as discussed previously. So, q1 = (x1) ∈ QS1

.

Now, assume the claim (1) has been shown for some k ≥ 1 (it means that
for every state q = (x1, . . . , xn) of SG, it holds that qk = (x1, . . . , xk) is a
state of Sk). Then, we have to show that this holds true for k = k+ 1, and
so, qk+1 ∈ QSk+1

.
By definition, xk+1 ∈ Gk+1. So, qk+1 = (x1, . . . , xk+1) ∈ QSk‖Gk+1

. There-
fore, it remains to be shown that this state survives to the synthesis op-
eration S(Sk ‖ Gk+1). It will be shown that for every state q ∈ QSG

, the
part qk+1 is contained in every iteration of the synthesis fixpoint algorithm
Sl(Sk ‖ Gk+1) (for l ≥ 0), thus for every state q, qk+1 is contained in
S(Sk ‖ Gk+1). We will prove the following formula by induction on l.

∀q ∈ QSG
,∀l ∈ N, qk+1 ∈ QSl(Sk‖Gk+1) (2)

First, we prove this for l = 0. It is clear that qk+1 ∈ QS0(Sk‖Gk+1) since
the state q ∈ QSG

is a state of the monolihic supervisor and therefore, it
is not a forbidden state. We recall that forbidden states are only removed
during the Step 0 of the synthesis fixpoint algorithm (see section 2.4.4).
As the state q is not a forbidden state, thus none of the pairs (xi, xj) is
a conflict, i.e., ∀xi, xj ∈ q, (xi, xj) /∈ I(T). So, the part qk+1 also is not a
forbidden state.

Now assume the claim (2) has been shown for some l ≥ 0 (i.e. every
state q = (x1, . . . , xn) ∈ QSG

, the part qk+1 = (x1, . . . , xk+1) is a state
of Sl(Sk ‖ Gk+1)). Then, we have to show that this holds true for l = l+1,
and so, qk+1 ∈ QSk+1

.
To show that qk+1 is contained in Sl+1(Sk ‖ Gk+1), we have to show that
the state is never removed during this synthesis step. There is only two ways
to remove a state during the synthesis: (i) due to the controllability (Step
1 of the synthesis algorithm, section 2.4.4), if a state may lead to a bad

18 Johan Girault et al.

state via a sequence of uncontrollable events, (ii) due to the nonblocking
issues (Step 2 of the synthesis algorithm, section 2.4.4), if a state is not
coaccessible.

(i) For controllability, assume δSk+1
(qk+1, u) = (y1, . . . , yk+1) for some u ∈

Σ∗u such that δSk+1
(qk+1, u)!. Then, we have δSG

(q, u) = (y1, . . . , yk+1,
xk+2, . . . , xn) since the Gi do not share events. As q = (x1, . . . , xn) ∈
QSG

, and SG is controllable, it follows that (y1, . . . , yk+1, xk+2, . . . , xn) ∈
QSG

. By inductive assumption, the state (y1, . . . , yk+1) ∈ QSl(Sk‖Gk+1).

As this holds for all u ∈ Σ∗u, by definition of synthesis (section 2.4.4),
this means that qk+1 ∈ QSl+1(Sk‖Gk+1) as far as controllability is con-
cerned.

(ii) For nonblocking, we recall that q ∈ QSG
, SG is nonblocking. Therefore,

there exists a path in SG from q = (x1, . . . , xn) to a marked state:

(x1, . . . , xn)
σ1−→ (x11, . . . , x

1
n)

σ2−→ . . .
σp−→ (xp1, . . . , x

p
n)

where all the states (xr1, . . . , x
r
n) ∈ QSG

with 0 ≤ r ≤ p, and the
end state is a marked state, i.e., (xp1, . . . , x

p
n) ∈ Qm,SG

. By inductive
assumption, we have the parts (xr1, . . . , x

r
k+1) ∈ QSl(Sk‖Gk+1). Since the

Gi do not share events, the above path can be reduced by removing
events not in G1, . . . , Gk+1 to get a path from qk+1 = (x1, . . . , xk+1) to
a marked state:

(x1, . . . , xk+1)
σ̃1−→ (x11, . . . , x

1
k+1)

σ̃2−→ . . .
σ̃p−→ (xp1, . . . , x

p
k+1)

where the end state is a marked state in G1 ‖ · · · ‖ Gk+1 and the
notation “˜” means “restricted to the automaton G1 ‖ · · · ‖ Gk+1”.
As all the states on the above path are in Sl(Sk ‖ Gk+1), it follows by
definition of synthesis that qk+1 ∈ QSl+1(Sk‖Gk+1) as far as nonblocking
is concerned.

Thus, the state qk+1 is not removed due to controllability nor due to non-
blocking, so by definition of synthesis, the state qk+1 = (x1, . . . , xk+1) ∈
QSl+1(Sk‖Gk+1).

This proves the inclusion QSC
⊇ QSG

, and therefore, since the reverse
inclusion was already verified, SC and SG have exactly the same set of
states. In other words, QSG

= QSC
and SC is complete.

We now prove that SG and SC have the same transitions. Let q = (x1, ..., xn)
and q′ = (x′1, ..., x

′
n) be two states of QSG

= QSC
. By definition of the com-

position (Definition 4), we have a transition between q and q′ if and only if
∃i ∈ [1, n], ∃σ ∈ Σi such that δGi

(xi, σ) = x′i and ∀j ∈ [1, n], j 6= i⇒ xj = x′j .
Hence we have δSC

(q, σ) = δSG
(q, σ) = q′. Therefore δSC

= δSG
. We have fi-

nally checked the equalities: QSC
= QSG

, ΣSC
= ΣSG

, δSC
= δSG

, q0,SC
=

q0,SG
, Qm,SC

= Qm,SG
that ends the proof.

On-line compositional controller synthesis for AGV? 19

ut
Let us denote ⊗ the operator of supervisor design for two automata: Gi ⊗

Gj = S(Gi ‖ Gj). This operator is commutative, since the composition ‖ is
commutative too:

G1 ⊗G2 = G2 ⊗G1

The operator ⊗ is also associative, we obtained that:

S(G1 ‖ G2 ‖ G3) = S(S(G1 ‖ G2) ‖ G3)

= S(G1 ‖ S(G2 ‖ G3))

which shows that:

(G1 ⊗G2)⊗G3 = G1 ⊗ (G2 ⊗G3)

As a consequence, the compositional synthesis method can be applied for ev-
ery order chosen to compose subsystems. Every binary tree generated from
the set of AGVs leads to the definition of a compositional synthesis resulting
in a supervisor that actually coincides with the monolithic supervisor SG(M).

For instance, let us consider the alternative compositional synthesis, illus-
trated in Figure 5(b). The figure must be viewed as a tree that should be as
balanced as possible. We note SAC(M) the supervisor synthesized with al-
ternative compositional approach. We have SAC(M) = S(S(. . . S(G1 ‖ G2) ‖
. . . S(S(Gn−3 ‖ Gn−2) ‖ S(Gn−1 ‖ Gn)) . . .). Thus, we have the following
property.

Corollary 1 SG(M) = SAC(M) .

As said in the introduction, our method is a modified monolithic supervisor
because it generates the same language as the standard monolithic supervisor.
Every compositional supervisor is actually equal to SG(M), so it is maximally
permissive. This is particularly the case of SC(M) and SAC(M). In the case of
an AGV system, one needs to have a centralized supervisor but the computa-
tion is “modular”. It is necessary to have only one supervisor because AGVs
move on the same physical part of a circuit, therefore a centralized supervi-
sor allows to avoid conflicts between AGVs. The on-line application of this
method is its main advantage (because a new AGV may arrive at any time
in the critical area) without having to rebuild the supervisor from scratch (as
described in section 3.2).

3.3 On-line synthesis supervisor

The proposed compositional approach offers three advantages. The first one
is a reduction of the intermediate state-space (necessary during the various
steps of synthesis) and thus (in our experiments) the computation time. The
second one is the possibility to design intermediate supervisors in any order.

20 Johan Girault et al.

It always produces the maximally permissive and controllable supervisor. The
construction order may be designed to minimize the total computation time,
which goes beyond the aim of the present paper.

The main advantage of this approach is to be especially suitable for real-
time systems. Indeed, there is no need to recompute the supervisor if a new
AGV arrives in the area. Changing the initial state of the current supervisor
is enough in order to maintain its accessible and coaccessible parts and to
combine it with the automaton of the new AGV. The new initial state is
the state in which the system is located at the time of introduction of the
new AGV. Thus the computation gain may be significant according to the
progress in which the system is. If the first AGVs have performed a large
part of their mission, then the computation time will be significantly reduced,
and vice versa. Then the computation time depends on the progress of various
missions. This property is essential for a real-time system. This approach allows
to design a supervisor for a large number of AGVs whereas with a standard
approach, we cannot model such a supervisor for five or more AGVs. We have
to define a new function to change the initial state of an automaton:

Definition 7 (NIS - New Initial State)
Let A = (Q,Σ, δ, q0, Qm) be an automaton. Let q′0 be the desired new initial
state of A.

NIS(A, q′0) = (Q,Σ, δ, q′0, Qm)

In other words, NIS(A, q′0) returns an isomorphic automaton to A with the
new initial state q′0.

For example, consider a critical area with n AGVs, it is assumed that n
AVGs are moving in the area and they execute instructions sent by the super-
visor Sn (corresponding supervisor for n AGVs) and a new AGV (AGVn+1)
arrives (enters the area). Let Gn+1 be the automaton for the AGVn+1. Now, we
need to change the initial state of Sn. Let qc the current state of Sn when the
AGV n+ 1 arrives. Let qc be the current state where the system (of supervisor
Sn) is. The on-line synthesis of the new supervisor is:

Sn+1 = S(Trim(NIS(Sn, qc)) ‖ Gn+1)

This supervisor is the compositional supervisor Sc where qc is the new
initial state. As shown in the Theorem 2, this supervisor is nonblocking, con-
trollable and maximally permissive.

3.4 Entrance of an area

In this section, we discuss about entrances of an area and particularly on the
meaning of a waiting state. When an AGV is in a waiting state, the AGV
is outside the area but it has to go inside the area to accomplish its mission.
However, if an AGV is in this state, it means that the system has no founded

On-line compositional controller synthesis for AGV? 21

a solution without conflict which authorizes it to go inside the area, i.e., the
supervisor synthesized with this new AGV is empty and the system keep its
old supervisor. Therefore, an AGV which is in a waiting state has to wait
in this place until a nonblocking and without conflict supervisor be found.
Once such a supervisor is synthesized, the AGV has the authorization to go
inside the area and the system can fire the ok transition as discussed in the
section 2.4.1. It is important to recall that such a state is a free-conflict state.
A collision with an AGV which is in a waiting state is impossible.

3.5 Exit of an area

In this section, we discuss about exits of an area and particularly on the
meaning of an exit state. When an AGV leaved the area, the AGV fired
an exit transition and it is in an exit state. As we said previously, an AGV
which is in a exit state is out of the area and we need to remove all elements of
this AGV from the supervisor states. The first step preliminary to the deletion
consists to apply the NIS and Trim operation to keep only the new accessible
part of the system. Consider the system M described in the section 2.4.1 which
is supervised by the supervisor S(M). Let r be the AGV number which leaved
the area, where 1 ≤ r ≤ n. Then, AGVr is in an exit state xr ∈ E and the
system is in a state x which is of the form:

(x1, . . . , xr, . . . , xn) .

We apply the NIS operation where x is the new initial state. Then, we have
the new supervisor S′(M) = Trim(NIS(S(M),x)). The second step consists
to remove all elements of AGVr from all states of S′(M) . Let q ∈ QS′(M) be a
state of the new supervisor. After the NIS and Trim operation, no transition
can be fired for AGVr since an exit state has no output transition. Therefore,
we have to apply Algorithm 3. The AGV number r has been removed from
the supervisor, and then the systems contains n− 1 AGVs in the area.

Algorithm 3 Deletion of AGVr in a supervisor S′(M)

for all q = (x1, . . . , xr, . . . , xn) ∈ QS′(M) do
q = (x1, . . . , xr−1, xr+1, . . . , xn)

end for

3.6 A simple example

We present, in this section, a simple example to illustrate the results of the
previous section. The “template” automaton T is shown in Fig. 6.

Two AGVs are moving on the area, AGV1 has to go to workstation WS1

and AGV2 has to go to workstation WS2 (Fig. 7(a)). Let G1 be the automaton

22 Johan Girault et al.

A AB B

BC C

WS1

CD

D

BE E

WS2

ED

DF F
AB u

BC

BE

u

u

CD

ED

u

u
DF exit

Fig. 6 “Template” automaton T

of AGV1 and G2 be the automaton of AGV2. Let S2 = S(G1 ‖ G2). We recall
that when an AGV is in the state F then the AGV has left the area, therefore
it is removed from the supervisor and we have n − 1 AGVs in the area. The
AGV3 arrives when the AGV1 is in the place D and the AGV2 is in WS2. The
AGV3 has to go in WS2. Let G3 be the automaton of the AGV3. If we apply
the compositional approach described previously, then we have to compose the
automaton G3 of the AGV3 to the supervisor S2 of the AGV1 and AGV2 with
the new initial state of S2. Let us assume that the new initial state named
q where q = (D,E) : D ∈ Q1, E ∈ Q2 and q ∈ Q1 × Q2. Therefore the new
supervisor for the three AGVs is as follows:

S3 = S(Trim(NIS(S2, q)) ‖ G3)

where Trim(NIS(S2, q)) is shown in Fig. 8. The Table 1 shows the states of
the automaton of the Fig. 8. Note that states denoted ∅i represent that the
AGVi is out of the area as explained in the section 2.4.1. The list of forbidden
states is generated as described on section 2.4.4. We note that the following
pairs of states are forbidden states: {(BC,BE), (CD,ED)} ⊂ I(T).

(a) 2 AGVs moving (b) AGV3 arrives

Fig. 7 Straightforward example

The automaton Trim(NIS(S2, q)) has 9 states and 10 transitions. At this
step, we do not need to recalculate the composition with Trim(NIS(G1, q1))
and Trim(NIS(G2, q2)), as in the monolithic approach, where q1 ∈ Q1 (resp.
q2 ∈ Q2) is the new initial state of G1 (resp. G2). Formally, for the monolithic
approach, we have Trim(NIS(G1, q1)) ‖ Trim(NIS(G2, q2)) and the result

On-line compositional controller synthesis for AGV? 23

q 1

2

3

4

5

6 7 8
DF1

exit1

ED2

ED2

exit1

u2

exit1

u2 DF2 exit2

Fig. 8 Trim(NIS(S2, q))

q (E1, D2)
1 (DF1, E2)
2 (∅1, E2)
3 (DF1, ED2)
4 (∅1, ED2)
5 (DF1, D2)
6 (∅1, D2)
7 (∅1, DF2)
8 (∅1, ∅2)

Table 1 States of Fig. 8

of this operation is an automaton with 15 states and 18 transitions. At this
step, we clearly see the gain for the intermediate space used. The composi-
tional method uses the previous supervisor and previous forbidden states have
already been removed whereas the monolithic approach rebuilds the previous
forbidden states which were removed. The supervisor shown in Fig. 8, is the
supervisor when the third AGV arrives at the input of the area. Then, we have
to compose it with G3 (the automaton of the AGV3). The final supervisor S3

has 47 states and 84 transitions.

3.7 Complexity of monolithic and compositional controller synthesis for AGV

This section estimates the complexity of our on-line compositional synthesis
and compares it with the monolithic one. We describe the complexity in terms
of generator M and a sublanguage K of L(M). M has m states and K has
n states. Consider the problem of synthesizing a supervisor so that the closed
loop behavior is a prescribed language K. In our case K is not controllable
and K ⊆ L(M), therefore the computation of K ↑ (the largest controllable
sublanguage) is of time complexity O(m2n2) and can be computed in polyno-
mial time (Ramadge and Wonham. 1989). The complexity for the computation

of M =
p

‖
i=1

Gi, if each Gi has k states, then M has kp states. Therefore the

complexity to synthesize a system of p AGVs is O(k2pn2). The complexity
depends on the number of AGVs and on the size of the system. For the com-
positional approach, we perform p − 1 times the operation to synthesize the
supervisor S (K↑). Then we can decompose the complexity for p AGVs as
follows: O(k2×2n2) +O(k3×2n2) + · · ·+O(k2pn2) = O(k2pn2). Then the com-
positional approach does not increase the theoretical complexity to synthesize
a supervisor.

In practice we may have a large gain in terms of time and intermediate
space. It depends on the topology of the circuit and therefore on the number
of forbidden and bad states. If there are many forbidden states, the gain will
be important. Indeed, in this case, the size of intermediate supervisors will be
significantly reduced. If a new AGV arrives, numbered p+ 1, as we said previ-
ously, we set the initial state of Sp, apply Trim operation to S and synthesize

24 Johan Girault et al.

the new supervisor Sp+1 from Sp. Assume that Trim(NIS(Sp, q)) (where q is
the new initial state) has m′ states and Gp+1 has k states. The complexity for
the compositional approach for the step p+ 1 is O(km′2n2) where m′ ≤ m be-
cause the Trim operation cannot increase the size of an automaton. Moreover,
m′ may be much lower than m, it depends on the progress of the system. Let

M =
p

‖
i=1

NIS(Gi, qi) be the composition of the first p AGVs in the monolithic

approach where qi is the new initial state of Gi. Assume that M has m′′

states, therefore we have m′′ ≥ m′. The complexity at the step p + 1 for the
monolithic approach is O(km′′2n2) where m′′ may be much larger than m′.
For the monolithic approach, m′′ is the result of p composition operations
whereas, for the proposed approach, we have only one composition operation.
This operation may be very costly because it depends directly on the number
of AGVs and it is exponential. We clearly see the gain for an on-line synthesis
when a new AGV has to go in the area.

For the compositional approach, forbidden states are never built and there-
fore some paths generated with the monolithic approach will never be gener-
ated in our approach. As we said previously, the synthesis is associative, then
the order of generation of intermediate supervisors is not important but the
time execution and intermediate space may depend on this order. For example,
if an AGV1 and an AGV2 have many forbidden states then it is preferable to
generate this supervisor first. Of course, this order should respect the arrival
order of the vehicles and in this case, we can not choose the order.

3.8 Optimization for successive missions.

To optimize the paths of AGVs, it is essential to know where the AGV will go
after completing its mission. We consider in this section that we know the exit
of the AGV which often happens. For example, when the mission of an AGV is
to move an object from one point to another outside the area. If we treat this
problem by considering successively two separate missions for the AGV (one is
ending in the area and the other one finishes outside the area), depending on
the physical configuration of the circuit, it is possible to encounter situations
where two AGVs have completed their first mission, one of the AGV is forced
to retreat to let out another. Therefore, the path of the AGV is not optimal.

To solve this problem, it is no longer question to find a supervisor to ensure
reachability for a final state but it is a more complex problem. Let GT be the
template automaton. Let q0 be the initial state. Let q1 be the state to be
reached for its first mission, and q2, the exit state of the second mission. The
automaton G, corresponds to the possible movements of the AGV, it is an
instance of the template GT with the initial state q0 and the final state q2.
The supervisor must keep only all paths without blocking leading to the first

On-line compositional controller synthesis for AGV? 25

state q1, then at q2. To formalize this problem we express this specification in
the temporal logic called computation tree logic (CTL) (Clarke et al. 1986).
The system must guarantee the CTL formula:

(AF q1) and (AG (q1 ⇒ AF q2)) . (3)

In other words, AF q1 means for all paths, we reach the state q1 and
AG (q1 ⇒ AF q2) is the classic response property that means starting from
state q1 system necessarily reaches the state q2. The implementation of the
supervisor must guarantee the previous formula. However, a theoretical max-
imally permissive model of a supervisor allows loops in the model and then,
our supervisor must only guarantee the following property:

(AG EF q1) and (AG (q1 ⇒ AG EF q2))

Since with the supervisory control theory we know effectively how to deal
with a reachability problem, we decompose this complex problem into two
simple reachability problems. The method used is to consider two separate
missions that we sequentialize before computing the supervisor. The construc-
tion will ensure the reachability of the objective state of the first mission (q1)
provided that the objective of the second mission (q2) is reached. The synthesis
is as follows: we create two instances of the template GT = (QT , ΣT , δT , ∅, ∅)
that we name G1 and G2. The initial state of G1 is q0 and its final state
is q1. The initial state of G2 is q1 and its final state is q2. Thus, we have
G1 = (QT , ΣT , δT , q0, {q1}) and G2 = (QT , ΣT , δT , q1, {q2}). We perform
chaining by performing composition restricted on the set of states Q⊕ as fol-
lows:

G = (Q⊕, ΣT , δ⊕, (q0, q1), {(q1, q2)}) = G1 ⊕G2 ,

where

Q⊕ ⊆ QT ×QT = {(q, q′) ∈ QT ×QT such as q = q1 or q′ = q1} ,

and

δ⊕((x, y), σ) =

{
(x′, y) , if δT (x, σ) = x′ and (x′, y) ∈ Q⊕ ,
(x, y′) , if δT (y, σ) = y′ and (x, y′) ∈ Q⊕ .

Theorem 3 The supervisor S(G1⊕G2) ensures the properties (AG EF (q1, q1))
and (AG ((q1, q1)⇒ AG EF (q1, q2))) and it is maximally permissive.

Proof First, the state (q2, q1), if it exists in Q⊕, is not final because only (q1, q2)
is the final state. The construction G1 ⊕ G2 ensures that if a path leads to
the state (q1, q2) then this path goes through the state (q1, q1). The supervisor
S(G1⊕G2) by definition ensures the property AG EF (q1, q2) and therefore, by
construction of G1⊕G2, AG EF (q1, q1) and (AG ((q1, q1)⇒ AG EF (q1, q2)).
Furthermore, any path in G1 between q0 and q1 exists in G1 ⊕ G2 between
(q0, q1) and (q1, q1), and any path in G2 between q1 and q2 exists in G1 ⊕G2

between (q1, q1) and (q1, q2). The computation of S retains all safe paths and
therefore the supervisor S(G1 ⊕G2) is maximally permissive. ut

26 Johan Girault et al.

From this maximally permissive supervisor, a strategy to obtain an imple-
mentation satisfying the formula (3), consists classically in avoiding loop in
the automaton. Another way we will study in further works to solve this prob-
lem consists in adding some criteria such as the energy consumption hence
avoiding infinite loop.

4 Experimental results

The compositional approach presented in this paper has been implemented
in C++ and has been used on a standard PC with a single core (3.2GHz)
and 8Gb of memory (RAM). We studied four different real circuits from the
industrial world and more precisely in the company BA Systèmes (France).
However, the circuits 1 and 4 are the most significant because the configura-
tion is often found in an industrial environment. The four configurations are
different in terms of potential conflicts.

For the first circuit, we tested our approach on the area presented in Fig.
1. The circuit structure is very restrictive because interleaving is large what-
ever the system’s state of progress. Indeed, looking at Fig. 3, we can access
most states from any state of the automaton, which will cause a combinatorial
explosion. For the second, the circuit respects the LIFO model. The first AGV
to arrive will be the last to leave the area, therefore interleaving is limited.
In this model, we have a lot of forbidden states and our method should be
effective. For the third case, it is similar to the simple example presented in
the section 3.6. In this configuration, there are few forbidden states and the
compositional supervisor should be less effective than for the first two configu-
rations. Finally, in the fourth configuration, the template authorizes to go into
reverse everywhere whereas as we can see in Fig. 3 it is not possible. For exam-
ple, if an AGV comes from CM it cannot directly go on EB. In the industrial
world, the interdiction to go into reverse is often a security requirement be-
cause a human who needs to go to the site must know in which direction the
AGVs will move. Therefore this configuration is less realistic than the circuit
1 but the combinatory explosion is the biggest. However, this model contains
10 workstations so it is more realistic in terms of number of workstations.

We present in Table 2, the maximum memory requested and the time used
to synthesize the supervisors for the previous cited cases. It is important to
recall that our compositional approach provides exactly the same supervisor
as the monolithic supervisor which is the most permissive.
1st circuit: In this example, we consider four AGVs and the fourth arrives
when the first three are performing their missions, and a second case with a
fifth AGV. All AGVs have two tasks, one going to the area and the second
outside the area. AGV1 (resp. AGV2, AGV3, AGV4) starts on Enter1, (resp.
Enter2, Enter3, Enter4), has to go to the workstation B1 (resp. B4, B2, B3),

On-line compositional controller synthesis for AGV? 27

Configuration Monolithic Compositional

Circuit AGVs States Trans. Time States Trans. Time

1 4 332,856 1,443,504 44 s 127,068 372,645 3.3 s

1 5 explosion - - 1,686,462 2,529,639 42 s

2 4 782,130 4,000,492 49 s 19,538 43,171 0.3 s

2 5 explosion - - 57,366 71,192 0.9 s

2 6 explosion - - 122,538 324,620 3.5 s

3 5 27,720 120,031 1 s 24,920 107,341 0.4 s

3 6 194,040 1,006,537 10.1 s 174,440 900,907 3.4 s

4 3 15,372 47,854 1.1 s 12,646 36,182 0.2 s

4 4 937,692 4,148,854 180 s 560,023 2,113,323 19 s

Table 2 Experiments results. AGVs is the number of AGVs. The States, Trans. columns
represent the maximum number of states and transitions generated during the synthesis and
the time column is the time to synthesize the supervisor.

and leaves out by Exit1 (resp. Exit2, Exit3, Exit4). For this example, we first
consider three AGVs are performing their missions and a fourth arrives. AGV1
completed its first mission and will leave the area (EB), AGV2 starts its sec-
ond mission (K) and AGV3 is performing its first task (KI). The results are
shown in Table 2. Next, we add a fifth AGV which arrives on Enter2 and has
to go to the workstation B1. For this AGV we don’t know its second mission.
Note that the compositional approach is approximately thirteen times faster
in this case, which provides an interesting time saver. This is explained by the
reasons mentioned above, i.e., the reduction of the intermediate state space.
These results confirm the explanation provided in section 3.3. Note that the
compositional supervisor requires roughly four times less memory than the
monolithic approach whereas for five AGVs themonolithic synthesis explodes.

Fig. 9 An area which respects the LIFO model

28 Johan Girault et al.

2nd circuit: The second case is also a realistic case, but it should be more
favorable. Indeed, the automaton template has 30 states and 42 transitions
but its main feature is to respect the LIFO model, there is only one exit from
the area. This circuit is shown in Fig. 9. This type of configuration is often
present in industrial site with limited space. If two or more AGVs go into the
area, the first will be the last to leave because it will be blocked by the others
(an AGV on the workstation blocks the central lane of the area). There is no
solution except to wait for the other AGVs to have evacuated the area. For
example, in Fig. 9, AGV2 has to go to the workstation W6 but it is impossi-
ble since AGV1 blocks the central lane. AGV2 has to wait in the entrance of
the area until AGV1 leave the area. We consider in this case four AGVs and
the fourth arrives when the first three are performing their missions. AGV1
achieved its first mission (0 % of its second mission), AGV2 performed 80 % of
its first mission and AGV3 70 % of its first mission. The results are shown in
Table 2. We also test for five and six AGVs with the following configuration:
an AGV has completed its first mission, two are at 90 % and two at 50 % of
their first mission, and the last AGV arrives at the entrance to the area.
With this circuit structure, the compositional approach is very efficient (al-
most 163 times faster). This is explained by the number of states that are
forbidden caused by the LIFO model. Intermediate supervisors help to main-
tain a system with few states while the standard approach will calculate many
forbidden states and will remove them very late. We note that for five or six
AGVs, the monolithic approach explodes whereas our approach allows to gen-
erate the supervisor in 4.2s. We also note very significant gains in terms of
memory space as we can see in the Table 2.

3rd circuit: For the third example, the circuit used is similar to the simple
example. It contains six workstations and we can have conflicts only on two
places in the circuit (for example, the states B and D of the Fig. 6). There-
fore the list of forbidden states is very small. The configuration is as follows:
AGV1 achieved its first mission (50%), AGV2 (resp. AGV3, AGV4, AGV5) is
achieving its first mission (45%, resp. 20%, 25%, 25%), and the AGV6 arrives
at the entrance of the area.
The model used is very small (46 states and 50 transitions) because each
workstation has a unique path to reach it. Therefore an automaton Gi has a
maximum of 11 states and 10 transitions, that is why the monolithic approach
can generate the supervisor for six AGVs in this case. As we can see in the
Table 2, the space required for the monolithic approach is near to the space
required for the compositional approach because the list of forbidden states
is small. However, the compositional approach is once again faster than the
monolithic one.

4th circuit: In the 4th case, three AGVs are moving on the area and a fourth
arrives. The template automaton contains 58 states and 76 transitions. The
configuration is as follows: AGV1 is leaving the area (95% of its mission has
performed), AGV2 achieved its first mission (50%, it is in a workstation), AGV3

On-line compositional controller synthesis for AGV? 29

is performing its first mission (15%) and the AGV4 arrives at the entrance of
the area.
As explained previously, this circuit causes a large combinatorial explosion and
this is mainly why the monolithic approach is very slow. As we can see in the
Table 2, the standard approach has twice more transitions and states than the
compositional approach. Therefore the compositional approach is faster than
the standard approach.

5 Conclusion

In this paper, we propose a compositional approach (modified monolithic su-
pervisor) to synthesize an on-line supervisor to manage a fleet of mobile robots.
We prove compositionality of supervisor so that the supervisor is the same as
the monolithic approach of Ramadge and Wonham. This method has several
advantages. First, it is more efficient than the standard approach, and accord-
ing to the case it allows to synthesize a supervisor for four or more AGVs in a
critical area, which is not possible with the monolithic approach. But the on-
line application in a real time context is the biggest advantage for this method
as explained in previous sections. Indeed, in an industrial environment, a mis-
sion is often generated in real time, we cannot know it in advance. Therefore,
it is essential to be able to generate a supervisor when a new task appears in
its critical areas.

This paper focuses only on critical areas, if we extend to the non-critical
areas (lack of interaction), we could use local controllers. This will be the sub-
ject of a future study.

In our future work, we would like to add a notion of weight on transitions to
choose the best path in real time according to some criteria, such as energy or
time and we will implement this approach in company BA Systèmes (France).

References

Arnaud Y, Cury JER, Loiseau JJ, Martinez C (2009) Pilotage sûr et optimal
d’une flotte de véhicules autoguidés. In: JD-JN-MACS 2009, Angers : France

Breton L, Maza S, Castagna P (2006) A multi-agent based conflict-free routing
approach of bi-directional automated guided vehicles. In: American Control
Conference, 2006

Cai K, Wonham WM (2010) Supervisor localization: A top-down approach
to distributed control of discrete-event systems. Automatic Control, IEEE
Transactions on 55(3):605–618, DOI 10.1109/TAC.2009.2039237

Cassandras CG, Lafortune S (2006) Introduction to Discrete Event Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA

30 Johan Girault et al.

Clarke EM, Emerson EA, Sistla AP (1986) Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans
Program Lang Syst 8(2):244–263, DOI 10.1145/5397.5399

Flordal H, Malik R, Fabian M, Åkesson K (2007) Compositional synthesis
of maximally permissive supervisors using supervision equivalence. Discrete
Event Dynamic Systems 17(4):475–504, DOI 10.1007/s10626-007-0018-z

Girault J, Loiseau JJ, Roux OH (2013) Synthèse en ligne de superviseur com-
positionnel pour flotte de robots mobiles. In: European Journal of Automa-
tion, MSR’13, vol 47/1-3, pp 195–210

Hill RC, Tilbury DM (2006) Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction. In: Dis-
crete Event Systems, 2006 8th International Workshop on, pp 399–406, DOI
10.1109/WODES.2006.382507

Komenda J, Van Schuppen J, Gaudin B, Marchand H (2008) Supervisory
control of modular systems with global specification languages. Automatica
44:1127–1134, DOI 10.1016/j.automatica.2007.09.004

Krogh BH, Holloway LE (1991) Synthesis of feedback control logic for discrete
manufacturing systems. Automatica 27(4):641–651

Malik R, Flordal H (2008) Yet another approach to compositional synthesis of
discrete event systems. In: Discrete Event Systems, 2008. WODES 2008. 9th
International Workshop on, pp 16–21, DOI 10.1109/WODES.2008.4605916

Maza S (2003) Analyse du comportement d’un système de transport par char-
iot bidirectionnels en vue de sa commande. PhD thesis, Université de Nantes

Mohajerani S, Malik R, Ware S, Fabian M (2011) Compositional syn-
thesis of discrete event systems using synthesis abstraction. In: Control
and Decision Conference (CCDC), 2011 Chinese, pp 1549–1554, DOI
10.1109/CCDC.2011.5968439

Queiroz MHD, Cury JER (2000) Modular supervisory control of large scale dis-
crete event systems. In: International Workshop on Discrete Event Systems:
Analysis and Control. Proc. WODES’00, Kluwer Academic, pp 103–110

Ramadge PJ, Wonham WM (1987) Supervisory control of a class of discrete
event processes. SIAM J Control Optim 25(1):206–230

Ramadge PJ, Wonham WM (1989) The control of discrete event systems.
Proceedings of the IEEE 77(1):81–98

Reveliotis SA (2000) Conflict resolution in agv systems. IIE Transactions
32:200–0

Wonham WM, Ramadge PJ (1984) On the supremal controllable sublanguage
of a given language. In: Decision and Control, 1984. The 23rd IEEE Con-
ference on, vol 23, pp 1073–1080

Wonham WM, Ramadge PJ (1988) Modular supervisory control of discrete-
event systems. Mathematics of Control, Signals and Systems 1(1):13–30

