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Abstract

We investigate, under general stationary ergodic assumptions, the stability of systems of S
parallel queues in which any incoming customer joins the queue of the server having the p+1-th
shortest workload (p < S), or a free server if any. This change in the allocation policy makes
the analysis much more challenging with respect to the classical FCFS model with S servers, as
it leads to the non-monotonicity of the underlying stochastic recursion. We provide sufficient
conditions of existence of a stationary workload, which indicate a ”splitting” of the system in
heavy traffic, into a loss system of p servers plus a FCFS system of S − p servers. To prove
this result, we show en route an original sufficient condition for existence and uniqueness of a
stationary workload for a multiple-server loss system.

keywords: Queueing systems, Parallel queues, Stochastic comparison, Ergodic Theory;
subject class (MSC 2000): Primary 60K25, Secondary 35B35.

1 Introduction

In this paper, we re-visit the classical question of stability for multiple-server queues, by investigat-
ing systems of parallel queues in which the service discipline does not necessarily amount to First
Come, First Served (FCFS).
Let us consider a system of S servers (S ≥ 1), to which are associated S distinct lines, in a way that
any entering customer is assigned upon arrival to a line for good, and will wait in that line until
service, without possibility of switching queue. Such a system is commonly referred to as parallel
queues, as opposed to a multiple-server queue having a single line and S servers.
For multiple-server queues, the FCFS service discipline is optimal in various senses, see e.g. [8, 9, 10].
It is well known, and easily checked, that a multiple-server queue with S servers amounts to a
parallel queue applying the following allocation policy: any incoming customer choses upon arrival
to join the queue of the server having the least workload, i.e. the smallest residual work. This
allocation policy is usually called Join the Shortest Workload (JSW) in the context of parallel
queues. To set the big picture, to any system of S parallel queues with a fixed allocation policy,
corresponds a multiple-server queue of S servers with a corresponding service discipline, but the
converse is not true : in general, a multiple-server queue of service discipline different from FCFS
is not a system of parallel queues, as the identity of the server to which an incoming customer is
intended to upon arrival, may change during the wait.
For the aforementioned optimality reason, most of the literature on the stability of multiple-server
queues has addressed FCFS systems, or equivalently JSW systems of parallel queues. In fact, the
paradigm of parallel queues appeared as more convenient to address the stability of the system in
the strongest possible sense. Indeed, under the most general assumption (stationary ergodic arrival
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2 PRELIMINARY

process and service sequence), the queue is simply represented by a stochastic recursive sequence
(SRS), keeping track upon arrival times, of the residual workload of all servers, in increasing order
(we call it hereafter the service profile of the system). The latter SRS follows the famous Kiefer
and Wolfowitz equation (2), see [11].
Following this approach, Neveu [19] shows a natural stability condition (3) for parallel queues
under the JSW policy. This stability result is inherited from the monotonicity of the service profile
sequence for the coordinate-wise ordering, and a minimal stationary profile is given by Loynes’s
Theorem [16]. Whenever such solution exists, it is in general not unique, and an explicit maximal
solution can be obtained, see [4].
As alternative allocation policies, an abundant literature has investigated the so-called Join the
Shortest Queue (JSQ) policy, allocating the incoming customers to the server having the shortest
line at this instant, see [21, 12, 14, 13]. Let us also quote the several existing works (see [20, 18]),
on the semi-cyclic service allocations (SCS), for which the last k servers (where k ≤ S−1) to which
a customer has been assigned are ’frozen’, and cannot welcome the next incoming customer. In
both cases, the aforementioned papers mostly compare the performance of the alternative model
with respect to JSW, however no stability study is undertaken.

In this paper, we make a first step toward a more general stability study for parallel queues, by
generalizing the stability results obtained for JSW, to systems ruled by allocations policies of the
following class : send any incoming customer to a server having an empty queue, if any, or to a
server having the p+ 1-th smallest workload, where the integer p ≤ S − 1 is fixed. This allocation
policy is called hereafter Jp+1SW.
This generalization makes sense for practical purposes: as is easily seen, the stability of systems
under other policies, such as JSQ or SCS, can be addressed by comparison to a Jp+1SW model.
But it also raises an interesting theoretical issue: as will be shown below, this change of policy
complicates dramatically the analysis with respect to a JSW system, as the underlying SRS is no
longer monotonic. Therefore a direct use of Loynes’ Theorem is not possible in the present context.
In particular, it can be easily checked that, although the stability condition of JSW systems is
still necessary, it is no longer sufficient for Jp+1SW systems, as a counter example demonstrates
in Section 3.3. We resort to more sophisticated tools, namely the theory of Renovating Events of
Borovkov and Foss (see [2, 3]) and stochastic comparison, to achieve a sufficient stability condition
which is strictly stronger that (3), see Theorem 1. As will be elaborated in Section 3.4, this stability
condition can be interpreted in terms of asymptotic splitting of the model into a loss system of p
servers plus an overflow system of S − p servers. To prove this, we show en route a stability result
for loss systems with multiple-servers, completing the result of [7].

This paper is organized as follows. After some preliminary in Section 2, we introduce our non-
monotonic model of S parallel queues in Section 3, and our main stability results for Jp+1SW
queues and Loss systems in sub-section 3.4 (namely Theorems 1 and 2). Then, in Section 4 we
introduce and study several auxiliary monotonic SRS which will be useful for proving the main
results. The proofs of Theorems 1 and 2 are then given in Section 5, in which they are in fact
presented as corollaries of stronger more abstract results, namely Propositions 4 and 5.

2 Preliminary

2.1 Main notation

In what follows, R denotes the real line and R+, the subset of non-negative numbers. Denote N

(respectively N
∗, Z), the subset of non-negative (resp. positive, relative) integers. For any two
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2 PRELIMINARY 2.2 Stochastic Recursive Sequences

elements p and q in N, Jp, qK denotes the finite family {p, p + 1, ..., q}. For any x, y ∈ R, denote
x ∧ y = min (x, y) and x ∨ y = max(x, y). Let x+ = x ∨ 0. Let q ∈ N

∗. We denote for all u, v ∈ R
q

and λ ∈ R,

u = (u(1), u(2), ..., u(q)) ;

λu = (λu(1), ..., λu(q)) ;

u+ v = (u(1) + v(1), ..., u(q) + v(q)) ;

0q = (0, ..., 0);

ei = (0, ..., 1
︸︷︷︸

i

, ...0) for all i ∈ J1, qK;

u+ =
(

u(1)+, u(2)+, ..., u(q)+
)

;

ū, the fully ordered version of u, i.e. ū(1) ≤ ... ≤ ū(q).

Denote then (R+)q the subset of fully ordered vectors, furnished with the euclidean norm. We
equip (R+)q with the coordinate-wise ordering ”≺”, i.e. u ≺ v if and only if u(i) ≤ v(i) for all
i ∈ J1, qK. Finally, if p and q ∈ N

∗ are such that p ≤ q, for any element u ∈ (R+)
q we denote u[p]

the restriction of u to its first p coordinates, i.e.

u[p] = (u(1), ..., u(p)).

2.2 Stochastic Recursive Sequences

The stability results presented below will be stated in ergodic theoretical terms, by investigating
the existence of a stationary version of a stochastic recursion representing the system under con-
sideration. Let us recall the basics of this framework. For more details, the reader is referred to
the two classical monographs [5] and [1].

We say that (Ω,F ,P, θ) is a stationary ergodic quadruple if (Ω,F ,P) is a probability space and θ

is a bijective operator on F such that for any A ∈ F , P [A] = P
[
θ−1A

]
and any θ-invariant event

B (i.e., such that B = θ−1B) is either negligible or almost sure. Note that this is then also true
for any θ-contracting event B (i.e. such that P

[
B∆ θ−1B

]
= 0, where ∆ denotes the symmetrical

difference). We denote for any n ∈ N
∗,

θn = θ ◦ θ ◦ ... ◦ θ
︸ ︷︷ ︸

n times

and θ−n = θ−1 ◦ θ−1 ◦ ... ◦ θ−1
︸ ︷︷ ︸

n times.

Let E be a partially ordered Polish space having a minimal point 0. Let X be a E-valued random
variable (r.v. for short) and Ψ a random measurable mapping from E onto itself. The stochastic
recursive sequence (SRS) {WX,n} of initial value X and driven by Ψ is defined by

{
WX,0 = X;
WX,n+1 = Ψ ◦ θn (WX,n) , n ∈ N.

It is then routine to check that a time-stationary sequence having, on a reference probability space,
the same distribution as {Xn} corresponds to a solution X defined on Ω to the functional equation

X ◦ θ = Ψ(X) , almost surely. (1)

As stated by Loynes’s Theorem ([16], see also the generalization in section 2.5.2 of [1]), in the
case where Ψ is a.s. nondecreasing and continuous, a solution to (1), almost surely (a.s., for short)
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3 JOIN ONE OF S PARALLEL QUEUES

minimal for the considered ordering on E, is given by the almost sure limit of the so-called Loynes’s
sequence {Wn}, defined by

{
W0 = 0;
Wn+1 = Ψ ◦ θ−1

(
Wn ◦ θ−1

)
, n ∈ N.

(hereafter Loynes’s sequences are always denoted in bold letters).

3 Join one of S parallel queues

We consider a queueing system having S servers (S ∈ N
∗) working in parallel, each of them

providing service in First in, first out (FIFO). We assume that each server has a dedicated line and
that switching between lines is not allowed, in other words any incoming customers choses a server
upon arrival, and remain in the corresponding line until service.

The input of the system is represented by a marked stationary point process. We denote Q =
(Ω,F ,P, θ), the Palm probability space associated to the arrival process. In particular, P-a.s.,
a customer (denoted C0) enters the system at time 0, requesting a service time of duration σ,
measured in an arbitrary time unit. The following customer C1 enters the system at time τ . Then,
for any n ∈ Z, σ ◦ θn is interpreted as the service time requested by customer Cn, and τ ◦ θn

represents the time epoch between the arrivals of customers Cn and Cn+1 (again, see [5, 1]). In
addition, the shift θ is assumed P-stationary and ergodic (so Q is a stationary ergodic quadruple
and we can work in the settings of Section 2.2). We also assume that σ and τ are integrable, and
that P [τ > 0] = 1.

3.1 The service profile

We assume that a global information is available to all entering customers, on the quantity of
work to be completed by each of the S servers (termed workload of the corresponding server). In
other words, for any n the system can be represented at the arrival of Cn by the random vector
Wn ∈ (R+)S , where Wn(i) denotes the workload of server i, whenever the servers are sorted in the
ascending order of workloads. The random vector Wn is called the service profile at time n. The
allocation policy is the rule for attributing a server to the incoming customers. The main allocation
policy addressed in the literature in that context is Join the shortest Workload (JSW), in other
words any incoming customer joins the queue of the server having the smallest workload. It is a
weel-known fact since the work of Kiefer and Wolfowitz [11], that the service profile sequence {Wn}
is a SRS driven by the random map

G :

{

(R+)S → (R+)S

u 7→ [u+ σe1 − τ1]+.

It is immediate to observe that G is a.s. ≺-nondecreasing and continuous, so Loynes’s Theorem
shows the existence of a solution W to the equation

W ◦ θ = G (W ) a.s., (2)

moreover W is a.s. finite whenever
E [σ] < SE [τ ] , (3)

and is such that P [W (1) = 0] > 0 (see also [19]).
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3 JOIN ONE OF S PARALLEL QUEUES 3.2 Alternative non-monotonic allocations

3.2 Alternative non-monotonic allocations

Consider now the following allocation policies for any p ∈ J0, S−1K: any incoming customer is sent:

(i) to the queue having the p+ 1-th smallest workload among the S servers if all the servers are
busy, or

(ii) to a free server, if any.

Once in a given line, it is not possible for any customer to leave the queue for another one. Such
policy will be denote Jp+1SW for ’Join the p+1-th shortest workload’. Observe that J1SW coincides
with JSW.
Fix p ∈ J0, S − 1, and represent the system under Jp+1SW, upon the arrival of a customer Cn, by

the (R+)S-valued service profile W p
n , defined as above. In other words, W p

n(i) denotes the workload
of the server having the i-th smallest workload, upon the arrival of Cn. We can immediately observe
the following generalization of Kiefer and Wolfowitz equation: the service profile sequence {W p

n} is

an (R+)
S-valued SRS driven by the random map

Gp :

{

(R+)S → (R+)S

u 7→ G (u) 1l{u(1)=0} + [u+ σep+1 − τ1]+1l{u(1)>0}.

Then, from (1) a time-stationary service profile is a (R+)S-valued r.v. W p, solution to the functional
equation

W p ◦ θ = Gp (W p) , a.s.. (4)

The aim of the present paper is to solve (4) for any p < S and thereby, to generalize the afore-
mentioned stability result to any value of p. However, we can observe right away that, for any
p ∈ J1, S − 1K the random map Gp is not ≺-nondecreasing. Consequently, the resolution of (4)
cannot be addressed by a Loynes-type argument such as (2). We will circumvent this difficulty by
comparing stochastically the service profile sequence to a monotonic SRS, namely the one driven
by the mapping Φp defined in Section 4.

By investigating the stability of Jp+1SW systems, we will be led to address the special (and well-
known in stability theory) case of a pure loss system. As is easily seen, extrapolating to the case
S = p in the definition of a Jp+1SW model, leads to the classical loss system of p servers. It is
formally defined as follows: there are no lines, so incoming customers enter service if and only if at
least one of the servers is free - and begin service with one of these free servers right away. If no
server is available, then the incoming customer is immediately lost. For each server, the workload
is thus given by the remaining service time of the customer in service if any, or 0 else. The system
is then represented by the service profile sequence {Up

n}, where for all n, Up
n(i) denotes the i-th

workload of a server, ranked in ascending order. On Q, it is then easy to check that the service
profile sequence {Up

n} is an SRS having the following driving map:

Hp :

{

(R+)
p −→ (R+)

p

u 7−→
[
u+ σ1l{u(1)=0}e1 − τ1

]+
.

In other words, for all u ∈ (R+)
p and all i ∈ J1, pK we have a.s.

Hp(u)(i) =
[(
u(i) ∨

(
σ1l{u(1)=0}

))
∧ u(i+ 1)− τ

]+
;

Hp(u)(p) =
[
u(p) ∨

(
σ1l{u(1)=0}

)
− τ
]+

.
(5)

The question of existence of a stationary service profile then amounts to a solution to the equation

U ◦ θ = Hp(U), P− a.s.. (6)
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3.3 Non-sufficiency 3 JOIN ONE OF S PARALLEL QUEUES

3.3 Non-sufficiency

Clearly, condition (3) is necessary for the stability of any system of S parallel queues. To see this,
on can generalize the argument of Exercise 2.3.1 in [1] : whenever E [σ] > SE [τ ], if there existed a
stationary service profile W for the system under consideration we would have that

(
S∑

i=1

W (i)

)

◦ θ −

S∑

i=1

W (i) = [W (1) + σ − τ ]+ +

S∑

i=2

[W (2)− τ ]+ −

S∑

i=1

W (i)

≥ W (1) + σ − τ −W (1) +

S∑

i=2

(W (i)− τ −W (i)) = σ − Sτ

and therefore

E

[(
S∑

i=1

W (i)

)

◦ θ −

S∑

i=1

W (i)

]

≥ E [σ]− SE [τ ] > 0,

a contradiction to the Ergodic Lemma (Lemma 2.2.1 in [1]).

However, as is intuitively clear, the natural condition (3) is not sufficient for the stability of a system
under Jp+1SW. We can convince ourselves using a counter-example. Construct the following simple
stationary ergodic quadruple Q: we let Ω = {ω1, ω2, ω3}, P be the uniform probability on Ω and θ

be the automorphism

θ : ω1 7→ ω2 7→ ω3 7→ ω1.

Define on Ω the following random variables,

{
σ(ω1) = 2.25, σ(ω2) = 1.5, σ(ω3) = 2;

τ(ω1) = τ(ω2) = τ(ω3) = 1,

in a way that

E [σ] =
5.75

3
< 2E [τ ] .

Proposition 1. For S = 2, p = 1 and the r.v. σ, τ above, there is no solution to (4) on the
quadruple Q.

Proof. Suppose that the r.v. V 2 =
(
V 2(1), V 2(2)

)
solves (4) on Q. Denote in this proof by X[ω],

the value of a r.v. X at sample ω. Then,

1. If V 2(1)[ω1] = 0, then

(1a) If V 2(2)[ω1] ≤ 1, then V 2[ω2] = (0, 1.25), which implies that V 2[ω3] = (0.25, 0.5) and in
turn V 2[ω1] = (0, 1.25), an absurdity.

(1b) If V 2(2)[ω1] ∈ (1, 2], we have V 2[ω2] =
(
V 2(2)[ω1]− 1, 1.25

)
, then V 2[ω3] = (0, 1.75)

and V 2[ω1] = (0.75, 1), which is also absurd.

(1c) V 2(2)[ω1] ∈ (2, 2.25] entails that V 2[ω2] =
(
V 2(2)[ω1]− 1, 1.25

)
, V 2[ω3] =

(
V 2(2)[ω1]− 2, 1.75

)

and then V 2[ω1] = (0, 2.75), another contradiction.

(1d) If V 2(2)[ω1] > 2.25, then V 2[ω2] =
(
1.25, V 2(2)[ω1]− 1

)
, V 2[ω3] =

(
0.25, V 2(2)[ω1]− 0.5

)

and then V 2[ω1] = (0, V 2(2)[ω1] + 0.5), again an absurdity.

2. Assume now that V 2(1)[ω1] ∈ (0, 1]. Then,

6



3 JOIN ONE OF S PARALLEL QUEUES 3.4 Main results

(2a) If V 2(2)[ω1] ≤ 0.25, then we also have that V 2(1)[ω1] ≤ 0.25 and therefore V 2[ω2] =
(0, V 2(2)[ω1]+1.25), and in turn V 2[ω3] = (V 2(2)[ω1]+0.25, 0.5) and V 2[ω1] = (V 2(2)[ω1]−
0.75, 1.5), a contradiction.

(2b) If now V 2(2)[ω1] > 0.25, then V 2[ω2] = (0, V 2(2)[ω1] + 1.25), and then V 2[ω3] =
(0.5, V 2(2)[ω1] + 0.25) and V 2[ω1] = (0, V 2(2)[ω1] + 1.25), another absurdity.

3. Suppose now that V 2(1)[ω1] ∈ (1, 2], and in particular V 2(2)[ω1] > 1. This implies that
V 2[ω2] = (V 2(1)[ω1] − 1, V 2(2)[ω1] + 1.25), and in turn V 2[ω3] = (0, V 2(1)[ω1] + 1.75) and
V 2[ω1] = (1, V 2(2)[ω1] + 0.75), again absurd.

4. Finally, assuming that V 2(1)[ω1] > 1 entails that

V 2[ω2] = (V 2(1)[ω1]− 1, V 2(2)[ω1] + 1.25), V 2[ω3] = (V 2(1)[ω1]− 2, V 2(2)[ω1] + 1.75)

and then V 2[ω1] =
([

V 2(1)[ω1]− 3
]+

, V 2(2)[ω1] + 0.75
)

, another contradiction. This con-

cludes the proof.

3.4 Main results

Define the following family of random variables,

Zℓ =

[

sup
k≥ℓ

(

σ ◦ θ−k −
k∑

i=1

τ ◦ θ−i

)]+

, ℓ ∈ N
∗ (7)

which, from Birkhoff’s Theorem, are P-a.s. finite under the ongoing assumptions (see Exercise 2.6.1
in [1]).
Fix p ∈ J1, SK throughout this section. Our main result provides a sufficient condition for the
existence of a solution to (4),

Theorem 1. Assume that the input is GI/GI (i.e. the inter-arrival times and service times are
mutually independent i.i.d. sequences) and that the distribution of τ has unbounded support. If
moreover the following conditions hold,

E [σ]P [Zp > 0] < (S − p)E [τ ] ; (8)

P [Zp = 0] > 0, (9)

where Zp is defined by (7), then the equation (4) admits a proper solution W p.

Theorem 1 is proven in section 5.1, where we in fact show a stronger result, Proposition 4, which
exhibits a weakest, although implicitly defined, sufficient condition of stability for a largest class of
models.

Let us now turn to the special case of a loss queue. The stability study of this genuine example
of non-monotonic system, for which it is well known that the uniqueness and even the existence of
a solution are not true in general, has a long history in the literature: see e.g. the early papers
[6, 15, 19] on single server queues, and the generalization to a multiple-server system [7], where
an extension of the original probability space is constructed, on which a solution to (6) always
exists. Hereafter, we complete the result in [7] by providing a sufficient condition of existence and
uniqueness on the original space, using a generalization of the coupling method of Section 2.6.2 in
[1] to multiple-server queues. We obtain the following,

7
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Theorem 2. If the input is GI/GI, the distribution of τ has unbounded support and condition (9)
holds true, then the equation (6) admits a unique finite solution Up, that is such that

Up ≺ (Zp, Zp−1, ..., Z1) a.s.. (10)

In section 5.2, Theorem 2 is shown to be a corollary of a stronger result, Proposition 5.

After this detour by loss systems with multiple-servers, we now have a clearer interpretation of
Theorem 1: under (9), Up(1) is the unique stationary least workload of a loss system of p servers,
so P [Up(1) > 0] can be interpreted as the loss probability for such system (denote Ploss, the latter).
Therefore, from (10), condition (8) entails that

Ploss

E [τ ]
<

S − p

E [σ]
. (11)

In other words, the sufficient condition (8) guarantees that the intensity of the overflow process
of a loss system of p servers does not exceed the service rate of a JSW system of S − p servers.
This suggests that, as it approaches saturation, the system tends to behave similarly as a two-parts
system: the first one has p servers and no waiting line; the second one has S − p servers having
each its own line and works in FIFO. The customers try to enter the first system and, if the latter
is full (i.e. all p servers are busy), they are re-directed to the second one. We do not attempt
to prove this ”assymptotic splitting” of the system in heavy traffic under the ongoing stationary
ergodic assumptions. Notice that in this general context, it seems that the bound in (8) is somewhat
optimal, as it relies on the ”nearest” monotonic approximation of the system. However, we have
reasons to believe that (11) is necessary and sufficient for stability under more restrictive, such as
Markov, assumptions. The proof of this conjecture would require the use of completely different
mathematical tools, and is left for future research.

4 Three Stochastic recursions

In this section we introduce and study three abstract auxiliary stochastic recursions that will be
useful for addressing the stability of Jp+1SW systems and loss systems, using stochastic comparison.
Throughout this section, we work on the Palm space Q of the arrival process, under the ongoing
assumptions on the random variables σ and τ .

Fix two integers p ≥ 1, S ≥ 2 such that p ≤ S − 1. Define on Q the following random maps,

Γp :







(R+)
p −→ (R+)

p

u 7−→ v such that

v(j) = [u(j + 1)− τ ]+ , j ∈ J1, p − 1K;

v(p) =

[(

u(p) ∨ σ
)

−τ

]+

,

Ψp :







(R+)
p −→ (R+)

p

u 7−→ v such that

v(j) =

[(

u(j) ∨ σ
)

∧u(j + 1)− τ

]+

, j ∈ J1, p − 1K;

v(p) =

[(

u(p) ∨ σ
)

−τ

]+

,

8



4 THREE STOCHASTIC RECURSIONS

Φp :







(R+)
S −→ (R+)

S

u 7−→ v such that

v(j) =

[(

u(j) ∨ σ
)

∧u(j + 1)− τ

]+

, j ∈ J1, pK;

v(j) =

[(

u(j) ∨
(
σ + u(p+ 1)1l{u(1)>0}

) )

∧u(j + 1)− τ

]+

, j ∈ Jp+ 1, S − 1K;

v(S) =

[(

u(S) ∨
(
σ + u(p + 1)1l{u(1)>0}

) )

−τ

]+

.

We first have the following elementary result,

Lemma 1. The functional equation

Z ◦ θ = Γp(Z), a.s. (12)

admits the only (R+)
p-valued solution

Zp := (Zp, Zp−1, ..., Z1) , (13)

where the Zi’s are defined by (7).

Proof. The random map Γp is a.s. ≺-non decreasing and continuous, hence a straightforward
application of Loynes’s Theorem establishes the existence of a minimal (R+)

p-valued solution Zp

to (12), thereby satisfying

{
Zp(p) ◦ θ = [Zp(p) ∨ σ − τ ]+ ;

Zp(j) ◦ θ = [Zp(j + 1)− τ ]+ , j ∈ J1, p − 1K.

But we know from Lemma 1 of [17] that the only solution of the recursion

Z ◦ θ = [Z ∨ σ − τ ]+

is precisely Z1, so we have Zp(p) = Z1 a.s.. This implies that

Zp(p− 1) =
[
Z1 ◦ θ

−1 − τ ◦ θ−1
]+

= Z2 a.s.

and in turn, by an immediate induction, that Zp(p− j) = Zj+1 a.s. for all j ∈ J1, p− 1K.

Consequently,

Corollary 1. The recursive equation

Y ◦ θ = Ψp(Y ), a.s. (14)

admits at least one (R+)
p-valued solution. Furthermore, any such solution Y is such that

Y (p) = Z1 a.s.;

Y ≺ Zp a.s., (15)

for Zp defined by (13), and the solution is unique if it holds that

P [Z1 = 0] > 0. (16)
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Proof. As is easily checked, the map Ψp is a.s. ≺-non-decreasing and continuous, so Loynes’s
Theorem guarantees once again the existence of a solution to (14). Fix such a solution Y . We
have, first, that Y (p) ◦ θ = [Y (p) ∨ σ − τ ]+ a.s. and therefore Y (p) = Z1 a.s.. Consider the event
B = {Y ≺ Zp} . On B, we have that

Y (p− 1) ◦ θ = [(Y (p− 1) ∨ σ) ∧ Z1 − τ ]+ ≤ [(Z2 ∨ σ) ∧ Z1 − τ ]+

≤ [Z1 − τ ]+ = Z2 ◦ θ = Zp(p− 1) ◦ θ.

This implies in turn that

Y (p − 2) ◦ θ = [(Y (p − 2) ∨ σ) ∧ Z2 − τ ]+ ≤ [(Z3 ∨ σ) ∧ Z2 − τ ]+

≤ [Z2 − τ ]+ = Z3 ◦ θ = Zp(p − 2) ◦ θ

and then, by induction on i, that Y (p − i) ◦ θ ≤ Zi+1 ◦ θ for all i ∈ J1, p − 1K. In other words, the
event B is θ-contracting.
On the other hand, remark that Z1 > σ a.s. would imply by θ-invariance that Z1 ◦ θ > 0 a.s.
and therefore that Z1 ◦ θ = Z1 − τ a.s. and hence E [Z1 − Z1 ◦ θ] < 0, a contradiction to the
Ergodic Lemma. Therefore, we have that P [Z1 ≤ σ]. But on {Z1 ≤ σ}, we have in turn that
Y (p− 1) ◦ θ = [Z1 − τ ]+, or in other words

Y (p − 1) =
[
Z1 ◦ θ

−1 − τ ◦ θ−1
]+

= Z2.

On and on, we obtain that

{Z1 ≤ σ} ⊂ {Y = Zp} ⊂ B.

We have proven that the event on the left-hand side is non-negligible, and that B is θ-contracting
and thereby of probability 0 or 1: therefore B is almost sure, or in other words Y ≺ Zp a.s..

To show uniqueness, define the family of random variables

I =
{

(R+)p − valued random variables X : X ≺ Zp a.s.
}

and the event

A = {Z1 = 0}.

From the very definition of the maps Γp and Ψp we have for all u, v in (R+)p that

u ≺ v =⇒ Ψp(u) ≺ Γp(v) a.s..

Therefore, for any solution Y to (14), as Y ∈ I we obtain by an immediate induction that for all
n,

Y ◦ θn = Ψp ◦ θn(Y ) ≺ Γp ◦ θn (Zp) = Zp ◦ θn.

In particular,

θ−nA = {Zp = 0} = {Y = 0},

so {θ−nA} is a stationary sequence of renovating events of length 1 (see [2]), for any sequence
{Y ◦ θn} with Y a solution to (14). Then, (16) amounts to P [A] > 0, which implies the uniqueness
of the solution Y p, using Remark 2.5.3 of [1].

Let us now focus on the random maps Φp. First observe that

10
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Lemma 2. Let p ∈ J1, S − 1K. Then,

(i) (R+)S is almost surely stable by Φp,

(ii) Φp is ≺-nondecreasing;

(iii) For any u ∈ (R+)S and v ∈ (R+)p, we have

u[p] ≺ v ⇐⇒ Φp (u) [p] ≺ Ψp(v) a.s..

Proof. (i) Plainly, if p ≥ 2, for all u ∈ (R+)S and all j ∈ J1, p− 1K,

Φp(u)(j) = [(u(j) ∨ σ) ∧ u(j + 1)− τ ]+ ≤ [(u(j + 1) ∨ σ) ∧ u(j + 2)− τ ]+ = Φp(u)(j + 1).

Also, if p < S, we have that

Φp(u)(p) = [(u(p) ∨ σ) ∧ u(p+ 1)− τ ]+

≤
[(
u(p + 1) ∨

(
σ + u(p + 1)1l{u(1)>0}

))
∧ u(p + 2)− τ

]+
= Φp(u)(p + 1),

whereas for all j ∈ Jp, SK,

Φp(u)(j) =
[(
u(j) ∨

(
σ + u(p+ 1)1l{u(1)>0}

))
∧ u(j + 1)− τ

]+

≤
[(
u(j + 1) ∨

(
σ + u(p + 1)1l{u(1)>0}

))
∧ u(j + 2)− τ

]+
= Φp(u)(j + 1).

(ii) Let u ≺ v in (R+)S . Then for all j ≤ p,

Φp(u)(j) = [(u(j) ∨ σ) ∧ u(j + 1)− τ ]+ ≤ [(v(j) ∨ σ) ∧ v(j + 1)− τ ]+ = Φp(v)(j)

and for j ≥ p+ 1,

Φp(u)(j) =
[(
u(j) ∨

(
σ + u(p)1l{u(1)>0}

))
∧ u(j + 1)− τ

]+

≤
[(
v(j) ∨

(
σ + v(p)1l{v(1)>0}

))
∧ v(j + 1)− τ

]+
= Φp(v)(j).

(iii) Let u ∈ (R+)S and v ∈ (R+)p such that u[p] ≺ v. Then we have a.s.

Φp(u)(p) =

[(

u(p) ∨ σ
)

∧u(p+ 1)− τ

]+

≤

[(

u(p) ∨ σ
)

−τ

]+

≤

[(

v(p) ∨ σ
)

−τ

]+

= Ψp(v)(p),

whereas for any j ∈ J1, p− 1K we readily have

Φp(u)(p) =

[(

u(j) ∨ σ
)

−τ

]+

≤

[(

v(j) ∨ σ
)

−τ

]+

= Ψp(v)(j).

We have the following result,
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Proposition 2. Let p < S. If the following condition holds,

E
[
σ1l{Y (1)>0}

]
< (S − p)E [τ ] , for any solution Y to (14), (17)

the functional equation
V ◦ θ = Φp(V ), P− a.s. (18)

admits at least one (R+)S-valued solution V .

Proof. From Lemma 2, (R+)S is a.s. stable by Φp and Φp is a.s. ≺-nondecreasing and clearly
continuous. So we invoke once again Loynes’s Theorem to claim the existence of a ≺-minimal
solution V p, towards which the Loynes’s sequence corresponding to Φp, which we denote {Vp

n} ,
tends a.s. coordinate-wise and increasingly. It remains to give the condition under which the r.v.
V p is proper. Let us first prove that

[

V p(S) = ∞ a.s.
]

⇐⇒
[

V p(i) = ∞ for all i ∈ Jp+ 1, SK a.s.
]

. (19)

The latter proposition is non trivial only if p < S − 1. In that case, suppose that

V p(S) = ∞ a.s. and V p(p + 1) < ∞ a.s.. (20)

Define for all n,

Mn =
[

Vp
n(p+ 1)1l{Vp

n(1)>0} − σ + τ
]+

.

The sequence {Mn} is a.s. non-decreasing, and its almost sure limit M reads

M =
[
V p(p+ 1)1l{V p(1)>0} − σ + τ

]+
.

Thus, we have for all n,

Vp
n+1(S) ◦ θ = Mn ∨ [Vp

n(S)− τ ]+ = Vp
n(S)− (Vp

n(S)−Mn) ∧ τ ≤ Vp
n(S)− (Vp

n(S)−M) ∧ τ.

As the sequence {Vp
n(S)} is a.s. non-decreasing, we therefore have for all n that

E [(Vp
n(S)−M) ∧ τ ] ≤ 0

which, by monotone convergence, implies in turn that

E [(V p(S)−M) ∧ τ ] ≤ 0.

From (20), we have V p(S) = ∞ and M < ∞ a.s., which implies that E [τ ] ≤ 0, an absurdity. Hence
as the vector V p is sorted in ascending order, we have proven (19).

Now, observe that for all n ∈ N,

Vp
n+1(j) ◦ θ =

[(

Vp
n(j) ∨

(

σ +Vp
n(p+ 1)1l{Vp

n(1)>0}1l{j>p}

))

∧Vp
n(j + 1)− τ

]+

.

So taking the a.s. limit yields in particular

V p(p+ 1) ◦ θ =

[(

σ + V p(p + 1)1l{V p(1)>0}

)

∧V p(p+ 2)− τ

]+

; (21)

V p(S) ◦ θ =
[
V p(S) ∨

(
σ + V p(p + 1)1l{V p(1)>0}

)
− τ
]+

. (22)

12
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Therefore, both events {V p(S) = ∞} and {V p(j) = ∞; j ∈ Jp + 1, SK} are θ-contracting, and
thereby, either negligible or almost sure. So in view of (19), we are in the following alternative:

[

V p(i) < ∞ a.s. for all i ∈ Jp+ 1, SK
]

or
[

V p(i) = ∞ a.s. for all i ∈ Jp+ 1, SK
]

.

Let for all n ∈ N, Sn =
∑S

i=1 V
p
n(i). We have for all n,

Sn+1 ◦ θ − Sn = [(σ ∨Vp
n(1)) ∧Vp

n(p + 1)− τ ]+ −Vp
n(1)

+

S∑

j=2; j 6=p+1

(
[Vp

n(j) − τ ]+ −Vp
n(j)

)
+
[

Vp
n(p+ 1) + σ1l{Vp

n(1)>0} − τ
]+

−Vp
n(p+ 1)

= [(σ ∨Vp
n(1)) ∧Vp

n(p+ 1)− τ ]+ +

S∑

j=2

[Vp
n(j) − τ ]+ −

S∑

j=1

Vp
n(j)

−

S∑

j=p+2

Vp
n(j) ∧ τ −Vp

n(p + 1) ∧
(

τ − σ1l{Vp

n(1)>0}

)

.

Suppose that we have V p(i) = ∞ a.s. for all i ∈ Jp + 1, SK. Then, almost surely from a certain
rank we have that

Sn+1 ◦ θ − Sn = [σ ∨Vp
n(1) − τ ]+ +

S∑

j=2

[Vp
n(j)− τ ]+ −

S∑

j=1

Vp
n(j) − (S − p)τ + σ1l{Vp

n(1)>0},

so as the sequence {Sn} is a.s. non-decreasing, by monotone convergence we obtain that

0 ≤ E



[σ ∨ V p(1) − τ ]+ +
S∑

j=2

[V p(j) − τ ]+ −
S∑

j=1

V p(j)− (S − p)τ + σ1l{V p(1)>0}



 . (23)

On another hand, as V p ◦ θ = Φp (V p) a.s., V p(p+ 1) = ∞ a.s. entails that







V p(j) ◦ θ =

[(

V p(j) ∨ σ
)

∧V p(j + 1)− τ

]+

, j ∈ J1, p − 1K;

V p(p) =

[(

V p(p) ∨ σ
)

−τ

]+

,

or in other words
V p ◦ θ[p] = Ψp (V p[p]) a.s..

Hence from Corollary 1, we have V p[p] = Y a.s. for some solution Y of (14) which, together with
(23), leads to the conclusion that

[

V p(j) = ∞ a.s. for all j ∈ Jp+ 1, SK

]

=⇒

[

For some solution Y to (14),

E
[
σ1l{Y (1)>0}

]
≥ (S − p)E [τ ] + E





S∑

j=1

Y (j)



 − E





[

σ ∨ Y (1)− τ
]+

+

S∑

j=2

[Y (j) − τ ]+







 . (24)
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Finally, just observe that for any such Y ,

p
∑

i=1

Y (i) ◦ θ =

p
∑

i=1

Ψp (Y ) (i) =
[

σ ∨ Y (1) − τ
]+

+
S∑

j=2

[Y (j) − τ ]+ ,

which implies by the θ-invariance of P, that

E

[
p
∑

i=1

Y (i)

]

= E

[
p
∑

i=1

Y (i) ◦ θ

]

= E





[

σ ∨ Y (1) − τ
]+

+
S∑

j=2

[Y (j) − τ ]+



 .

Plugging this into the right-hand side of (24), concludes the proof.

Let us observe furthermore,

Proposition 3. Denote Y p and V p, the ≺-minimal solutions to (14) and (18) respectively, obtained
by Loynes’ Scheme. Then we have

V p[p] ≺ Y p a.s..

Proof. We argue by induction. Denote {Yp
n}, the (R+)

p- valued Loynes’ sequence for the mapping

Ψp and again, {Vp
n}, the (R+)

S- valued Loynes’ sequence for Φp. We have 0S [p] ≺ 0p, and then
Vp

n[p] ≺ Yp
n a.s. for some n entails by θ-invariance that Vp

n ◦ θ−1[p] ≺ Vp
n ◦ θ−1[p] a.s. which, in

view of assertion (iii) of Lemma 2, implies in turn that

Vp
n+1[p] = Φp ◦ θ−1

(
Vp

n ◦ θ−1
)
[p] ≺ Ψp ◦ θ−1

(
Yp

n ◦ θ−1
)
= Yp

n+1 a.s..

Thus we have proven that
Vp

n[p] ≺ Yp
n a.s. for all n ∈ N,

which concludes the proof taking the almost sure coordinatewise limit.

5 Proofs of the main results

5.1 Jp+1SW systems of S servers

We are now in position to prove Theorem 1. Let us first make the following simple observation,

Lemma 3. For any p ∈ J1, S − 1K, for all u, v ∈ (R+)S such that u ≺ v, we have

Gp(u) ≺ Φp(v) a.s..

Proof. Let u ≺ v. It suffices to observe that for all j ≤ p,

Gp(u)(j) =
[(
u(j) ∨ σ1l{u(1)=0}

)
∧ u(j + 1)− τ

]+
≤ [(v(j) ∨ σ) ∧ v(j + 1)− τ ]+ = Φp(v)(j), (25)

whereas for all j ∈ Jp+ 1, SK, assertion (ii) of Lemma 2 entails that

Gp(u)(j) = Φp(u)(j) ≤ Φp(v)(j).

We therefore have the following result,
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Proposition 4. Suppose that (17) holds true and denote V p the minimal solution of (18). If
furthermore it holds true that

P [G] := P

[

{V p(1) = 0}
⋂
(

S⋂

ℓ=2

{

V p(ℓ) ≤

ℓ−1∑

i=0

τ ◦ θi

})]

> 0, (26)

then the equation (4) admits at least one proper solution W p.

Proof. From Proposition 2, a solution to (18) exists, and we let again V p be the minimal one. The
sequence {V p ◦ θn} thus corresponds to the stochastic recursion of initial value V p, driven by the

random map Φp. Consider the following family of (R+)
S-valued random variables:

J = {X : X ≺ V p a.s.} .

Fix a r.v. X ∈ J and denote
{

W
p
X,n

}

, the service profile sequence of the Jp+1SW system,

starting from an initial profile X. It follows from Lemma 3 using a simple induction, that W p
X,n ≺

V p ◦θn a.s. for all n ∈ N. Therefore, for almost every sample on the event θ−nG (where G is defined
by (26)) we have that







W
p
X,n(1) = 0;

W
p
X,n(ℓ) ≤

ℓ−1∑

i=0

τ ◦ θn+i; ℓ ∈ J2, SK.

It is then easy to check that on θ−nG,

• in the vector W
p
X,n+1, the coordinate corresponding to W

p
X,n(2) vanishes and the one corre-

sponding to W
p
X,n(1) becomes

[σ ◦ θn − τ ◦ θn]+ ;

• in W
p
X,n+2, the coordinate corresponding to W

p
X,n(3) vanishes, the one corresponding to

W
p
X,n(2) becomes

[
σ ◦ θn+1 − τ ◦ θn+1

]+
, and the one corresponding to W

p
X,n(1) equals

[
σ ◦ θn − τ ◦ θn − τ ◦ θn+1

]+
;

...

...

• W
p
X,n+S−1 has at least 1 null coordinate, and its S − 1 last coordinates all are functions of

{(
σ ◦ θn+i, σ ◦ θn+i

)
, i ∈ J0, S − 2K

}
.

Consequently, {θ−nG} is a stationary sequence of renovating events of length S−1 for any sequence
{

W
p
X,n

}

with X ∈ J (see [2]). So (26) entails the existence of a solution to (4), applying Theorem

4 in [3] (or equivalently, Theorem 1 p.260 in [2] and Corollary 2.5.1 in [1]).

We conclude with the proof of Theorem 1.

Proof of Theorem 1. From the GI/GI assumption, σ is independent to
{
(σ, τ) ◦ θ−i, i ∈ N

∗
}
, so we

have that

E [σ]P [Zp > 0] = E
[
σ1l{Zp>0}

]
≥ E

[
σ1l{Y p(1)>0}

]
,
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where we used (15) in the second inequality. Therefore, (8) entails (17). On the other hand, (31)
holds true and, from Proposition 3, implies that P [V p(1) > 0]. This together with the independence
assumptions and the unboundedness of τ , clearly entails (26). So Proposition 4 applies, which
concludes the proof.

5.2 Loss systems of p servers

We now turn to the proof of Theorem 2. First observe the following pathwise bounds,

Lemma 4. For any two elements u and v of (R+)
p we have for any i ∈ J1, pK,

[

For all j ∈ Ji, pK, u(j) ≤ v(j)

]

=⇒

[

For all j ∈ Ji, pK, Hp(u)(j) ≺ Ψp(v)(j) a.s.

]

.

Proof. Fix i ∈ J1, pK and suppose that u(j) ≤ v(j) for all j ∈ Ji, pK. As Ψp is ≺-non decreasing, we
have

Hp(u)(p) ≤
[

u(p) ∨ σ − τ
]+

= Ψp(u)(p) ≤ Ψp(v)(p) a.s.

and likewise, for j ∈ Ji, p− 1K,

Hp(u)(j) ≤
[

(u(j) ∨ σ) ∧ u(j + 1)− τ
]+

= Ψp(u)(j) ≤ Ψp(v)(j) a.s..

We therefore have the following result,

Proposition 5. Let Y p be the minimal solution of (14). If we have

P [H] := P

[

{Y p(1) = 0}
⋂
(

p
⋂

ℓ=2

{

Y p(ℓ) ≤

ℓ−1∑

i=0

τ ◦ θi

})]

> 0, (27)

then there exists a unique solution Up to (6), that is such that

Up ≺ Y p a.s.. (28)

Proof. Denote for any random variable X,
{

U
p
X,n

}

the service profile sequence of the loss system

with p servers, when setting the initial value as U
p
X,0 = X a.s.. Define the family of (R+)p-valued

random variables

K = {X : X ≺ Y p a.s.} .

Fix a r.v. X ∈ K . Then Lemma 4 implies with an immediate induction that for any n ∈ N,
U

p
X,n ≺ Y p ◦ θn a.s.. Thus, for almost every sample on the event θ−nH we have that







U
p
X,n(1) = 0;

U
p
X,n(ℓ) ≤

ℓ−1∑

i=0

τ ◦ θn+i; ℓ ∈ J2, pK.

We can then show exactly as in the proof of Proposition 4 that {θ−nH} (where the event H is
defined by (27)) is a stationary sequence of renovating events of length p− 1 for any such sequence
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{

U
p
X,n

}

. In view of (27), Theorem 4 of [3] guarantees once again the existence of a solution U to

(6).

We now prove that
U ≺ Y p a.s. for any solutions U to (6). (29)

Fix a solution U . Let us first prove that

P [C] := P
[
U(p) ≤ σ1l{U(1)=0}

]
> 0. (30)

Suppose that U(p) > σ1l{U(1)=0} a.s.. In particular, we have U(p) > 0 a.s. and in turn by θ-
invariance, U(p) ◦ θ > 0 a.s.. From (5), we thus have

U(p) ◦ θ =
[
U(p) ∨

(
σ1l{U(1)=0}

)
− τ
]+

= U(p)− τ

and hence E [U(p) ◦ θ − U(p)] < 0, a contradiction to the Ergodic lemma. Hence (30).

On another hand, let us define the events

Bi :=
{

U(j) ≤ Y p(j) for any j ∈ Ji, pK
}

; i ∈ J1, pK.

From Lemma 4 we have for any i, almost surely on Bi,

U(j) ◦ θ = Hp(U)(j) ≤ Ψp(Y p)(j) = Y p(j) ◦ θ for any j ∈ Ji, pK,

in other words the events Bi, i ∈ J1, pK, all are θ-contracting.

Now, on C, we have that

U(p) ◦ θ =
[
σ1l{u(1)=0} − τ

]+
≤ [σ − τ ]+ ≤ [σ ∨ Y p(p)− τ ]+ = Y p(p) ◦ θ.

This means that C ⊂ θ−1Bp and therefore

P [Bp] = P
[
θ−1Bp

]
≥ P [C] > 0.

Consequently, the θ-contracting event Bp is almost sure.

If p ≥ 2, suppose that Bi is almost sure for some i ∈ J2, pK. Then, for almost every sample on C ∩Bi

we have that

U(i− 1) ◦ θ =
[(
U(i− 1) ∨

(
σ1l{U(1)=0}

))
∧ U(i)− τ

]+

≤
[(
σ1l{U(1)=0}

)
∧ U(i)− τ

]+

≤
[(
σ1l{U(1)=0}

)
∧ Y p(i) − τ

]+
≤
[(
Y p(i− 1) ∨ σ1l{U(1)=0}

)
∧ Y p(i) − τ

]+
= Y p(i− 1) ◦ θ.

Therefore, (C ∩ Bi) ⊂ θ−1Bi−1, which entails that

P [Bi−1] = P
[
θ−1Bi−1

]
≥ P [C ∩ Bi] > 0,

so Bi−1 is almost sure. We conclude by induction on i that the events Bi, i ∈ J2, pK are all almost
sure, which concludes the proof of (29).

An immediate consequence of (29) is the uniqueness of the solution Up to (6): indeed, (29) readily
entails that {θ−nH} is a stationary sequence of renovating events of length p− 1 for any sequence
{U ◦ θn} , with U a solution to (6). Remark 2.5.3 of [1] then shows the uniqueness of the solution.
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Proof of Theorem 2. From (15) and (13), we have that Y p(1) < Zp a.s. and thus (9) entails that

P [Y p(1) = 0] > 0. (31)

As in the proof of Theorem 1, this together with the GI/GI assumption and the unboundedness of
τ , entails (27). We therefore can apply Proposition 5.
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