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*Institute of Mathematics, Czech Academy of Sciences, Žižkova 22, 616 62 Brno, Czech Republic,
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Abstract

In decentralized supervisory control, several local supervisors cooperate to accomplish a common goal (specifica-
tion). Controllability and coobservability are the key conditions to achieve a specification in the controlled system. We
construct a controllable and coobservable sublanguage of the specification by using additional communications between
supervisors. Namely, we extend observable events of local supervisors via communication and apply a fully decentralized
computation of local supervisors. Coobservability is then guaranteed by construction. Sufficient conditions to achieve
the centralized optimal solution are discussed. Our approach can be used for both prefix-closed and non-prefix-closed
specifications.

Index terms— Discrete-event systems Decentralized supervisory control Coobservability Separability Communica-
tion

1 Introduction
Supervisory control theory of discrete-event systems (DES) modeled by finite automata was introduced by Ramadge and
Wonham [31]. It aims to guarantee that the control specification consisting of safety and/or nonblockingness is satisfied
in the controlled system. Supervisory control is realized by a supervisor that runs in parallel with the system and imposes
the specification by disabling some of the controllable events in a feedback manner.

Decentralized supervisory control was developed by Rudie and Wonham [39]. It is based on the idea to distribute the
actuator and sensor capabilities among several local supervisors. Each supervisor issues a control decision based on its
own observation of the system. The global control action is then given by a fusion rule on the local control actions.

To give an example, consider a traffic system of a region with many elements (crossroads, tunnels), traffic lights and
information boards. One of the goals may be to make the traffic fluent and prevent traffic jams in case of unexpected
circumstances. The elements are observed (automatically or by humans) to provide information about the situation.
One element may be observed by several supervisors corresponding to, e.g., different directions. The overall system is
modeled as a single system including all dependences between the elements. The control decision is made based on all
observations. Thus, although there are local supervisors that do not observe any problem, they need to react based on the
observations of other supervisors, for instance, to close all the streets accessing a blocked tunnel.

There is an important motivation for decentralized supervisory control of DES that do not a priori have a modular
structure. It is well known that the abstraction of timed automata into region (zone) automata does not preserve the
modular structure. Similarly, it is to be expected that the discretization of a hybrid system does not preserve its modular
structure. Then the original structure of a hybrid system is lost and we have to face the decentralized supervisory control
problem instead of the modular supervisory control problem.

There are many different control policies based on two elementary ones: conjunctive and permissive (C & P) and dis-
junctive and antipermissive (D & A). For any decentralized control architecture, a corresponding notion of coobservability
was proposed, which together with controllability form the necessary and sufficient conditions to achieve a specification
by the controlled system. Nowadays, there are advanced architectures, such as an architecture with conditional deci-
sion (inferencing) [32, 55] or multi-level inferencing [23, 44]. A general approach consisting in several decentralized
supervisory control architectures running in parallel was proposed by Chakib and Khoumsi [6].

Another approach to ensure coobservability is to extend locally observable events via communication among local
supervisors. There exist decentralized control problems that cannot be solved without communication. Decentralized
control with communicating supervisors, where an occurrence of transitions visible to one supervisor can be communi-
cated to other supervisors, has been studied [1, 33, 37].

1

ar
X

iv
:1

51
2.

03
26

7v
3 

 [
m

at
h.

O
C

] 
 2

5 
Ja

n 
20

17



So far, almost all results available in the literature are only existential. There exist a few papers providing constructive
results to compute a controllable and coobservable sublanguage of a specification, but the problem is in general compu-
tationally difficult. The existence of local supervisors enforcing the safety specification is decidable if nonblockingness
is not required (e.g., for prefix-closed languages). However, if the marked language of the controlled system has to
be included in the specification so that the controlled system is nonblocking, the existence of such local supervisors is
undecidable [46, 47].

We focus on the computation of a controllable and coobservable sublanguage by using additional communications
among the supervisors. Our study is restricted to the original (C & P) architecture [39, 54] and motivated by the re-
lationship between decentralized and modular supervisory control and their key concepts: C & P coobservability and
separability. This relationship is investigated in Komenda et al. [12], where the decentralized framework is plugged into
the modular framework. The approach is based on the concurrent (separable) over-approximation of the plant. In decen-
tralized control, there is no assumption on the structure of the plant. Therefore, both the system and the specification are
replaced with their infimal separable superlanguages. However, in the likely case the specification fails to be separable,
one only computes a solution for this new specification, which often fails to be included in the specification. Otherwise
stated, it is assumed that the constructed sublanguage is included in the specification [12].

This is the point, where our approach comes into the picture. We overcome the problem of an inseparable specification
by making it separable via communication (using the notion of conditional decomposability [15]). The approach of
Komenda et al. [12] further requires mutual controllability to ensure coobservability of the separable over-approximation
of the specification. This can be omitted in our approach, although we show that it is useful to ensure the centralized
optimality.

Decomposable over-approximations were also considered by Jiang and Kumar [10], where decomposability of the
specification is an additional assumption, whereas in our approach, it is enforced by the construction via additional com-
munications.

In this paper, we construct a controllable and coobservable sublanguage of a specification with respect to possibly
extended local observations (enriched by communication). The idea is different from the computation of purely coob-
servable sublanguages in the literature. First, we extend the set of locally observable events via communication of events
observable by other supervisors. To compute such an extension, we use the technique for conditional decomposabil-
ity [15]. Then we use the extended alphabets to compute the local supervisors in a fully decentralized way. We show that
our construction guarantees coobservability (Theorem 7) as soon as the local supervisors are nonconflicting (in particular
if they are prefix-closed). We then state two sufficient conditions under which the solution coincides with the centralized
optimal solution. One approach uses mutual controllability (Theorem 10), which is a condition considering the structure
of the plant, and the other the observer and LCC conditions (Theorem 11), which rather considers the structure of the
supervisors. Since our approach is not restricted to prefix-closed languages, we further show how to handle the case of
conflicting supervisors (Theorem 12). The complexity of our approach is briefly discussed in Section 5.5. We further show
that separability is PSPACE-complete (Theorem 2), which generalizes a result on the complexity of decomposability.

Although our approach is different from the existing approaches, the rough idea is analogous to that used for decen-
tralized synthesis without communication [21, 43]. The approach of Kozák and Wonham [21] is similar to ours in that
it computes fully decentralized solutions that guarantee coobservability. It essentially projects the centralized supervi-
sor, whereas we compute local supervisors and coobservability is guaranteed by construction (from separability that is
granted by distributed computation). The main difference is that we do not project the centralized supervisor, but rather
the plant and the specification. Also, the condition of Takai [43] under which the fully decentralized supervisors achieve
the centralized optimal solution (the centralized optimal supervisor must be observable with respect to all locally observ-
able alphabets) is different from our condition that relies on structural properties of the plant: such as observer and local
control consistency or mutual controllability and observability of projections of the plant.

Our approach is also related to the topic on sensor selection [11, 34, 48, 49], where there is a maximal observable
event set and the sensors can be turned on and off. In our approach, we have static observations, rather than dynamic, and
communicate them among supervisors, where needed. Our work can be extended to dynamic observations in the future.

This work is an extended version of the conference paper [13]. We extend our approach to non-prefixed-closed
languages and to partial observations, compare it to the centralized optimal solution, and include a discussion on the
complexity of related problems.

2 Preliminaries
We assume that the reader is familiar with decentralized supervisory control of discrete-event systems [5, 52]. Let A be
a finite nonempty set (an alphabet), and let A∗ denote the set of all finite words over A; the empty word is denoted by ε .
A language over A is a subset of A∗. The prefix closure of a language L over A is the set L = {w ∈ A∗ | there exists u ∈
A∗ such that wu ∈ L}. A language L is prefix-closed if L = L.

A generator is a quintuple G = (Q,A, f ,q0,Qm), where Q is a finite set of states, A is an alphabet (of events), f : Q×
A→ Q is a partial transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is a set of marked states. The transition
function f can be extended to the domain Q×A∗ in the usual way. The language generated by G is the set L(G) = {s ∈
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A∗ | f (q0,s) ∈ Q} and the language marked by G is the set Lm(G) = {s ∈ A∗ | f (q0,s) ∈ Qm}. The paper is restricted to
regular languages, that is, languages marked by a generator.

A projection Po : A∗→ A∗o is a morphism defined by Po(a) = ε , if a ∈ A\Ao, and Po(a) = a, if a ∈ Ao. It is extended
(as a morphism for concatenation) from events to words by induction. The inverse image of Po is defined as P−1

o (a) =
{s ∈ A∗ | Po(s) = a}. These definitions can naturally be extended to languages. For two alphabets Ax,Ay ⊆ A, we use the
notation Px

y to denote a projection from A∗x to A∗y and we write simply Py if Ax = A.
A synchronous product of languages Li ⊆ A∗i , for i = 1, . . . ,n, is defined as

fn
i=1 Li =

⋂n
i=1 P−1

i (Li)⊆ A∗ = (
⋃n

i=1 Ai)
∗,

where Pi : A∗→ A∗i is a projection. Languages Li are synchronously nonconflicting if ‖n
i=1Li = ‖n

i=1Li.
Let L be a prefix-closed language over an alphabet A. A language K ⊆ L is observable with respect to L and projection

Po : A∗→ A∗o if, for all s ∈ K and a ∈ Ac, sa /∈ K and sa ∈ L implies that P−1
o Po(s){a}∩K = /0. Language K is normal with

respect to L and projection Po if K = P−1
o Po(K)∩L.

2.1 Decentralized Supervisory Control
A controlled generator over an alphabet A is a structure (G,(Ac,i)

n
i=1,(Ao,i)

n
i=1), where G is a generator over A, Ac,i ⊆ A

are sets of locally controllable events, and Ao,i ⊆ A are sets of locally observable events. Let Ac =
⋃n

i=1 Ac,i denote the
set of controllable events, Ao =

⋃n
i=1 Ao,i the set of observable events, Auc = A \Ac the set of uncontrollable events, and

Auo = A\Ao the set of unobservable events. Projections to locally observable events Ao,i are denoted by Po,i : A∗→ A∗o,i.
Let Γi = {γ ⊆ A | γ ⊇ (A\Ac,i)} be a set of local control patterns. A supervisor Si is a mapping Si : Po,i(L(G))→ Γi,

where Si(s) is the set of locally enabled events if Si observes s ∈ A∗o,i. The global control law S is the conjunction of
local supervisors Si given by S(w) =

⋂n
i=1 Si(Po,i(w)) for w ∈ A∗. The closed-loop system is the smallest language L(S/G)

such that ε ∈ L(S/G) and if s ∈ L(S/G), sa ∈ L(G) and a ∈ S(s), then sa ∈ L(S/G). Control objectives of decentralized
control are defined using a specification language K. Let Lm(S/G) = L(S/G)∩K. If Lm(S/G) = L(S/G), the closed-loop
system is called nonblocking. The goal of decentralized control is to find supervisors (Si)

n
i=1 such that Lm(S/G) = K and

Lm(S/G) = K.
Necessary and sufficient conditions to achieve a specification by a joint action of local supervisors are controllability

and coobservability [39]. Let L be a prefix-closed language over A. A language K ⊆ L is controllable with respect to L
and the set of uncontrollable events Auc if KAuc∩L⊆ K. A language K ⊆ L is coobservable with respect to L and the sets
of locally observable events (Ao,i)

n
i=1 if for all s ∈ K, a ∈ Ac, and sa ∈ L\K, there exists i ∈ {1,2, . . . ,n} such that a ∈ Ac,i

and (P−1
o,i (Po,i(s)){a}∩K = /0. Intuitively, if, after a word s from the specification, the extension by an event a is illegal

(it does not exist in the specification but exists in the plant), then there must exist at least one local supervisor Si that can
issue the decision “disable the event a”.

The control law of local supervisors associated to the C & P architecture is called permissive, since the default action is
to enable an event whenever a supervisor has an ambiguity what to do with it. Specifically, the control law of supervisor Si
on s is defined as Si(s) = (A\Ac,i)∪{a ∈ Ac,i | there exists s′ ∈ K with Po,i(s′) = Po,i(s) and s′a ∈ K}. With the permissive
local policy, we always achieve all words in the specification. The concern is then safety, expressed by coobservability.

Let X ⊆ A be an alphabet. In the rest of the paper, we use the convention to define the set of uncontrollable events of
X as Xuc = X ∩Auc. Similarly, we define the set of controllable events of X as Xc = X ∩Ac, the set of observable events of
X as Xo = X ∩Ao, and the set of unobservable events of X as Xuo = X ∩Auo.

3 Main Idea of our Approach
We now present the main idea of our approach to compute a controllable and coobservable sublanguage of a specification
language using communication and results of modular supervisory control.

Let (G,(Ac,i)
n
i=1,(Ao,i)

n
i=1) be a controlled generator over an alphabet A. For simplicity, we denote L = L(G). Let

K ⊆ L be a specification language over A. If the local supervisors do not observe all events of A, that is, Auo is nonempty,
we consider an arbitrary decomposition of Auo into (not necessarily disjoint) local sets Auo,i, such that the union of all
Auo,i results in Auo. The alphabet Bi of supervisor Si contains all events from Ao,i ∪Auo,i and may be further extended
with other events via communication. The union of all the alphabets Bi results in A. In Section 4, we suggest a procedure
how to obtain such a decomposition of Auo. Namely, for every alphabet Ao,i, we make use of the procedure RCD defined
on page 6 below that computes an extension alphabet Σi ⊆ A. This extension can be decomposed into observable and
unobservable events Σo,i and Σuo,i with respect to global observable and unobservable alphabets Ao and Auo, respectively.
The alphabet Bi of supervisor Si is then the union of alphabets Ao,i, Σo,i, and Σuo,i. The events of the alphabet Ao,i ∪Σo,i
are the events observed by supervisor Si extended with communications.

The idea of our approach is to compute local languages (supervisors) Ri over the alphabets Bi such that their syn-
chronous product R = ‖n

i=1Ri is a sublanguage of K controllable and coobservable with respect to L. Although there are
well-known conditions on local languages in modular supervisory control that ensure that their synchronous product is
controllable, cf. Lemma 14 in the appendix, conditions on local languages that ensure coobservability of their synchronous
product are not known. We now identify two such sufficient conditions in Theorem 1.
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Theorem 1. Let L be a prefixed-closed language over B =
⋃n

i=1 Bi and assume that Bo,i∩Bc ⊆ Bc,i, for i = 1, . . . ,n. Let
M ⊆ L be a language such that M = ‖n

i=1Mi, where Mi is a language over Bi. If

1. either Mi is normal with respect to Pi(L) and Pi
o,i, for all i = 1, . . . ,n,

2. or Bc ⊆ Bo and Mi is observable with respect to Pi(L) and Pi
o,i, for all i = 1, . . . ,n,

then M is coobservable with respect to L and (Bo,i)
n
i=1.

Proof. For the sake of contradiction, assume that language M is not coobservable with respect to L and (Bo,i)
n
i=1. Then

there exist s ∈M and a ∈ Bc such that sa ∈ L\M and, for each i ∈ {1,2, . . . ,n}, either a /∈ Bc,i or P−1
o,i Po,i(s){a}∩M 6= /0.

Let t = Pi(s) ∈ Pi(M)⊆Mi. Then sa ∈ L implies that tPi(a) ∈ Pi(L). We show below that sa ∈ P−1
i (Mi). It then completes

the proof, since sa ∈⋂n
i=1 P−1

i (Mi) = M, which is a contradiction with sa ∈ L\M.
If a ∈ Bc,i, then there exists si such that sia ∈ M and Po,i(si) = Po,i(s). Let ti = Pi(si) ∈ Pi(M) ⊆ Mi. Then sia ∈ M

implies that tia ∈ Pi(M) ⊆Mi. Moreover, Pi
o,i(t) = Pi

o,i(Pi(s)) = Po,i(s) = Po,i(si) = Pi
o,i(Pi(si)) = Pi

o,i(ti). Since tia ∈Mi

and tia ∈ (Pi
o,i)
−1Pi

o,i(t){a}, observability of Mi with respect to Pi(L) and Pi
o,i implies that ta = Pi(sa) ∈ Mi, that is,

sa ∈ P−1
i (Mi).

If a /∈ Bc,i, then a 6∈ Bo,i ∩Bc. Since a ∈ Bc, we have that a 6∈ Bo,i. If a 6∈ Buo,i, then a 6∈ Bi. Hence Pi(a) = ε , and
Pi(sa) = Pi(s)∈ Pi(M)⊆Mi implies that sa∈ P−1

i (Mi). If a∈ Buo,i, then normality of Mi with respect to Pi(L) implies that
Mi = (Pi

o,i)
−1Pi

o,i(Mi)∩Pi(L). Since t ∈Mi and Pi
o,i(a) = ε , we have that ta ∈ (Pi

o,i)
−1Pi

o,i(Mi). Then ta ∈ Pi(L) implies
that ta ∈Mi, and ta = Pi(sa) then gives that sa ∈ P−1

i (Mi). This completes the proof for Mi normal.
If Mi is not normal, we have that Bc ⊆ Bo and Mi is observable. Then a ∈ Bc implies that a 6∈ Buo, hence the only

possible case is a /∈ Buo,i, which we have already shown above.

The way we compute the languages Ri is as follows. We decompose specification K in such a way that K = ‖n
i=1Ki,

where Ki are languages over Bi, and over-approximate L by the synchronous product of its projections Pi(L) on alphabets
Bi. The condition required on K does not always hold and is equivalent to the notion of separability defined below. How
to construct the alphabets Bi so that K satisfies the separability condition is discussed in Section 4. The languages Ri
are then computed locally as sublanguages or superlanguages of Ki that satisfy the sufficient conditions (Lemma 14 and
Theorem 1) that make their synchronous product R controllable, coobservable and included in K. These computations are
discussed in Section 5.

In Theorem 1, we assume that if a supervisor observes a controllable event, it can also control it; that is, Bo,i ∩Bc ⊆
Bc,i. This is a new condition that deserves a discussion. Rudie and Wonham [39] showed that under the assumption
that a supervisor can always observe the events it can control, that is, Bc,i ⊆ Bo,i, decomposability (a generalization of
separability) is equivalent to coobservability. Our condition Bo,i∩Bc ⊆ Bc,i is weaker in the sense that it does not require
that Bc,i is included in Bo,i. Similarly, the assumption Bc ⊆ Bo in case 2 of Theorem 1 does not mean that Bc,i is included
in Bo,i. It only requires that every controllable event is observed by one of the supervisors.

To justify our assumption, let a be a controllable event that is observable by a supervisor Si. If a is not physically
controllable by Si, we can still make use of the advantage that Si observes a. Namely, Si may provide information about a
as if a was controllable for it. The fusion rule (global supervisor S) then decides which events need to be disabled in the
current situation, and communicates this decision back to the supervisors. If Si requires that a needs to be disabled, the
global supervisor will require to disable a. Since a is controllable, there must be a local supervisor S j that can physically
control a. Then supervisor S j will take care of disabling a. Another view is that if Si finds out that a needs to be disabled,
it communicates this observation directly to S j, which takes the corresponding actions.

4 Separability and Communication
In this section, we define the notion of separability and suggest a procedure to construct the alphabets Bi so that K is
separable with respect to (Bi)

n
i=1 as required in our approach.

A conceptually simpler condition than coobservability is known in the literature as decomposability [38]. A language
K over A is decomposable with respect to alphabets (Ai)

n
i=1 and L if K = (

⋂n
i=1 P−1

i Pi(K))∩L, where Pi is the projection
from A∗ to A∗i . The inclusion K ⊆ ⋂n

i=1 P−1
i Pi(K)∩ L holds true whenever K ⊆ L. A special case of decomposability

for L = A∗ is known as separability [50]. For A =
⋃n

i=1 Ai, we can replace intersection in the definition by parallel
composition. Namely, language K is separable with respect to alphabets (Ai)

n
i=1 if K = ‖n

i=1Pi(K). As already pointed
out, separability of K with respect to alphabets (Ai)

n
i=1 is equivalent to the existence of languages Ki over Ai such that the

synchronous product of Ki results in K. Then Pi(K) is included in Ki, hence the languages Pi(K) are the minimal (infimal)
languages (with respect to inclusion) whose synchronous product results in K.

From the computational point of view, the first question is the complexity of deciding whether language K is separable
with respect to alphabets (Ai)

n
i=1. We show that the problem is PSPACE-complete. A decision problem is PSPACE-

complete if it can be solved in polynomial space with respect to the size of the input and if every problem that can be
solved in polynomial space can be reduced to it in polynomial time. A proof of the following result can be found in the
appendix.
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Theorem 2. The following problem is PSPACE-complete.

INPUT: Alphabets A1,A2, . . . ,An and a generator H over
⋃n

i=1 Ai.

OUTPUT: Yes if and only if Lm(H) is separable with respect to (Ai)
n
i=1.

The size of the input is the number of states and transitions of the generator H and the size of the n alphabets A1, . . . ,An.
The verification can be done in polynomial time by a direct computation if the number of alphabets is restricted by
a constant. Therefore, the unrestricted number of alphabets (supervisors) is what makes the problem computationally
difficult.

Separability is a special case of decomposability where L is universal. As a consequence, decomposability of K with
respect to (Ai)

n
i=1 and L is PSPACE-complete even if L = A∗. This generalizes a result that can be derived from the

literature. Namely, coobservability of K with respect to (Ai)
n
i=1 and L is known to be PSPACE-complete [36]. Under

some assumptions [39, Proposition 4.3], decomposability is equivalent to coobservability. Since the reduction by Rohloff
et al. [36] satisfies these assumptions, decomposability of K with respect to (Ai)

n
i=1 and L is PSPACE-complete. In those

proofs, however, L is different from A∗, hence our theorem generalizes this result.
Another question, which we have to face, is what to do if language K is not separable with respect to (Ai)

n
i=1. In this

case, it would be natural to take a maximal (with respect to inclusion) sublanguage of K that is separable with respect to
(Ai)

n
i=1. Unfortunately, Lin et al. [27] have shown that to find such a maximal sublanguage is not algorithmically possible.
To overcome these issues – high complexity and undecidability – we use the notion of conditional decomposabil-

ity [15]. A language K is conditionally decomposable with respect to alphabets (Ai)
n
i=1 and an alphabet Σ if Σ contains

all shared events, that is,
⋃

i 6= j(Ai ∩A j) ⊆ Σ ⊆ ⋃n
i=1 Ai, and K is separable with respect to alphabets (Ai ∪Σ)n

i=1, that is,
K = ‖n

i=1Pi+Σ(K), where Pi+Σ denotes the projection from A∗ to (Ai∪Σ)∗. Conditional decomposability thus requires to
find an alphabet Σ containing all shared events such that K is separable with respect to (Ai∪Σ)n

i=1.
Compared to separability, there are two advantages of conditional decomposability. First, every language can be made

conditionally decomposable by finding a convenient alphabet Σ. Such an alphabet always exists; indeed, one could take
Σ =

⋃n
i=1 Ai, but the aim is to find a reasonably small alphabet. This advantage of conditional decomposability helps us

overcome the undecidable issue of finding a maximal nonempty separable sublanguage. The second advantage is a lower
complexity of checking conditional decomposability. To check whether K is conditionally decomposable with respect to
(Ai)

n
i=1 and Σ can be done in polynomial time, compared to PSPACE for separability. What allows this efficiency is the

assumption that Σ contains all shared events. The following theorem is a generalization of a result obtained for pairwise
disjoint alphabets by Willner and Heymann [50].

Theorem 3 ([15]). Let K be a language represented as a generator, and let (Ai)
n
i=1 and Σ be alphabets. The problem to

decide whether K is conditionally decomposable with respect to (Ai)
n
i=1 and Σ can be solved in polynomial time.

Recall that our idea to compute the controllable and coobservable sublanguage involves an over-approximation of
the plant language L by a new modular plant ‖n

i=1Pi+Σ(L). We show in the following lemma that it is better to consider
the projections Pi+Σ(L) rather than Pi(L) used in Komenda et al. [12] because the larger the extension Σ, the better the
over-approximation of L.

Lemma 4. Let (Ai)
n
i=1 be alphabets, and let L be a language over the alphabet A =

⋃n
i=1 Ai. Let Σ ⊆ A be an alphabet,

and let Pi : A∗→ A∗i and Pi+Σ : A∗→ (Ai∪Σ)∗ be projections. Then L⊆ ‖n
i=1Pi+Σ(L)⊆ ‖n

i=1Pi(L).

Proof. The first inclusion holds for any projection. To prove the other inclusion, notice that it holds that Pi+Σ(L) ⊆
(Pi+Σ

i )−1(Pi+Σ

i (Pi+Σ(L))) = (Pi+Σ

i )−1(Pi(L)), where Pi+Σ

i is the projection Pi restricted to the domain (Ai ∪Σ)∗. Then
P−1

i+Σ
(Pi+Σ(L))⊆ P−1

i+Σ
(Pi+Σ

i )−1(Pi(L)) = P−1
i Pi(L), which completes the proof.

It may seem that the largest Σ is the best choice. However, a larger Σ means more communication or more sensors
to observe the system (the local supervisors need to observe more). On the other hand, to compute a minimal extension
Σ with respect to the cardinality is an NP-hard problem [17]. Nevertheless, there is an algorithm to find an acceptable
extension in polynomial time [15]. In general, to find a suitable extension in a reasonable time is an interesting research
topic. The choice of Σ can be influenced by several factors, such as the price of sensors, the (im)possibility to observe an
event (by a specific local supervisor) etc.

Even if we consider the minimal extension Σ, it may happen that too many events are forced to be communicated
between all supervisors though it is not needed. We demonstrate this in the following example. It shows that it is more
convenient to search for some local alphabets so that the specification is separable with respect to them.

Example 1. Consider the language K over A = {a,b,c,d,e, f}, whose generator is depicted in Fig. 1, and the alphabets
Ao,1 = {a,e}, Ao,2 = {b,e}, Ao,3 = {c, f}, and Ao,4 = {d, f}. To make K conditionally decomposable with respect to
(Ao,i)

4
i=1 and Σ, the extension Σ must contain at least all shared events, that is, e and f ; actually, Σ= {e, f ,a,c} is a minimal

extension making K conditionally decomposable with respect to (Ao,i)
4
i=1 and Σ. However, the reader may notice that a

needs to be communicated only between the supervisors S1 and S2, whereas c needs to be communicated only between the
supervisors S3 and S4. Specifically, K is conditionally decomposable with respect to alphabets Ao,1∪Ao,2, Ao,3∪Ao,4 and
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Figure 1: Generator for language K of Example 1

Σall = { f}; that is, K = P{a,b,e, f}(K) ‖ P{c,d, f}(K). Having this, notice that language P{a,b,e, f}(K) = {abe f ,a f b, f ab} is
conditionally decomposable with respect to Ao,1∪Σall , Ao,2∪Σall and Σ1,2 = {a,e, f}, and language P{c,d, f}(K) = {cd f}
is conditionally decomposable with respect to Ao,3 ∪ Σall , Ao,4 ∪ Σall and Σ3,4 = {c, f}. This means that a and c are
communicated only locally and only f is communicated globally. In other words, K is separable with respect to alphabets
{a,e, f}, {a,b,e, f}, {c, f}, and {c,d, f}.

The reader can compare this with the purely conditional decomposable case computing the single extension Σ =
{e, f ,a,c} making the language K separable with respect to (Ao,i ∪Σ)n

i=1, that is, with respect to alphabets {a,c,e, f},
{a,b,c,e, f}, {a,c,e, f}, and {a,c,d,e, f}.

In Example 1 we need to check separability of K with respect to alphabets Ao,1 ∪Ao,2 ∪Σall = {a,b,e, f} and Ao,3 ∪
Ao,4∪Σall = {c,d, f}. According to Theorem 3, this can be done in polynomial time. Moreover, the alphabets Σall , Σ1,2
and Σ3,4 are computed in polynomial time. This suggests the following refinement of the conditional decomposability
procedure.

Procedure: REFINED CONDITIONAL DECOMPOSABILITY (RCD)
Let (Ai)

n
i=1 be alphabets such that Ai 6= A j for i 6= j, and let K be a language over

⋃n
i=1 Ai. We define the equivalence

relation ∼ as the minimal equivalence relation such that Ai ∼ A j if Ai and A j are not disjoint (Ai∩A j 6= /0). The following
steps of the procedure are illustrated in Example 2 below.

1. Let Ai/∼ = {A j | A j ∼ Ai,1 ≤ j ≤ n} be the equivalence class of alphabets equivalent to Ai. Let Ci =
⋃

A j∈Ai/∼ A j

be the set of all events that appear in Ai/∼. Let {Ck1 , . . . ,Ckm}= {C1, . . . ,Cn}, that is, we remove duplicates, hence
we have Cki ∩Ck j = /0 for ki 6= k j.

2. We first compute a global extension Σall of events shared by the sets (Cki)
m
i=1, which makes K conditionally decom-

posable with respect to (Cki)
m
i=1 and Σall . This gives

K = ‖m
i=1PCki∪Σall (K) .

3. Then, for each local part Aki/∼, i = 1,2, . . . ,m, we make the language PCki∪Σall (K) conditionally decomposable with
respect to Dki = {A j ∪Σall | A j ∈ Aki/∼} and Σki . The set notation is used here to eliminate duplicates. If Dki is a
singleton, we set Σki = Σall . This then gives that

PCki∪Σall (K) = ‖C∈Dki
PC∪Σki

(K) .

Notice that if C,C′ ∈ Dki , then Σall ⊆C∩C′, which implies that Σall ⊆ Σki .

4. Finally, for every A j ∈ Aki/∼, we set Σ j = Σki .

We now illustrate this procedure on a previous example.

Example 2. Consider Example 1. In this case, we have that Ao,1 ∼ Ao,2 and Ao,3 ∼ Ao,4. Therefore, A1/∼ = A2/∼ =
{Ao,1,Ao,2} and A3/∼ = A4/∼ = {Ao,3,Ao,4}. It further gives that C1 =C2 = Ao,1∪Ao,2 and C3 =C4 = Ao,3∪Ao,4. Then
we compute Σall = { f} such that K is conditionally decomposable with respect to C1, C3 and Σall . In other words, K is sep-
arable with respect to C1∪Σall and C3∪Σall . The projections are PC1∪Σall : A∗→{a,b,e, f}∗ and PC3∪Σall : A∗→{c,d, f}∗.
Then we compute Σ1 = {a,e, f} such that language PC1∪Σall (K) = {abe f ,a f b, f ab} is conditionally decomposable with
respect to Ao,1 ∪Σall , Ao,2 ∪Σall and Σ1, and Σ3 = {c, f} such that language PC3∪Σall (K) = {cd f} is conditionally de-
composable with respect to Ao,3 ∪Σall , Ao,4 ∪Σall and Σ3. Finally, we set Σ2 = Σ1 and Σ4 = Σ3. Language K is then
separable with respect to (Ao,i∪Σi)

4
i=1, that is, with respect to alphabets B1 = {a,e, f}, B2 = {a,b,e, f}, B3 = {c, f}, and

B4 = {c,d, f}.
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We now show that the procedure is correct.

Theorem 5. Let (Ai)
n
i=1 be alphabets such that Ai 6= A j for i 6= j, and let K be a language over

⋃n
i=1 Ai. Let (Σi)

n
i=1 be the

extensions computed by procedure RCD. Then K is separable with respect to (Ai∪Σi)
n
i=1.

Proof. Let {Ck1 , . . . ,Ckm} = {C1, . . . ,Cn}. Then Cki ∩Ck j = /0, for ki 6= k j, since Cki and Ck j contain events of different
classes. After the computation of Σall , K = ‖m

i=1PCki∪Σall (K). Then, for each Dki , i = 1, . . . ,m, we compute Σki such
that PCki∪Σall (K) = ‖C∈Dki

PC∪Σki
(K) = ‖A j∈Aki/∼

PA j∪Σall∪Σ j(K), since Σ j = Σki and the synchronous product operation is
idempotent. Together, we obtain that K = ‖m

i=1‖A j∈Aki/∼
PA j∪Σall∪Σ j(K) = ‖n

i=1PAi∪Σall∪Σi(K). Finally, since Σall ⊆ Σi, for
all i, K is separable with respect to (Ai∪Σi)

n
i=1.

The procedure significantly depends on the computation and verification of conditional decomposability, which relies
on the assumption that all shared events of the alphabets under (local) considerations are always included in Σall (resp.
Σi). This then allows us to use Theorem 3 to check the property in polynomial time.

5 Computation of Coobservable Sublanguages
In this section, we discuss how to compute the languages Ri locally as sublanguages or superlanguages of Ki so that they
satisfy the sufficient conditions that make their synchronous product controllable, coobservable and included in K.

Consider the settings of decentralized control, and let (Σi)
n
i=1 be extensions of local alphabets (Ao,i)

n
i=1 computed by

the procedure RCD described in Section 4, such that the specification K is separable with respect to (Ao,i ∪Σi)
n
i=1. We

now apply results of modular control, where the status of an event is global. Namely, all shared events have the same
status in all components where they appear. This is not in general the case in decentralized control. However, since every
shared event appears in at least one Σi, the choice of Σuo,i then ensures that the status of shared observable events is the
same in all components where they appear. Recall that, for controllable events, we assume that if a supervisor observes
a controllable event, then it can also control it. Formally, we assume that Ao,i∩Ac ⊆ Ac,i, which must also hold after the
extension, that is, (Ao,i∪Σo,i)∩Ac ⊆ (Ac,i∪Σc,i), for i = 1,2, . . . ,n. Therefore, we adapt the controllable status of events,
if needed, to ensure this condition.

Before we proceed, we summarize our assumptions and notation as Assumption 6. It allows us to keep the rest of the
paper more concise by referring to Assumption 6 rather than repeating the individual assumptions in the statements of
theorems that follow.

Assumption 6. Let (G,(Ac,i)
n
i=1,(Ao,i)

n
i=1) be a controlled generator over an alphabet A. Let L = L(G), and let K ⊆ L be

a specification language over A. Let (Σi)
n
i=1 be extensions of local alphabets (Ao,i)

n
i=1 computed by the procedure RCD,

such that language K is separable with respect to alphabets (Ao,i ∪Σi)
n
i=1, where the union of alphabets Ao,i ∪Σi results

in A, that is, A =
⋃n

i=1(Ao,i∪Σi).
We further assume that if a supervisor observes a controllable event, then it can also control it; namely, that (Ao,i ∪

Σo,i)∩Ac ⊆ (Ac,i∪Σc,i), where Σo,i = Σi∩Ao are the controllable events of Σ and Σuo,i = Σi \Σo,i are the uncontrollable
events of Σ.

For i = 1,2, . . . ,n, let Pi+Σi denote the projection from A∗ to (Ao,i∪Σi)
∗. Let Ri be languages that are controllable with

respect to projection Pi+Σi(L) of the plant language L to alphabet Ao,i∪Σi and locally uncontrollable events (Ao,i∪Σi)uc =
(Ao,i∪Σi)∩Auc such that their synchronous product R = ‖n

i=1Ri is included in K. Furthermore, we assume that Ri are

1. either normal with respect to Pi+Σi(L) and Ao,i∪Σo,i,

2. or observable with respect to Pi+Σi(L) and Ao,i∪Σo,i, and all controllable events are observable (Ac ⊆ Ao).

Notice that normality implies observability [5], hence every local language Ri is observable. However, if one of the
local languages Ri is observable and not normal, then we require that all controllable events are observable.

5.1 Main Result
We now state our main result showing how to use our framework to compute a controllable and coobservable sublanguage,
and illustrate it on an example.

An important feature of our computation is that we automatically obtain a coobservable sublanguage.

Theorem 7. Consider Assumption 6. If the languages Ri are synchronously nonconflicting (in particular, if they are
prefix-closed), then R = ‖n

i=1Ri is a sublanguage of K controllable with respect to L and Auc, and coobservable with
respect to L and (Ao,i∪Σo,i)

n
i=1.

Proof. By definition, we have that R = ‖n
i=1Ri ⊆K. By Lemmas 14 and 15 (Lemma 16) in the appendix, R is controllable

and normal (observable) with respect to ‖n
i=1Pi+Σi(L). Since L⊆ ‖n

i=1Pi+Σi(L), it is also controllable and normal (observ-
able) with respect to L. Because (Ao,i∪Σo,i)∩Ac⊆ (Ac,i∪Σc,i) by the assumption and Ri are synchronously nonconflicting,
that is, R = ‖n

i=1Ri, Theorem 1 implies that R = ‖n
i=1Ri is coobservable with respect to L and (Ao,i∪Σo,i)

n
i=1.
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We now illustrate our approach on a simple example.

Example 3. Consider the languages K = {aa,ba,bbd,abc} and L = {aac,abc,bac,bbd} over A = {a,b,c,d}, and alpha-
bets Ao,1 = Ac,1 = {a,c} and Ao,2 = Ac,2 = {b,d}. Then K is not coobservable with respect to L and (Ao,i)

2
i=1, because

none of the supervisors is able to distinguish between ab and ba, where the continuation of ba by c within the plant leads
outside the specification while the continuation of ab by c remains within the specification.

We compute the extensions Σ1 = Σ2 ⊇ Ao,1 ∩Ao,2 by the procedure RCD such that K is separable with respect to
Ao,1 ∪ Σ1 and Ao,2 ∪ Σ2. It is sufficient to take Σ1 = Σ2 = {b}, which needs to be communicated/observed by both
supervisors. Since our system is with complete observations, we may compute R1 = {aa,abc,ba,bb} and R2 = {bbd}
as the supremal controllable sublanguages of Pi+Σi(K) with respect to Pi+Σi(L) and (Ao,i∪Σi)uc. By Theorem 7, we have
that R1 ‖ R2 is coobservable with respect to L and the extended alphabets {a,b,c} and {b,d}. Indeed, supervisor S1 that
exerts the control power over the event c is now able to distinguish between the words ab, after which c should be allowed,
and ba, after which c should be disabled.

5.2 Construction of the Languages Ri

There are many ways how to compute the languages Ri discussed in the literature. In the case of full local observations,
it is natural to define the language

Ri = supCi+Σi
= supC(Pi+Σi(K),Pi+Σi(L),(Ao,i∪Σi)uc) (1)

as the supremal controllable sublanguage of Pi+Σi(K) with respect to Pi+Σi(L) and uncontrollable events (Ao,i∪Σi)uc. In
the case of partial observations, we may define the language

Ri = supCN(Pi+Σi(K),Pi+Σi(L),(Ao,i∪Σi)uc,Ao,i∪Σo,i)

as the supremal controllable and normal sublanguage of Pi+Σi(K) with respect to Pi+Σi(L), (Ao,i∪Σi)uc and Ao,i∪Σo,i [5, 2].
Similarly, if Ac ⊆ Ao, we can define Ri as the supremal controllable and relatively observable sublanguage [4, 18], or we
can use any of the methods to compute a controllable and observable sublanguage discussed in the literature [7, 45, 53].
In these cases, we have that Ri ⊆ Pi+Σi(K), and separability of K then implies that the synchronous product ‖n

i=1Ri is
included in K as required in Assumption 6.

However, we do not restrict language Ri to be included in Pi+Σi(K). This allows us to define Ri in many different
ways. For instance, we can define Ri as the infimal controllable (and normal/observable) superlanguage of Pi+Σi(K) with
respect to Pi+Σi(L) and (Ao,i∪Σi)uc (and Ao,i∪Σo,i) as discussed in the literature [5, 24, 25, 40]. We can further combine
the approaches so that one of the Ri can be computed as a sublanguage and another one as a superlanguage, etc. In such
a case, we do not get the assumption ‖n

i=1Ri ⊆ K by construction, but we need to check it. It is in general a PSPACE-
complete problem.1 On the other hand, the advantage it brings is a potentially better (larger) solution as illustrated in
Example 4.

Example 4. Let L = {ab,ba,bdau,dbau} be a language over A = {a,b,d,u}, and consider the alphabets Ao,1 = {a,u},
Ac,1 = {a,d}, Ao,2 = {b,u}, Ac,2 = {b}. Let K = {ab,ba,bd,db} be a specification. Then K is not coobservable with
respect to L and (Ao,i)

2
i=1 because, for db ∈ K, we have a ∈ Ac, dba ∈ L\K, and P1(db)a = a ∈ K and P2(db)a = ba ∈ K.

Thus, none of the supervisors can disable a after the word db.
First, we compute only sublanguages. Let Σ1 = Σ2 = {d,u} be the extensions of local observations computed by RCD.

Then K is separable with respect to (Ao,i ∪Σi)
2
i=1. Notice that P1+Σ1(K) = {a,d,ε} and P2+Σ2(K) = {bd,db}, and that

P1+Σ1(L) = {a,dau} and P2+Σ2(L) = {bdu,dbu}. Then R1 = supC1+Σ1
= P1+Σ1(K) and R2 = supC2+Σ2

= {b,d,ε}, and
the solution R1 ‖ R2 ( K gives us a strict subset of K.

On the other hand, we can obtain the whole K if we consider infimal controllable superlanguages of Pi+Σi(K) instead of
supremal controllable sublanguages. Then we obtain the infimal controllable superlanguages R1 = P1+Σ(K) = supC1+Σ1
and R2 = P2+Σ(K), and the solution R1 ‖ R2 = K then gives us the whole specification as the resulting language.

Another problem with infimal controllable superlanguages is that they do not exist for general languages, but only for
prefix-closed languages. This issue can be avoided by the following choice of Ri based on the computation of prefix-closed
superlanguages.

Lemma 8. Consider Assumption 6. Let Ti be the prefix-closed infimal controllable (and normal/observable) superlan-
guage of Pi+Σi(K) with respect to Pi+Σi(L) and (Ao,i ∪ Σi)uc (and Ao,i ∪ Σo,i). Then Ri = Pi+Σi(K)∪ [Ti \ Pi+Σi(K)] is
controllable (and normal/observable) with respect to Pi+Σi(L) and (Ao,i∪Σi)uc (and Ao,i∪Σo,i).

Proof. We show that Ri = Ti. Since Pi+Σi(K) ⊆ Ti and Ri ⊆ Ti, we have that Ri ⊆ Ti. To show that Ti ⊆ Ri, let w ∈ Ti.
If w /∈ Pi+Σi(K), then w ∈ Ri by definition. If w ∈ Pi+Σi(K), then there exists v such that wv ∈ Pi+Σi(K) ⊆ Ri, hence
w ∈ Ri.

1There is a simple reduction from the finite-state automata intersection problem: Given a set of deterministic finite automata {Gi}n
i=1 over a common

alphabet B, is
⋂n

i=1 Lm(Gi) = /0? The problem is PSPACE-complete [22]. Let A∩B = /0. It is not hard to see that
⋂n

i=1 Lm(Gi) = /0 if and only if⋂n
i=1(Lm(Gi)∪K)⊆ K. The reduction is polynomial since every Lm(Gi)∪K is represented by a generator computed from Gi and the generator for K in

polynomial time by the standard product construction.
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5.3 Conditions for Optimality for Full Observations
In this subsection, we discuss conditions under which the solution of Theorem 7 is optimal in the sense of maximal
permissiveness. That is, under which conditions the solution coincides with the supremal centralized supervisor, if it
exists. Since no centralized optimal solution exists in the case of partial observations, we restrict our attention in this
subsection only to the case of full observations, that is, we assume in this section that Auo = /0. However, we point out
that a similar result to Proposition 9 can be obtain using the notions of mutual normality [20, Theorem 4.23] or mutual
observability [19, Theorem 5.1] in the case the set Auo is nonempty. Theorem 10 below can then be modified in the
corresponding way.

For i = 1, . . . ,n, let a language Li over Ai be prefix-closed. Languages (Li)
n
i=1 are mutually controllable if L j(Ai,u ∩

A j)∩PjP−1
i (Li)⊆ L j, for i, j = 1,2, . . . ,n [26]. The following compatibility between supremal controllable sublanguages

and the synchronous composition operator is known [26]. We state the result only for prefix-closed languages and refer
the reader to Lee and Wong [26] for the conditions on general languages.

Proposition 9. Assume that Ao,i ∩ Ac ⊆ Ac,i. If the prefix-closed languages Li ⊆ A∗i are mutually controllable, then
‖n

i=1supC(Pi(K),Pi(L),Ai,u) = supC(‖n
i=1Pi(K),‖n

i=1Pi(L),Auc) holds true for any prefix-closed language K ⊆ L.

It may be that Pi+Σi(L) and Pj+Σ j(L) are mutually controllable for fairly small alphabets Σi and Σ j. However, if we do
not require that K is separable, we cannot guarantee that the resulting supremal controllable sublanguage is included in K.
This is the main issue with the approach in Komenda et al. [12]. Therefore, in this paper, we compute the communications
(Σi)

n
i=1 using the procedure RCD, such that K is separable with respect to (Ao,i ∪Σi)

n
i=1, to ensure the inclusion of the

resulting supremal controllable sublanguage in K. In addition, if L is also separable with respect to (Ao,i∪Σi)
n
i=1, which

can again be ensured in the same way as for K, we obtain the optimal centralized solution.

Theorem 10. Consider Assumption 6. Let K ⊆ L be prefix-closed languages, and let K and L be separable with respect
to (Ao,i∪Σi)

n
i=1. Let supCi+Σi

be defined by Equation (1) above. If Pi+Σi(L) and Pj+Σ j(L) are mutually controllable, for
i, j = 1,2, . . . ,n, then ‖n

i=1supCi+Σi
= supC(K,L,Auc) is coobservable with respect to L and (Ao,i∪Σi)

n
i=1.

Proof. Since supCi+Σi
⊆ Pi+Σi(K), ‖n

i=1supCi+Σi
⊆ ‖n

i=1Pi+Σi(K) = K by separability of K. By Theorem 7, ‖n
i=1supCi+Σi

is controllable with respect to ‖n
i=1Pi+Σi(L) = L and Auc, hence coobservable with respect to L and (Ao,i ∪ Σi)

n
i=1 by

Theorem 1. Finally, by Proposition 9, ‖n
i=1supCi+Σi

= supC(K,L,Auc).

Whether mutual controllability can be fulfilled or not depends on the system. However, mutual controllability holds
if all shared events are controllable. For instance, in Example 3, the only shared event between Ao,1∪Σ1 and Ao,2∪Σ2 is
event b, which is controllable. Therefore, the languages P1+Σ1(L) and P2+Σ2(L) are mutually controllable, and Theorem 10
implies that the parallel composition R1 ‖ R2 coincides with the optimal monolithic solution supC(K,L,Auc), and is
coobservable with respect to L and the extended alphabets {a,b,c} and {b,d}.

Depending on the system, mutual controllability may be a strong condition. We now present a result that ensures
optimality and is based on the notions of an L-observer and local control consistency (LCC).

A projection Pk : A∗→ A∗k , for Ak ⊆ A, is an L-observer for a language L ⊆ A∗ if for all s ∈ L, if Pk(s)t ∈ Pk(L), then
there exists u ∈ A∗ such that su ∈ L and Pk(u) = t [51, 3]. The co-domain of a projection can always be extended to
fulfill the condition. Although to compute the minimal extension is NP-hard, there is a polynomial-time algorithm to find
an acceptable extension [9, 30]. The property also prevents the state explosion when computing projections. If P is an
L-observer, then the generator for P(L) is not larger (usually much smaller) than the one for L.

Let L be a prefix-closed language over A, and let Ak ⊆ A. Projection Pk : A∗→ A∗k is locally control consistent (LCC)
with respect to a word s ∈ L if for all events au ∈ Ak ∩Auc such that Pk(s)au ∈ Pk(L), it holds that either there does not
exist any word u ∈ (A\Ak)

∗ such that suau ∈ L, or there exists a word u ∈ (Auc \Ak)
∗ such that suau ∈ L. Projection Pk is

LCC with respect to L if Pk is LCC for all words of L [42, 41]. Notice that LCC is a weaker condition than OCC defined
in Zhong and Wonham [56].

Theorem 11. Consider Assumption 6. If every projection Pi+Σi is an L-observer and LCC for L, and the languages
supCi+Σi

that are defined in (1) are synchronously nonconflicting (e.g., prefix-closed), then the language ‖n
i=1 supCi+Σi

=
supC(K,L,Auc) is coobservable with respect to L and (Ao,i∪Σo,i)

n
i=1.

Proof. The identity ‖n
i=1supCi+Σi

= supC(K,L,Auc) has been shown in the literature [8, 42]. Since Auo = /0, Theorem 1
finishes the proof.

Note that both properties L-observer and LCC can be ensured by further extending the alphabets Σi in polynomial
time.

A similar result to Theorem 11 can be obtained for supremal controllable and normal sublanguages. A condition
under which the parallel composition of local supremal controllable and normal languages equals to the global supremal
controllable and normal sublanguage can be found in [14, Theorem 25].
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5.4 Conflicting Supervisors
So far, the theorems require that the local languages Ri are synchronously nonconflicting. The remaining question is
thus the case of conflicting local supervisors. It is in general a PSPACE-complete problem to decide whether a parallel
composition (of an unspecified number) of generators is nonblocking [35]. However, Malik [28] shows that current
computers can explore more than 100 million of states using explicit algorithms without any optimization techniques.
Moreover, it is possible to use an L-observer to alleviate the computational effort as used in the following construction.

Theorem 12. Consider Assumption 6. Let LC ⊆ ‖n
i=1PΣ′(Ri) be a language that is controllable and normal (observable)

with respect to PΣ′(L), Σ′uc and Σ′o, where Σ′ ⊆ A contains all events shared by any pair of Ri and R j, for i 6= j, and
PΣ′ : A∗ → Σ′∗ is an Ri-observer, for i = 1, . . . ,n. If (Ao,i ∪Σo,i ∪Σ′o)∩Ac ⊆ (Ac,i ∪Σc,i ∪Σ′c), then ‖n

i=1(Ri ‖ LC) is a
sublanguage of K controllable (and normal/observable) with respect to L and Auc (and Ao) that is coobservable with
respect to (Ao,i∪Σo,i∪Σ′o)

n
i=1, and whose components are synchronously nonconflicting.

Proof. By definition and Lemma 18, we have that LC ⊆ ‖n
i=1PΣ′(Ri) = PΣ′(‖n

i=1Ri) ⊆ PΣ′(K). Thus, ‖n
i=1(Ri ‖ LC) =

(‖n
i=1Ri) ‖ LC ⊆ K ‖ PΣ′(K) = K.

To prove nonconflictness, we make use of Lemma 17 in the appendix, which states that Ri ‖ LC = Ri ‖ LC if and only
if PΣ′(Ri) ‖ LC = PΣ′(Ri) ‖ LC. The second equation holds, because both sides are equal to LC. Using Lemma 17 again,
we have that ‖n

i=1 (Ri ‖ LC) = ‖n
i=1Ri ‖ LC if and only if ‖n

i=1 PΣ′(Ri ‖ LC) = ‖n
i=1PΣ′(Ri ‖ LC). Lemma 17 can be applied

again, since PΣ′ is an (Ri ‖ LC)-observer. It follows from Theorem 2 in Pena et al. [29] saying that a composition of
observers is an observer – note that PΣ′ is an Ri-observer by assumption and an LC-observer since it is an identity. Again,
the latter equation holds, because PΣ′(Ri ‖ LC) = PΣ′(Ri) ‖ LC = LC, by Lemma 18 and the definition of LC. Thus, both
sides are equal to LC. To summarize, ‖n

i=1 (Ri ‖ LC) = ‖n
i=1(Ri ‖ LC) = ‖n

i=1Ri ‖ LC.
To prove controllability (and normality/observability), note that Ri is controllable (and normal/observable) with re-

spect to Pi+Σi(L), and LC is controllable (and normal/observable) with respect to PΣ′(L). By Lemma 14 (Lemmas 15
and 16) in the appendix and the nonconflictness shown above, Ri ‖ LC is controllable (and normal/observable) with re-
spect to Pi+Σi(L) ‖ PΣ′(L) and (Ao,i ∪ Σi ∪ Σ′)∩ Auc. Similarly, ‖n

i=1(Ri ‖ LC) is controllable (and normal/observable)
with respect to ‖n

i=1Pi+Σi(L) ‖ PΣ′(L) and Auc. Since L ⊆ ‖n
i=1Pi+Σi(L) and L ⊆ P−1

Σ′ PΣ′(L), we have that ‖n
i=1(Ri ‖ LC) is

controllable (and normal/observable) with respect to L and Auc.
Since Ri ‖ LC is normal (observable) with respect to Pi+Σi(L) ‖ PΣ′(L), and it holds that Pi+Σi+Σ′(L) ⊆ Pi+Σi(L) ‖

PΣ′(L), we have that Ri ‖ LC is normal (observable) with respect to Pi+Σi+Σ′(L). Thus, using Theorem 1, ‖n
i=1(Ri ‖ LC) is

coobservable with respect to L and (Ao,i∪Σo,i∪Σ′o)
n
i=1. In general, to apply Theorem 1, we need to adjust the controllable

status of events, if needed, to satisfy (Ao,i∪Σo,i∪Σ′o)∩Ac ⊆ (Ac,i∪Σc,i∪Σ′c).

In case of full observations, we strengthen the previous result by computing the language LC as a sublanguage of
‖n

i=1PΣ′(Ri) controllable with respect to ‖n
i=1PΣ′(Ri) rather than to PΣ′(L), which may result in a larger language LC

because ‖n
i=1PΣ′(Ri)⊆ PΣ′(L).

Theorem 13. Consider Assumption 6. Let LC be the supremal sublanguage of ‖n
i=1PΣ′(Ri) that is controllable with respect

to ‖n
i=1PΣ′(Ri) and Σ′uc, where Σ′ ⊆ A contains all events shared by any pair of Ri and R j, for i 6= j, and PΣ′ : A∗→ Σ′∗ is

an Ri-observer, for i = 1, . . . ,n. If every projection Pi+Σi is an L-observer and LCC for L, and the projection PΣ′ is LCC for
‖n

i=1Ri, then ‖n
i=1(Ri ‖ LC) = supC(K,L,Auc) is coobservable with respect to L and (Ao,i∪Σi∪Σ′)n

i=1, whose components
are synchronously nonconflicting. It is again under the assumption that (Ao,i∪Σi∪Σ′)∩Ac ⊆ (Ac,i∪Σc,i∪Σ′c).

Proof. Let supC = supC(K,L,Auc). We first show that ‖n
i=1(Ri ‖ LC) is a subset of supC coobservable with respect to L

and (Ao,i∪Σi∪Σ′)n
i=1, and its components are synchronously nonconflicting. Similarly as in the proof of Theorem 12, we

can show that ‖n
i=1(Ri ‖ LC)⊆ K and that ‖n

i=1 (Ri ‖ LC) = ‖n
i=1(Ri ‖ LC) = ‖n

i=1Ri ‖ LC.
To prove controllability of ‖n

i=1(Ri ‖ LC) with respect to L and Auc, note that Ri is controllable with respect to Ri

and (Ao,i ∪Σi)uc, and LC is controllable with respect to ‖n
j=1PΣ′(R j) and Σ′uc. By Lemma 14 in the appendix and the

nonconflictness of Ri and LC shown above, Ri ‖ LC is controllable with respect to Ri ‖ (‖n
j=1PΣ′(R j)) and (Ao,i∪Σi∪Σ′)uc.

Using the same argument on Ri ‖ LC, for i = 1, . . . ,n, we obtain that ‖n
i=1(Ri ‖ LC) is controllable with respect to ‖n

i=1(Ri ‖
‖n

j=1PΣ′(R j)) = ‖n
i=1Ri and Auc. One more application of Lemma 14 on Ri gives that ‖n

i=1Ri is controllable with respect
to ‖n

i=1Pi+Σi(L), hence with respect to L ⊆ ‖n
i=1Pi+Σi(L), and Auc. Using transitivity of controllability, Lemma 19 in the

appendix, we obtain that ‖n
i=1(Ri ‖ LC) is controllable with respect to L and Auc.

Since Ri ‖ LC is trivially observable, Theorem 1 implies that ‖n
i=1(Ri ‖ LC) is coobservable with respect to L and

(Ao,i∪Σi∪Σ′)n
i=1. It again holds under the assumption that (Ao,i∪Σi∪Σ′)∩Ac ⊆ (Ac,i∪Σc,i∪Σ′c).

It remains to show the other inclusion supC ⊆ ‖n
i=1(Ri ‖ LC). We show it in two steps. First we show that supC ⊆

‖n
i=1Ri and then that PΣ′(supC)⊆ LC.

To show that supC⊆ ‖n
i=1Ri, we prove that, for every i, Pi+Σi(supC)⊆ Ri by showing that Pi+Σi(supC)⊆ Pi+Σi(K) is

controllable with respect to Pi+Σi(L). To this end, let t ∈ Pi+Σi(supC), a ∈ (Ao,i∪Σi)∩Auc, and ta ∈ Pi+Σi(L). Then, there
exists s ∈ supC such that Pi+Σi(s) = t. Since Pi+Σi is an L-observer, there exists v ∈ A∗ such that sv ∈ L and Pi+Σi(sv) = ta,
that is, v = ua for some u ∈ (A \ (Ao,i ∪ Σi))

∗. The LCC property of Pi+Σi for L and sua ∈ L imply that there exists
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u′ ∈ (Auc \ (Ao,i ∪ Σi))
∗ such that su′a ∈ L. Since u′ is uncontrollable, controllability of supC with respect to L and

Auc implies that su′a ∈ supC, that is, Pi+Σi(su′a) = ta ∈ Pi+Σi(supC). Thus, Pi+Σi(supC) is controllable with respect to
Pi+Σi(L), hence Pi+Σi(supC)⊆ Ri.

Finally, we show that PΣ′(supC) ⊆ LC, i.e., that it is a subset of ‖n
i=1PΣ′(Ri) controllable with respect to ‖n

i=1PΣ′(Ri)
and Σ′uc. Since Pi+Σi(supC) ⊆ Ri, we have that supC ⊆ ‖n

i=1Pi+Σi(supC) ⊆ ‖n
i=1Ri. Applying projection PΣ′ , we obtain

PΣ′(supC) ⊆ PΣ′(‖n
i=1Ri) = ‖n

i=1PΣ′(Ri), where the last equality is by Lemma 18, see the appendix. Using Theorem 2 in
Pena et al. [29] saying that a composition of observers is an observer, the assumption on PΣ′ to be an Ri-observer, which
also means that PΣ′ is an Ri-observer, implies that PΣ′ is a (‖n

i=1Ri)-observer. We show that PΣ′(supC) is controllable
with respect to ‖n

i=1PΣ′(Ri) and Σ′uc. To this end, let t ∈ PΣ′(supC), a ∈ Σ′uc, and ta ∈ ‖n
i=1PΣ′(Ri) = PΣ′(‖n

i=1Ri). Then,
there exists s ∈ supC such that PΣ′(s) = t. Since PΣ′ is a (‖n

i=1Ri)-observer, there exists v ∈ A∗ such that sv ∈ ‖n
i=1Ri and

PΣ′(sv) = ta, that is, v = ua for some u ∈ (A\Σ′)∗. The LCC property of PΣ′ for ‖n
i=1Ri and sua ∈ ‖n

i=1Ri then imply that
there exists u′ ∈ (Auc \Σ′)∗ such that su′a ∈ ‖n

i=1Ri. Since ‖n
i=1Ri ⊆ L, and u′ is uncontrollable, controllability of supC

with respect to L and Auc implies that su′a ∈ supC. That is, PΣ′(su′a) = ta ∈ PΣ′(supC), hence PΣ′(supC)⊆ LC.
Together, supC = ‖n

i=1Ri ‖ LC = ‖n
i=1(Ri ‖ LC), which completes the proof.

Notice that it is sufficient to require that PΣ′ is an L-observer and LCC for L.
In case of partial observations, one could obtain the global supremal controllable and normal sublanguage in a similar

way under the assumptions similar to those discussed below Theorem 11. Since, as already mentioned, there is no global
optimal solution in the case of partial observations, we do not discuss this case in more detail.

5.5 Complexity
We now briefly discuss the complexity of our approach. Since we use standard notions, the complexity mainly depends
on the complexity of corresponding algorithms for the computation of controllable and observable languages.

In Assumption 6, we assume that K is separable. If this is not the case, a polynomial-time algorithm [15] is used
to find extensions (Σi)

n
i=1 making the language separable with respect to extended alphabets. Then we compute local

supervisors Ri using the standard algorithms discussed in Subsection 5.2. This requires to compute the projections of K
and L, which is exponential in the worst case. However, the alphabet Σi can be chosen so that the projection Pi+Σi is K- and
L-observer, which then results in the computation of those projections in polynomial time [51]. The computation of Ri is
then performed in the respective time. It is polynomial in the case of full observations. To check/ensure optimality in the
case of full observations, we either check whether the polynomially many pairs of languages are mutually controllable,
which can be done in polynomial time, or further extend the alphabets Σi in polynomial time so that the observer and
LCC conditions of Theorem 11 are satisfied. Furthermore, Theorems 7 and 11 require that the computed supervisors are
nonconflicting. This is a PSPACE-complete problem [35]. However, this test can be skipped and we can directly compute
the language LC from Theorem 12, which may, in the worst case, require exponential space with respect to the number of
local supervisors.

6 Conclusion
In this paper, we have shown how to construct a solution to the decentralized control problem (a controllable and coobserv-
able sublanguage of a specification) by using additional communications. Our approach relies on the notion of conditional
decomposability recently studied by the authors, which overcomes the undecidable problem to find a separable sublan-
guage of the specification. The computation of local supervisors is fully decentralized and coobservability is guaranteed
by construction. We discussed two ways how to obtain the globally optimal solution in case of full observations if the com-
puted languages are synchronously nonconflicting (prefix-closed). One is based on the notion of mutual controllability,
the other on increasing the communication between supervisors. Indeed, both approaches can be combined as preferred.
Our approach can be used for both prefix-closed and non-prefix-closed specifications. For conflicting supervisors, we
showed how to impose nonconflictness, hence coobservability.

A Proof of Theorem 2
Theorem 2. The following problem is PSPACE-complete.

INPUT: Alphabets E1,E2, . . . ,En and a generator H over ∪n
i=1Ei.

OUTPUT: Yes if and only if Lm(H) is separable with respect to (Ei)
n
i=1.

Proof. Standard techniques simulating a product automaton on-the-fly show that it belongs to PSPACE. To prove hard-
ness, we reduce the finite-state automata intersection problem (INT): Given a set of deterministic finite automata {Gi}n

i=1
over a common alphabet Σ. Is

⋂n
i=1 Lm(Gi) = /0? The problem is PSPACE-complete [22].
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Figure 2: The automaton H

Let a set of deterministic automata {Gi}n
i=1 with a common alphabet Σ be an instance of INT. Without loss of gener-

ality, we assume that n ≥ 3, since if n is constant, then the problem is solvable in PTIME. Let Gi = (Xi,Σ,δi,xi
o,Fi) and

assume that all states of Gi are reachable from the initial state xi
o. This assumption does not change the complexity. We

construct a deterministic automaton H and alphabets (Ei)
n
i=1 in polynomial time such that L(H) is separable if and only if⋂n

i=1 Lm(Gi) = /0.
To this end, we define the automaton H =(X ,E,δ ,q0,X) so that the set of states is X =

⋃n
i=1 Xi∪{q0,q1,q2,q3}, where

q0,q1,q2,q3 are new states, E = Γ∪Σ, where Γ = {e1, . . . ,en,c} is an alphabet such that Γ∩Σ = /0, and the transition
function is defined as follows. The initial state q0 goes under ei to the initial state xi

o of Gi, i = 1, . . . ,n, and for every a in
Σ, q0 goes under a to q3. In q3, there is a self-loop under every a in Σ. The transitions inside every Gi are unchanged. For
every e in {e1, . . . ,en} and every i = 1, . . . ,n, we add a transition from xi

o to q1 under e. State q1 contains a self-loop for
every e in {e1, . . . ,en}. Finally, for i = 1, . . . ,n, we add a c-transition from all states of Fi of Gi to state q2, cf. Fig. 2.

To complete the reduction, we define Ei = E \{ei}, which defines the projection Pi : E∗→ E∗i , i = 1, . . . ,n. Note that
the reduction is polynomial. We show that L(H) is separable with respect to (Ei)

n
i=1 if and only if

⋂n
i=1 Lm(Gi) = /0.

Assume that t ∈ ⋂n
i=1 Lm(Gi). Then eitc ∈ L(H), for all i = 1, . . . ,n, which implies that tc ∈ P−1

i (Pi(eitc)), hence
tc ∈ ‖n

i=1Pi(L(H)). However, tc /∈ L(H), which shows that L(H) is not separable with respect to (Ei)
n
i=1.

To prove the other direction, we assume that L(H) is not separable and show that
⋂n

i=1 Lm(Gi) 6= /0. Let w ∈
‖n

i=1Pi(L(H)) and w /∈ L(H). Note that Σ∗∪{e1, . . . ,en}∗ ⊆ L(H) because L(H) = Σ∗∪{e1, . . . ,en}∗∪
⋃n

i=1 eiLm(Gi)c∪⋃n
i=1 eiL(Gi). Therefore, we have that for i = 1, . . . ,n, the word w belongs to P−1

i Pi(L(H)) = (Σ∪{ei})∗∪{e1, . . . ,en}∗∪
P−1

i (Lm(Gi)c)∪
⋃

j 6=i P−1
i (e jLm(G j)c)∪P−1

i (L(Gi))∪
⋃

j 6=i P−1
i (e jL(G j)).

We first show that if c does not appear in w, then w belongs to L(H). In this case, based on the above observation, w
must contain at least one event from Σ and at least one event from {e1, . . . ,en}. Thus,

w ∈ (Σ∪{ei})∗∪
⋃
j 6=i

P−1
i (e jL(G j))

for i = 1, . . . ,n, because P−1
i (L(Gi))⊆ (Σ∪{ei})∗. Then w ∈⋂n

i=1 Ti, where Ti is one of the languages forming the union
above.

If, for some i 6= j, Ti = (Σ∪{ei})∗ and Tj = (Σ∪{e j})∗, then w ∈ Σ∗ ⊆ L(H); a contradiction.
If there is only one i such that Ti = (Σ∪{ei})∗ and, for all j 6= i, Tj = P−1

j (ek j L(Gk j)), where k j 6= j, then w belongs
to

⋂n
`=1 T` if and only if ek j = ei, for all j 6= i. Hence, for j 6= i, Ti∩Tj = eiL(Gi), which implies that

⋂n
`=1 T` = eiL(Gi)⊆

L(H); a contradiction.
The last option is that, for all i, Ti = P−1

i (e jiL(G ji)), where ji 6= i. Then there exist jk 6= j` such that e jk 6= e j` . Without
loss of generality, we assume that w = v1e jk v2e j`w

′, where v1v2w′ ∈ (Σ∪{e1, . . . ,en})∗. Since w ∈ Tk = P−1
k (e jk L(G jk)),

Pk(w) ∈ e jk L(G jk), hence Pk(v1) = ε and Pk(v2e j`w
′) ∈ Σ∗, which implies that j` = k, v1 ∈ {ek}∗ and v2w′ ∈ (Σ∪{ek})∗.

Similarly, P̀ (w) ∈ e j`L(G j`) implies that jk = `, v1v2 ∈ {e`}∗ and w′ ∈ (Σ∪{e`})∗. Together, v1v2 = ε , w′ ∈ Σ∗, and w =
e`ekw′, for k 6= `. By the assumption, there is a projection Pm such that Pm /∈ {Pk, P̀ }. Since w∈ Tm, Pm(w)∈ (Σ∪{e jm})∗,
and Pm(e`) = ε or Pm(ek) = ε . The first case gives that Pm = P̀ , the second that Pm = Pk, which is a contradiction.

Thus, we have show that if c does not appear in w, then w belongs to L(H).
Assume that c appears in w. By the analysis above, w ∈ ⋂n

i=1[P
−1
i (Lm(Gi)c)∪

⋃
j 6=i P−1

i (e jLm(G j)c)]. It implies that
there is exactly one c in w. Again, w ∈⋂n

i=1 Ti, where Ti is one of the elements of the union.
Analogously as above, if, for all i, Ti = P−1

i (e jiLm(G ji)c), where ji 6= i, then there are jk 6= j` such that e jk 6= e j` .
Without loss of generality, let w = v1e jk v2e j`w

′cw′′, where v1v2w′w′′ ∈ (Σ∪{e1, . . . ,en})∗. Then Pk(w) ∈ e jk Lm(G jk)c,
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hence we have that Pk(v1) = ε and Pk(v2e j`w
′w′′) ∈ Σ∗, which implies that j` = k, v1 ∈ {ek}∗ and v2w′w′′ ∈ (Σ∪{ek})∗.

Similarly, P̀ (w) ∈ e j`Lm(G j`)c implies that jk = `, v1v2 ∈ {e`}∗ and w′w′′ ∈ (Σ∪{e`})∗. Together, v1v2 = ε , w′w′′ ∈ Σ∗,
and w = e`ekw′cw′′, for k 6= `. Let Pm /∈ {Pk, P̀ } be a projection. Since Pm(w) ∈ (Σ∪{e jm ,c})∗, Pm(e`) = ε or Pm(ek) = ε .
The first case gives that Pm = P̀ , the second that Pm = Pk, which is a contradiction.

Thus, there must exist i such that Ti = P−1
i (Lm(Gi)c). Then Pi(w) ∈ Lm(Gi)c, which implies that w ∈ (Σ∪{ei,c})∗.

This means that, for j 6= i, Pj(w) = w ∈ Lm(G j)c∪eiLm(Gi)c. If Tj = eiLm(Gi)c, for some j 6= i, then w ∈ (Σ∪{ei,c})∗∩
eiLm(Gi)c = eiLm(Gi)c ⊆ L(H); a contradiction again. Thus, it must be that for every j 6= i, Tj = Lm(G j)c. Then
w ∈⋂n

i=1 Ti =
⋂n

i=1 Lm(Gi)c implies that
⋂n

i=1 Lm(Gi) 6= /0.

B Auxiliary Results
Lemma 14 ([8]). For i = 1,2, let Li be a prefix-closed language over Ai, and let Ki ⊆ Li be controllable with respect to
Li and Ai,uc. Let A = A1∪A2. If K1 and K2 are synchronously nonconflicting, then K1 ‖ K2 is controllable with respect to
L1 ‖ L2 and Auc.

Lemma 15. For i = 1,2, let Li be a prefix-closed language over Ai, and let Ki ⊆ Li be normal with respect to Li, Ai,uc and
Po,i : A∗i → A∗o,i. Let A = A1 ∪A2. If K1 and K2 are synchronously nonconflicting, then K1 ‖ K2 is normal with respect to
L1 ‖ L2, Auc and Po : A∗→ A∗o.

Proof. P−1
o Po(K1 ‖ K2)∩ L1 ‖ L2 ⊆ P−1

o,1 Po,1(K1) ‖ P−1
o,2 Po,2(K2) ‖ L1 ‖ L2 = K1 ‖ K2 = K1 ‖ K2. As the other inclusion

always holds, the proof is complete.

Lemma 16. For i = 1,2, let Li be a prefix-closed language over Ai, and let Ki ⊆ Li be observable with respect to Li, Ai,uc
and Po,i : A∗i → A∗o,i. Let A = A1 ∪A2. If K1 and K2 are synchronously nonconflicting, then K1 ‖ K2 is observable with
respect to L1 ‖ L2, Auc and Po : A∗→ A∗o.

Proof. Let s,s′ ∈ A∗ be such that Po(s) = Po(s′). Let a ∈ A and assume that sa ∈ K1 ‖ K2, s′ ∈ K1 ‖ K2, and s′a ∈ L1 ‖ L2.
Let Pi : A∗→ A∗i , for i = 1,2. Then Pi(sa) ∈ Ki, Pi(s′) ∈ Ki, and Pi(s′a) ∈ Li imply that Pi(s′a) ∈ Ki, by observability of Ki

with respect to Li. Thus, s′a ∈ K1 ‖ K2 = K1 ‖ K2.

Lemma 17 ([29]). Let Li ⊆ A∗i , i ∈ J, and
⋃k 6=`

k,`∈J(Ak∩A`)⊆ A0. If Pi,0 : A∗i → (Ai∩A0)
∗ is an Li-observer, for i ∈ J, then

‖i∈JLi = ‖i∈JLi if and only if ‖i∈JPi,0(Li) = ‖i∈JPi,0(Li).

Lemma 18 ([52]). Let Pk : A∗→ A∗k be a projection, and let Li ⊆ A∗i , where Ai ⊆ A, for i = 1,2, and A1∩A2 ⊆ Ak. Then
Pk(L1‖L2) = Pk(L1)‖Pk(L2).

Lemma 19 ([16]). Let K ⊆ L ⊆M be such that K is controllable with respect to L and L is controllable with respect to
M. Then K is controllable with respect to M.
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