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Characterizations and Effective Computation of

Supremal Relatively Observable Sublanguages*
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Abstract

Recently we proposertlative observabilityfor supervisory control of discrete-event systems under
partial observation. Relative observability is closed emget unions and hence there exists the supremal
relatively observable sublanguage of a given languagehitngaper we present a new characterization
of relative observability, based on which an operator orglemges is proposed whose largest fixpoint
is the supremal relatively observable sublanguage. ietatapplying this operator yields a monotone
sequence of languages; exploiting the linguistic concépgupportbased on Nerode equivalence, we
prove for regular languages that the sequence convergésyfibd the supremal relatively observable
sublanguage, and the operator is effectively computabteebler, for the purpose of control, we propose
a second operator that in the regular case computes thensalprelatively observable and controllable

sublanguage. The computational effectiveness of the tgresademonstrated on a case study.
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. INTRODUCTION

In [3] we proposedrelative observabilityfor supervisory control of discrete-event systems (DES)

under partial observation. The essence of relative obbiityds to set a fixed ambient language relative
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to which the standard observability conditions [8] are e@dstRelative observability is proved to be

stronger than observability[[5], [8], weaker than nornyal8], [8], and closed under arbitrary set unions.

Therefore the supremal relatively observable sublangoégegiven language exists, and we developed
an automaton-based algorithm to compute the supremalrsyudge.

In this paper and its conference precursor [2], we preseatecharacterization of relative observability.
The original definition of relative observability inl[3] wasrmulated in terms ofstrings while the
new characterization is given ilanguages Based on this characterization, we propose an operator on
languages, whose largest fixpoint is precisely the supreetatively observable sublanguage. Iteratively
applying this operator yields a monotone sequence of lagggialn the case where the relevant lan-
guages are regular, we prove that the sequence convergedyfioi the supremal relatively observable
sublanguage, and the operator is effectively computable.

This new computation scheme for the supremal sublanguagess entirely in terms of languages, and
the convergence proof systematically exploits the conoépupport( [9, Section 2.8]) based on Nerode
equivalence relations [7]. The solution therefore separatit the linguistic essence of the problem from
the implementational aspects of state computation usitgr@aton models. This approach is in the same
spirit as [10] for controllability, namely operator fixpaiand successive approximation.

Moreover, the proposed language-based scheme allows rnaighsforward implementation, as com-
pared to the automaton-based algorithm_in [3]. In particwee show that the language operator used in
each iteration of the language-based scheme may be decedipds a series of standard or well-known
language operations (e.g. complement, union, subsetraatieh); therefore off-the-shelf algorithms may
be suitably assembled to implement the computation sch@nethe other hand, both the language
and automaton-based algorithms have (at least) expohentigplexity in the worst case, which is the
unfortunate nature of supervisor synthesis under parbakoration. Our previous experience with the
automaton-based algorithm in [3] suggests that computiagtipremal relatively observable sublanguage
is fairly delicate and thus prone to error. Hence, it is ad¥geous to have two algorithms at hand so
that one can double check the computation results, therebyriag presumed correctness based on
consistency.

Finally, for the purpose of supervisory control under artibservation, we combine relative observ-
ability with controllability. In particular, we propose awperator which in the regular case effectively
computes the supremal relatively observable and conellaublanguage. We have implemented this
operator and tested its effectiveness on a case study.

The rest of the paper is organized as follows. In Sedtion Ipvesent a new characterization of relative
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observability, and an operator on languages that yieldstexative scheme to compute the supremal
relatively observable sublanguage. In Secfioh Il we prtvat in the case of regular languages, the
iterative scheme generates a monotone sequence of largyineeges finitely convergent to the supremal
relatively observable sublanguage. In Secfioh IV we comblative observability and controllability,
and propose an operator that effectively computes the swgireelatively observable and controllable
sublanguage. Sectidn V presents illustrative examples fiaally in Sectio VI we state conclusions.
This paper extends its conference precursbr [2] in theviotig respects. (1) In the main result of Sec-
tion[ll] Theoreni1, the bound on the size of the supremalanduiage is tightened and the corresponding
proof given. (2) The effective computability of the propdseperator is shown in Subsectibn II]-C. (3)
Relative observability is combined with controllabilitpy Section 1V, and a new operator is presented
that effectively computes the supremal relatively obdaelevaand controllable sublanguage. (4) A case
study is given in Subsectidn ' VIB to demonstrate the effeciss of the newly proposed computation

schemes.

II. CHARACTERIZATIONS OF RELATIVE OBSERVABILITY AND ITS SUPREMAL ELEMENT

In this section, the concept of relative observability pregd in [3] is first reviewed. Then we present
a new characterization of relative observability, togethih a fixpoint characterization of the supremal

relatively observable sublanguage.

A. Relative Observability

Let 3 be a finite event set. A string € >* is a prefix of another stringt € ¥*, written s < ¢,
if there existsu € ¥* such thatsu = ¢. Let L C ¥* be a language. Théprefix) closureof L is
L:={sex*| (3t e L)s <t} For partial observation, let the event Setbe partitioned into%,,
the observable event subset, ang,, the unobservable subset (i¥.= X,U%,,,). Bring in the natural
projection P : ¥* — X% defined according to

P(e) = ¢, eis the empty string;
e, ifod¢X,,
P(o) = _ 1)
o, ifoceX,
P(so) = P(s)P(0), s€X*,0¢€X.
In the usual wayP is extended taP : Pwr(X*) — Pwr(X}), where Pwr(-) denotes powerset. Write

P~ Pwr(Z}) — Pwr(X*) for the inverse-image functioof P.



Throughout the paper, le¥/ denote the marked behavior of the plant to be controlled, @nd M
an imposed specification language. EetC C'. We say thatK is relatively observabléwith respect to

M, C, and P), or simply C-observable, if the following two conditions hold:

(i) (Vs,s €X*VoeX)soce K,s €C,s’0€ M,P(s)=P(s') = s'ce K

(i) (vVs,s' €X*)se K, eCNM,P(s)=P(s') = s € K.
In words, relative observability ofk™ requires for every lookalike paits, s’) in C that (i) s and s’ have
identical one-step continuations, if allowed M, with respect to membership if; and (ii) if each
string is in M and one actually belongs t&, then so does the other. Note that the tests for relative
observability of K are not limited to the strings i (as with standard observability|[5],1[8]), but apply
to all strings inC; for this reason, one may think @f as theambientlanguage, relative to which the
conditions (i) and (ii) are tested.

We have proved in |3] that in general, relative observabifitstronger than observability, weaker than

normality, and closed under arbitrary set unions. Write
O(C)={K C C | K is C-observable} 2)

for the family of all C-observable sublanguages ©f ThenO(C) is nonempty (the empty languade

belongs) and contains a unique supremal element
supO(C) == J{K | K € 0(C)} (3)

i.e. the supremal relatively observable sublanguag€'.of

B. Characterization of Relative Observability

For N C ¥*, write [N] for P~'P(N), namely the set of all lookalike strings to strings M. A
languageN is normal with respect toM if [N]N M = N. For K C X* write

N(K,M)={K'CK|[K]nM=K'"}. (4)

Since normality is closed under uniaN,(K, M) has a unique supremal elemenip N (K, M) which
may be effectively computed[1],1[4].
Write

Co:={so|seC}, oceX. (5)



Let K C C and define
D(K) ::U{[Fﬂa.a]ﬂa.a | o ex}. (6)

Thus D(K) is the collection of strings in the forv (t € C, o € X)), that are lookalike to the strings
in K ending with the same event Note that if K = () then D(K) = (). This languageD(K) turns out

to be key to the following characterization of relative olysdility.

Proposition 1. Let K C C C M. ThenK is C-observable if and only if

Note that condition () is in a form similar to controllability ofK” [10] (i.e. KX, N M C K, where
¥, is the uncontrollable event set), although the expressi¢R) appearing here is more complicated
owing to the presence of the normality operatdr Condition (if) is normality of K with respect to
CnNM.

Proof of Propositiori L We first show that () < (i), and then (fi) < (ii).

1. (") = (i). Let 5,5’ € ¥*, 0 € 3, and assume thatr € K, s’ € C, s'o € M, and P(s) = P(s'). It

will be shown thats’c € K. SinceK C C, we haveK C C and

sc e K=s0e€ KNC.o
= s'o e [KNC.0o]
=soe[KNC.olNC.o
= s'oc € D(K)
=soe DIK)NM
=soec K (by(i).

2. (") < (i). Let s € D(K)N M. According to [6)c ¢ D(K); thuss # ¢. Let s = to for somet € ©*



ando € X. Then
seDK)NM =toc[KNC.o]nC.oNM
=tecC,toc € M,
(3 e ) (P(t) = P{t),tc e KNC.0)
=toe K, (by()
=scK.
3. (ii") = (ii). Let 5,5’ € ¥* and assume thatc K, s’ € CN M, and P(s) = P(s'). Then
s K = s ¢[K]
=s c[KlnCNM
=soe K (by(i).
4. (i) = (ii’). (2) holds becaus& C [K] andK C Cn M. To show (), lets € [K] ands € CN M.
Then there exists’ € K such thatP(s) = P(s’). Therefore by (ii) we derive € K. O

Thanks to the characterization of relative observabilityPropositior 1L, we rewrité)(C) in (2) as

follows:
OC)={KCC|DE)NMCK & [K|Nn(CNM) =K} 7)

In the next subsection, we will characterize the supremahehtsup O(C) as the largest fixpoint of a

language operator.

C. Fixpoint Characterization ofup O(C)

For a strings € ¥*, write 5 for @ the set of prefixes of. Given a languagéd C >*, let

F(K)={s€e K| D(3)NMCK}. (8)

Lemma 1. F(K) is closed, i.eF(K) = F(K). Moreover, ifK € O(C), thenF(K) = K.

Proof. First, lets € F(K); then there exists3s € X* such thatsw € F(K), i.e. sw € K and
D(Ew)NM C K. It follows thats € K and D(3) " M C K, namelys € F(K). This shows that
F(K) C F(K); the other directionF'(K) O F(K) is automatic.




Next, suppose thak’ € O(C); by (@) we haveD(K)N M C K. Let s € K; it will be shown that
D(5)N'M C K. Taking an arbitrary string € D(5) N M, we derive

tel J{En mCa|aeE}mM
:>t€U{ olnCo|ocex}nM
=t € K.

This shows that € F(K) by (8), and hencél C F(K). The other directionF’'(K) D K is automatic.
U

Now define an operatdR : Pwr(X*) — Pwr(X*) according to
Q(K) :=supN(KNF(K), CNM), K e Pur(x). (9)
A languageK such thatK = Q(K) is called afixpoint of the operatof). The following proposition
characterizesup O(C') as thelargestfixpoint of .
Proposition 2. sup O(C) = Q(sup O(C)), andsup O(C) 2 K for every K such thatK = Q(K).
Proof. Sincesup O(C) € O(C), we have
Q(sup O(C)) = sup N (sup O(C) N F(sup O(C)),C N M)
= sup N (sup O(C) Nsup O(C), C N M)
= sup N (supO(C),C N M)
=sup O(C).

Next let K be such that{ = Q(K). To show that’’ C sup O(C), it suffices to show thak € O(C).

From
K =Q(K) :==supN(KNF(K), CNM)

we haveK C KN F(K). But KN F(K) C K. Hence, in fact,X = K n F(K). This implies that
K =supN (K, CnM); namelyK is normal with respect t&' N M.

On the other hand, b\ = K N F(K) C F(K), we haveK C F(K) = F(K). But F(K) C K by
definition; thereforell = F(K). In what follows it will be shown thaD(F(K)) N M C F(K), which
is equivalent toD(K) N M C K. Lets € D(F(K))N M. As in the proof of Propositioh] 1 (item 2), we



know thats # e. So lets = to for somet € ¥* ando € . Then
se D(F(K))NM =to e [F(K)NC.o]nC.oNM
= (' € C)P(t) = P(t'),t'0c € F(K)
= D(t'c)N'M C K (by definition of F(K)).
Then by [6)
U{#onColnCo|oes}nMCK.

Sinceto belongs to the left-hand-side of the above inequality, weehta ¢ K = F(K). Therefore
D(F(K))N'M C F(K); equivalentlyD(K) N M C K. This completes the proof &k € O(C). O

In view of Propositiori R, it is natural to attempt to compute O(C) by iteration ofQ2 as follows:
(Vji>1) K; =Q(K;_1), Ko=C. (10)
It is readily verified that)(K) C K; hence
Ky>DKi DKy D ---

Namely the sequencei;} (j > 1) is a monotone (descending) sequence of languages. Thigapat

the (set-theoretic) limit

o0
Koo 1= lim K = ﬂ K; (11)
7=0
exists. The following result asserts thatif,, is reached in dinite number of steps, theR, is precisely

the supremal relatively observable sublanguagé€'of.e. sup O(C).

Proposition 3. If K, in (I1) is reached in a finite number of steps, then

Ko =supO(C).

Proof. Suppose that the limif(, is reached in a finite number of steps. ThER, = Q(K). As in
the proof of Propositiofl2, we derive that,, € O(C).

It remains to show thak(,, is the supremal element @?(C). Let K’ € O(C); it will be shown that
K’ C K, by induction. The base cad€’ C K; holds becausé&’ C C and K, = C. Suppose that



K'CKj_. Letse K. Thens € K;_; and

Hences € F'(K;_1). This shows that

K' C F(Kj-1)

= K’ - F(Kj_l)

= K’ - Kj—l N F(Kj_l).
Moreover, sinceK’ € O(C), K' is normal with respect ta N M. Thus K’ C SupN(Kj_l N
F(K;_1), Cn M) = K. This completes the proof of the induction step, and theeetmnfirms that
K' C K. O

In the next section, we shall establish that, when the gimeguages\/ and C areregular, the limit

K in (11) is indeed reached in a finite number of steps.

l1l. EFFECTIVE COMPUTATION OF sup O(C) IN THE REGULAR CASE

In this section, we first review the concept of Nerode egemeé relation and a finite convergence
result for a sequence of regular languages. Based on theshew prove that the sequence generated by
(10) converges to the supremal relatively observable sgbiagesup O(C) in a finite number of steps.

Finally, we show that the computation eip O(C) is effective.

A. Preliminaries

Let 7 be an arbitraryequivalence relatioron ¥*. Denote byX* /= the set ofequivalence classesf
m, and write || for the cardinality of¥* /7. Define thecanonical projectionP; : ¥* — ¥* /7, namely
the surjective function mapping anyc >* onto its equivalence clasB.(s) € X* /.

Let 71,2 be two equivalence relations dir. The partial order m; < 75 holds if
(Vsl,SQ € E*) S1 = Sg(mOd 7T1) = 51 = 32(m0d 7T2).
The meetr; A w9 is defined by

(VSl,SQ S 2*) S1 = SQ(mOd T /\7T2) iff 51 = SQ(mOd 7'('1) & s1 = SQ(mOd 7'('2).



For a languagd. C ¥*, write Ner(L) for the Nerode equivalence relatioff] on ¥* with respect to

L; namely for allsy, s2 € ¥*, s1 = so(mod NefL)) provided
(Vw € £¥) sjw € L & sqw € L.

Write ||L|| for the cardinality of the set of equivalence classes of(Ngri.e. ||L|| := |Ner(L)|. The
languageL is said to beregular [7] if ||L|| < oo. Henceforth, we assume that the given languales
andC' are regular.

An equivalence relatiop is aright congruenceon X* if
(Vs1, 82, € %) 81 = so(mod p) = s1t = sot(mod p).

Any Nerode equivalence relation is a right congruence. Figtst congruence and languages, L, C

¥*, we say thatl; is p-supported onL, [9, Section 2.8] ifL; C L, and
{L1,%* — L1} Ap ANer(Ly) < Ner(Ly). (12)

The p-support relation isransitive namely, if L, is p-supported oy, and L is p-supported orls, then
L, is p-supported onLz. The following lemma is central to establish finite convercg of a monotone

language sequence.

Lemma 2. [9) Theorem 2.8.11] Given a monotone sequence of languages K; O Ko O --- with
Ky regular, and a fixed right congruenge on X* with |p| < oo, suppose thaf{; is p-supported on
K;_, for all 5 > 1. Then eachk; is regular, and the sequence is finitely convergent to a suplage

K. Furthermore,K is supported onk, and
K< Jpl - [ Kol + 1.

In view of this lemma, to show finite convergence of the segeen [10), it suffices to find a fixed
right congruence with |p| < oo such thatk; is p-supported onk;_; for all j > 1. To this end, we
need the following notation.

Let 1 := Ner(M), n := Ner(C') be Nerode equivalence relations and
pj = A{F(K;), 5" = F(K;)}, v :={K; 2" - K;} (j>1)

also stand for the equivalence relations correspondingeset partitions. Thefu| < oo, || < oo, and

lej| = |~;| = 2. Let 7 be an equivalence relation air, and definef, : ¥* — Pwr(¥X*/7) according to

(Vs € B%) fa(s) ={P:(s") | § € [s)n (CNM)} (13)
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where[s] = P~'P({s}). Write p(7) := ker f,. The size ofp(r) is |p(x)| < 2/7I [9, Ex. 1.4.21].
Another property ofo(-) we shall use later is [9, Ex. 1.4.21]:
p(m1 A p(ms)) = p(m1 Ame) = p(p(m1) A m2)

wherem, Ty are equivalence relations ofr.

B. Convergence Result

First, we present a key result on support relation of the sege{ K;} generated by (10).

Proposition 4. Consider the sequendgds;} generated by (10). For each> 1, there holds that; is

p-supported onk;_;, where
p=pAnAp(pAn). 14)
Let us postpone the proof of Propositioh 4, and present inmtedgl our main result.

Theorem 1. Consider the sequendds;} generated by (10), and suppose that the given languades
andC are regular. Then the sequen¢&; } is finitely convergent teup O(C), andsup O(C) is a regular

language with
||[sup O(C)]| < ||M]|-||C]| - 2MIHICT 41,

Proof. Let p = u An A p(pu A n) as in [(14). Sincex andn are right congruences, so aen n and
p(nAn) (O Example 6.1.25]). Hencg is a right congruence, with

ol < |u| - In| - 21

= ||M]| - |C]] - 2MIHIet,

Since the language®/ andC are regular, i.e||M]||, ||C|| < oo, we derive thafp| < co.
It then follows from LemmakI3 arid 2 that the sequefisg} is finitely convergent taup O(C), and
sup O(C) is p-supported oKy, i.e.

Ner(sup O(C)) > {sup O(C),E* —sup O(C)} A p A Ner(Ky)

= {supO(C),E* —supO(C)} AuAn A p(pnAn) ANer(Ky)

= {supO(C),X* —sup O(C)} A u A p(pu An) A Ner(Kyp).

11



Hencesup O(C) is in fact (u A p(u A n))-supported oKy, which implies
[[sup O(O)|] < | A p(p An)| - || Kol +1
< [|M]] - ||c|| - 2MIFICT 41 < oo

Thereforesup O(C) is itself a regular language. O
Theorent ] establishes the finite convergence of the seqyéngein (10), as well as the fact that an
upper bound of| sup O(C)|| is exponential in the product ¢fM || and||C]|.

In the sequel we prove Propositibh 4, for which we need twontas

Lemma 3. For each;j > 1, the Nerode equivalence relation aif with respect toF'(K;_;) satisfies
Ner(F(Kj-1)) = ¢; ANer(K;_1) A p(Ner(K;_1) A pAn).
Proof. First, lets;, s, € ¥* — F(K;_1); then for allw € £* it holds thats,w, saw € ¥* — F(K;_1).

Thuss; = 32(m0d Ne(F(K]_l)))

Next, letsi, sy € F(K;_1) and assume that
s1 = sp(mod NefK;_1) A p(Ner(K;_1) A uAn)).

Also letw € ¥* be such thakw € F(K;_1). It will be shown thatssw € F(K;_1). Note first that
sow € K;_q, sincesyw € F(K;_1) C K;_; ands; = sp(mod NefK;_;)). Hence it is left to show that

D(szw)NM C K;_y, i.e.

U{[SQ—wﬂU.a] NCol|loes}nNMCK; .
It follows from s, € F(K;_;) that

U{[S_QQU.U] NCol|loces}nNMCK; .
Thus lets), € [s2], 2 € [w], andsha’ € [szwNC.o]NC.oNM for someo € X. Write 2’ := /o, v € *.
Sinces; = sa(mod p(Ner(K;_1) A A n)), there existss] € [s1] such thats] = sh(mod NefK;_;) A
pwAn). Hencesjz' € M andsjy’ € C, and we derive that|z' = sjy'oc € [{s;w}NC.c]NC.oc N M.
It then follows froms,w € F(K;_) thatsiz’ € K;_;, which in turn implies that4a’ € K;_;. This
completes the proof of,w € F(K;_1), as required. 0
Lemma 4. For K; (j > 1) generated by[(10), the following statements hold:

Kj = U{[S] N (UQM) | seX* & [S] N (UQM) C Kj—l ﬂF(Kj_l)};

Ner(K;) > pAn A p(Ner(K;_1) ANer(F(K;_1)) A pAn).
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Proof. By (@) we know thatk; is the supremal normal sublanguagelof_; N F'(K;_) with respect
to C N M. Thus the conclusions follow immediately from Example B5Lof [9]. O
Now we are ready to prove Propositibh 4.

Proof of Propositiori To prove that; is p-supported or¥;_; (j > 1), by definition we must show
that

Ner(K;) > rj A An A p(pAn) ANerE;_q).
It suffices to show the following:
Ner(K;) > rj A An A p(uAn).
We prove this statement by induction. First, we show the kase ( = 1)
Ner(/1) > k1 A AnAp(pAn).
From LemmdB and<, = C (thus Ne(K,) = n) we have
Ner(F(Ko)) > ¢1 A Ner(Ky) A p(Ner(Ko) A A n)
= o1 AnAp(pAn).
It then follows from Lemmal4 that
Ner(K7) > uAn A p(Ner(Ky) ANer(F(Ky)) A An)
= pAnApn At AnAp(uAn) ApAn)
= pAnAp(er ApAn) Ap(pAn)
=pAnAp(pr ApAn). (15)

We claim that

Ner(K1) > k1 A AnAp(pAn).

To show this, lets;, so € ©* and assume that; = so(mod ki A An A p(pAn)). If 51,80 € 2F — K7,
then for allw € ¥*, sjw, sow € X* — Ky, thuss; = sy(mod NefK7)). Now let s1,s0 € K;. By
Lemmal4 we derive that for allj € [s;] N (CNM) andsh € [so] N (CNM), si,s5 € K. Since
K, C F(Ky), s},s, € F(Ko) and hence

{P%Aum(sll) | ) € [s1]N (Uﬁ M)} = {P%Aum(sé) | s € [s2] N (Uﬁ M)}
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Namelys; = sa(mod p(p1 ApAn)). This implies thats; = so(mod NefK7)) by (I5). Hence the above
claim is established, and the base case is proved.

For the induction step, suppose that for 2, there holds
Ner(K;_1) > rj—1 Ap An A p(pAn).
Again by Lemmd B we have
Ner(F(Kj-1)) > ¢j-1 ANer(K;_1) A p(Ner(K;_1) A pAn)
> Qi1 ANRj—1t A AN A (AN Ap(kj—1 A ADA (AN A pAn)
=j_ 1 ARj—1t Ap AN A p(uAn) A p(kj—1 A pAn)
= @j—1 NKj—1t A AN A p(kj—1 A An)
Then by Lemmal4,
Ner(K;) = pAn A p(Ner(K;_1) ANer(F(Kj-1)) A pAn)
> pANNp(ej—1 AKj—1 A AN A p(Kj—1 A An))
= puANAE(pj—1 ANKj—1 ApAn). (16)

We claim that

Ner(K;) > rj A An A p(uAn).

To show this, lets;, s, € ¥* and assume that; = so(mod x; A pAnAp(pAn)). If si,s0 € 3% —E
then for allw € X*, sqw, sow € ¥* — E hences; = sa(mod NefK;)). Now let s;, sy € E By
Lemmal4 we derive that for alf| € [s;] N (CNM) and sy € [so] N (CNM), s|,s5 € K;. Since
Kj C F(Kj—1) € Kj1,

{P@j—l/\ﬂj—l/\ﬂ/\n(s/l) | 8/1 € [81] N (Uﬁ M)}

:{P@j—l/\ﬂj—l/\ﬂ/\n(sé) | 53 € [s2]N (Uﬁ M)}

Namelys; = so(mod p(p;—1 Akj—1 ApAn). This implies thats; = so(mod NefK;)) by (16). Therefore

the above claim is established, and the induction step igtaiad.
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C. Effective Computability a2

We conclude this section by showing that the iteration sehem(10) yields an effective procedure
for the computation okup O(C), when the given languaged and C' are regular. For this, owing to
Theorent1L, it suffices to prove that the operdtom (9) is effectively computable.

Recall that a languagé C X* is regular if and only if there exists a finite-state automa® =
(Q,%,6,q0,Qnm) such that

Lin(G) ={s € X" | 6(q0,5) € Qm} = L.

Let O : (Pwr(X*))* — (Pwr(X*)) be an operator that preserves regularity; nandaly..., L, regular
implies O(L;, ..., L) regular. We say that is effectively computablé from eachk-tuple (L4, ..., L)
of regular languages, one can construct a finite-state aton@x with L,,(G) = O(Ly, ..., Lk).

The standard operators of language closure, complﬂnﬂn'un, and intersection all preserve regularity

and are effectively computablg|[6]. Moreover, both the af@rsup N : Pwr(X*) — Pwr(X*) given
by
supNV(L):=| {L/ CL|[L']nH =L}, forsome fixedd C x*
and the operatosup F : Pwr(X*) — Pwr(X*) given by
sup F(L) := U{L/ CL|L=1L"}

preserve regularity and are effectively computable (s¢a@afdl [10], respectively).

The main result of this subsection is the following theorem.

Theorem 2. Suppose tha/ and C' are regular. Then the operatde in (@) preserves regularity and is

effectively computable.
The following proposition is a key fact.
Proposition 5. For eachK C ¥*,
F(K) =K NsupF (ﬂ{sup/\/(? UM NC.0))U(C.o) | oe z:}) .

Proof. By (8) and [(6),

FE)={seK||J{EnColnCTuo|ocex}nM CK}.

1For a languagd. C X", its complement, writter.¢, is ¥* — L.
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Hence

seF(K)escKand| J{EnColnCo|oeS}NnMCK
sseKand| J{ENColnCTo|ocex} CKU M)
sseKand(VoeX) [snC.olnC.oc CKU(M)*
sscKand(VoeX) [snC.o] CKU(M)U(C.0)°
ssecKand(VoeX) [snC.o]C KU(MNC.0)°
sscKand(VoecX)snC.o CsupN(KU(MNC.0))
sseKand(VoeX)sCsupN(KU(MNC.o))U(C.o)°
& seKands C((fsupN(E UM NC.0))U(Co) | oeX}
& s€ K ands € sup F (ﬂ{sup/\f(? UMNC.o))U(C.o)|oe Z})

sseKNsupF (ﬂ{supN(K UM NT.o))U(Co) | oe z}) .

We also need the following lemma.

Lemma 5. Leto € ¥ be fixed. Then the operatd, : Pwr(X*) — Pwr(X*) given by

preserves regularity and is effectively computable.

Proof. Let G = (Q, %, 9, g0, @) be a finite-state automaton with,,(G) = L. We will construct a
new finite-state automatod such thatZ,,(H) = B,(L). The construction is in two steps. First, kgt

be a new state (i.e;* ¢ Q), and defineG’' = (Q', X, ¢, g0, Q),,) Where

Q' =QuU{q}, ¢ :=0U{(¢,0,q")qgecQ}, Q,:={q}

Thus G’ is a finite-state automaton with,,(G’) = B,(L). However,G' is nondeterministicinasmuch

asd'(q,0) = {¢,q*} whenevei(q, o) is defined and(q, o) = ¢’. The second step is hence to apply the

standard subset construction to convert the nondetertiilGs to a deterministicfinite-state automaton

H with L,,(H) = L,,(G') = B,(L). This completes the proof. O
Finally we present the proof of Theordrh 2.
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Proof of Theorerll2By Propositior. b and the definition 6f : Pwr(X*) — Pwr(X*) in (9), for each

K C ¥* we derive
Q(K) = supN (K Nsup F (ﬂ{sup/\/(? UMNC.o))U(C.o)|oc E})) .

Since the language closure, complement, union, intesgctiip \, sup F and C.oc (by Lemmalb)
all preserve regularity and are effectively computable, shme conclusion for the operatarfollows
immediately. O

In the proof, we see that the operafoin (9) is decomposed into a sequence of standard or well-know

language operations. This allows straightforward impletaton of 2 using off-the-shelf algorithms.

IV. RELATIVE OBSERVABILITY AND CONTROLLABILITY

For the purpose of supervisory control under partial oket@m, we combine relative observability
with controllability and provide a fixpoint characterization of the supremaltikedly observable and
controllable sublanguage.

Let the alphabel be partitioned intoX., the subset of controllable events, aRg, the subset of

uncontrollable events. For the givéd andC, we say thatC' is controllable with respect ta/ if
cx,NMCC.

Whether or notC' is controllable, writeC(C') for the family of all controllable sublanguages ©f Then
the supremal elementip C(C) exists and is effectively computable [10].

Now write CO(C) for the family of controllable and’-observable sublanguages @f Note that the
family CO(C) is nonempty inasmuch as the empty language is a member. $hartke closed-under-
union property of both controllability and@’-observability, the supremal controllable a6dobservable

sublanguageup CO(C) therefore exists and is given by
supCO(C) == | {K | K € CO(C)}. (17)
Define the operatol' : Pwr(¥*) — Pwr(X*) by
I'(K) := sup O(sup C(K)). (18)
The proposition below characterizesp CO(C') as the largest fixpoint of .

Proposition 6. supCO(C) = I'(supCO(C)), andsup CO(C) O K for everyK such thatK = I'(K).
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Proof. Sincesup CO(C) € CO(C), i.e. both controllable and’-observable,
'(sup CO(C)) = sup O(sup C(sup CO(C)))
= sup O(sup CO(C))
= sup CO(C).

Next let K be such thatl = I'(K'). To show thatx" C sup CO(C), it suffices to show thak” € CO(C).
Let H := supC(K); thus H C K. On the other hand, fronk’ = I'(K) = sup O(H) we haveK C H.
Hence K = H. It follows that K = supC(K) and K = sup O(K), which means that{ is both
controllable and”-observable. Therefore we conclude tiiate CO(C). O

In view of Propositiori B, we computeip CO(C') by iteration ofT" as follows:
(Vj>1) K; =T(K;_1), Ko=C. (19)
It is readily verified thaf’(K) C K, and thus
KiDKi1 2Ky ---

Namely the sequencgk;} (j > 1) is a monotone (descending) sequence of languages. Rectik

notation from Sectiof IlI-A, we have the following key resul

Proposition 7. Consider the sequendgs;} generated by((19) and let = i A n A p(p An). Then for
eachj > 1, K; is p-supported onk;_;.

Proof. Write H; := supC(K;_1) andv; := {H;,X* — H;} for j > 1. Then by [10, p. 642] there

holds

Ner(H;) > 1; A p ANer(K;_y).
We claim that forj > 1,

Ner(K;) > rj A An A p(uAn).
We prove this claim by induction. For the base cage-(1),

Ner(H1) > ¢1 A u A Ner(Kp)
=1 ApAD

Since K; = sup O(H;), we set up the following sequence to compife:

(Vi>1) T, = QT,—1), To=H.
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Following the derivations in the proof of Propositibh 4, streadily shown that each; is p-supported

on Hy; in particular,
Ner(K;) > k1 A p ANer(Hy)
> K1 AL A AN A p(pAn)
= k1 AADAp(pAN).

This confirms the base case.

For the induction step, suppose that for 2, there holds
Ner(K; 1) = rkj—1 ApAn A p(pAn).
Thus
Ner(H;) > v; A p ANer(K;_q)
> i Akj—1t A AN A p(pAn)
=i ApAnAp(pAn).
Again set up a sequence to compiife as follows:
(Vi>1)T; = UTi—1), To= Hj.
We derive by similar calculations as in Propositidn 4 thatheg; is p-supported onH;; in particular,
Ner(K;) > k; A p A Ner(H;)
> ki Nbg A A A (i An)
=K AuANAp(pAn).
Therefore the induction step is completed, and the aboum d¢$aestablished. Then it follows immediately
Ner(K;) > wj A AnAp(pAn) ANer(K;_1)
= kj A p ANer(K;_y).

Namely, K; is p-supported onk;_;, as required. O
The following theorem is the main result of this section, ethfollows directly from Propositiofl7

and LemmaR.
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Eo::{aaVaU}
Yuo = {51, B2, B3, Ba, B5}

P:(S,US,,) — %

—O initial state

© marker state

Fig. 1. Example: computation of the suprenddobservable sublanguagep O(C) by iteration of the operataf in (9)

Theorem 3. Consider the sequencgy;} in (19), and suppose that the given languagésand C
are regular. Then the sequengé;} is finitely convergent taup CO(C), andsupCO(C) is a regular

language with
||[supcO(C)]] < ||M]| -||C]| - 2MIHICT 41

Finally, supCO(C) is effectively computable, inasmuch as the operasoisC(-) and sup O(-) are

(see [[10] and Theorefd 2, respectively). In particular, theratorT" in (18) is effectively computable.

V. EXAMPLES

In this section, we first give an example to illustrate the patation of the supremal’-observable
sublanguageup O(C) (by iteration of the operatof2). Then we present an empirical study on the
computation of the supremal controllable afiebbservable sublanguagep CO(C) (by iteration of the

operatorT’, which has been implemented by a computer program).

A. An Example of Computingip O(C)

Consider the example displayed in Hig. 1. The observableteset is>, = {«,~, o} and unobservable
Yuo = {P1, B2, B3, B4, B5 }; thus the natural projection iB : (X, U X,,)* — X7, Let

Afﬁ:lmxcn::{QQ/WQQWUM%QJM%QM%aﬂﬂﬂﬁYW

/83’7550'7 /847 B4a7 /8477 /84(1557 547/85}
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and the specification language

C =M — {BsaPs, BavPs}.

Both M andC are regular languages.

Now apply the operatof2 in (9). Initialize Ky = C. The first iterationj = 1 starts with
F(Ky) ={s€ Ky | DE)NM C Ky}
={e,a,v, 00,70, b1, Bra, Brag, Ba, Bacv, B3, B3, B, Bacr, Bay}
= Ko — {B2085, B20:B50, B3y 55, B37P50'}-

Note that sinceBsafso € Ky, strings foafs, f2aBs50 € Ko. But BrafBs, feafso ¢ F(Kp); this is
because the string o35 belongs toD(B2a85) N M and D(Bzafs50) N M, but 3485 does not belong
to Ky. For the same reasofizy3s, 837350 € Ko but 83735, 837650 ¢ F(Kjp). Next calculate

F(KO) N KO = {67 «, 7y, a0, 70, 51 ao, 52047 53/77 547 5401, ﬁ47}
= Ko — {20850, B37B50}.

Removing stringsiaaBs0, 537650 from K, makesF (Ky) N Ky not normal with respect taC N M.
Indeed,ao, Brac € [fraBs0]NC N M andyo € [B37B850] N C N M violate the normality condition and

therefore must also be removed. Hence,
K1 =supN(F(Ky) N Ko, CN Ly,(G))
= {e,,, Bacv, B3, Ba, Bacy, By}
= (F(Ky) N Ky) — {ao, praoc,yo}.

This completes the first iteratioh= 1.

Since K; g Ky, we proceed tg = 2,
F(K))={s€ K| DE)NMC K}
= {e,7, B2, B3, B3, Bu, Bav}
= K1 — {a, faa, Baar}.

We see thaty, Boa, B € K1 but o, Baa, By ¢ F(K7). This is because the stringga € D(@) N M,
D(B2a) N M, and D(B4a) N M, but 81 ¢ K. Note that3;a was in K sinceBia0 € Ky, but fiac
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was removed so as to ensure normality/of; this in turn removed3; «, which now causes removal of

strings«, S2a, B4 altogether. Continuing,

F(K1)N Ky = {¢,7, 837, b1, B}
= Kl - {OZ, 52057540[}-

Removing stringsy, B2, B4 does not destroy normality oK. Indeed F(K;) N K7 is normal with

respect toC' N M and we have
Ky =supN(F(Ky) N K;,CN M)
= {€,7, 837, B1, Bav}
= F(K;) N K.

This completes the second iteratign= 2.

Since K, ; K1, we proceed tg = 3 as follows:
F(Ky)={s€ Ky | DE)NM C Ks}
= {&,7, 53,837, Bu, By} = Ka;
F(K3y) N Ky = K3 N Ky = Ko;
K3 =supN(F(K3) N Ky,C N M)
=supN (K2, CN M) = Ks.
Since K3 = K>, the limit of the sequence i _(1L0) is reached. Therefore

K3 = {67 v, /8377 /847 54’7}

is the supremaf’-observable sublanguage 6f

B. A Case Study of Computingp CO(C)

Consider the same case study ad in [3, Section V-B], namelgraufacturing workcell served by five
automated guided vehicles (AGV). Adopting the same sedfimg apply the implementdd operator to
compute the supremal relatively observable and contrellabblanguageup CO(C), as represented by
a finite-state automaton, s&JPO. That is,

L,,(SUPO) = supCO(C).
For this case study, the full-observation supervisor @eenting the supremal controllable sublan-

guage) has 4406 states and 11338 transitions. Selectifegedif subsets of unobservable events, the
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TABLE I. SUPO COMPUTED FOR DIFFERENT SUBSETS OF UNOBSERVABLE EVENTS IN EFAGV CASE STUDY

Yuwo =X — X, | State #, transition # ocSUPO
{13} (4406,11338)
{21} (4348,10810)
{31} (4302,11040)
{43} (4319,10923)
{51} (4400,11296)
{12,31 (1736,4440)
{24,413 (4122,10311)
{31,43 (4215,10639)
{32,51 (2692,6596)
{41,51 (3795,9355)
{11,31,43 (163,314)
{12,33,51 (94,140)
{12,24,33,44,58 (72,112)
{12,21,32,43,51 (166,314)
{13,23,31,33,
(563,1244)
41,43,51,53

computational results for the supremal relatively obdelevand controllable sublanguages, SWPO,
are listed in Tabléll. We see in all cases but the fitsf,(= {13}) that the state and transition numbers of
SUPO are fewer than those of the full-observation supervisoreWfi,, = {13}, in fact, the supremal
controllable sublanguage is already observable, and igeftre itself the supremal relatively observable
and controllable sublanguage.

Moreover, we have confirmed that the computation resulteeagrith those by the algorithm inl[3].
Thus the new computation scheme provides a useful alteentatiensure presumed correctness based on

consistency.

VI. CONCLUSIONS

We have presented a new characterization of relative oals#ity, and an operator on languages whose
largest fixpoint is the supremal relatively observable aobliage. In the case of regular languages and
based on the support relation, we have proved that the sequédanguages generated by the operator

converges finitely to the supremal relatively observablblaswguage, and the operator is effectively
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computable.

Moreover, for the purpose of supervisory control underipbobservation, we have presented a second

operator that in the regular case effectively computes tipeesnal relatively observable and controllable

sublanguage. Finally we have presented an example and atoageto illustrate the effectiveness of the

proposed computation schemes.
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