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Characterizations and Effective Computation of

Supremal Relatively Observable Sublanguages*
Kai Cai1 and Renyuan Zhang2, W.M. Wonham3

Abstract

Recently we proposedrelative observabilityfor supervisory control of discrete-event systems under

partial observation. Relative observability is closed under set unions and hence there exists the supremal

relatively observable sublanguage of a given language. In this paper we present a new characterization

of relative observability, based on which an operator on languages is proposed whose largest fixpoint

is the supremal relatively observable sublanguage. Iteratively applying this operator yields a monotone

sequence of languages; exploiting the linguistic concept of support based on Nerode equivalence, we

prove for regular languages that the sequence converges finitely to the supremal relatively observable

sublanguage, and the operator is effectively computable. Moreover, for the purpose of control, we propose

a second operator that in the regular case computes the supremal relatively observable and controllable

sublanguage. The computational effectiveness of the operator is demonstrated on a case study.
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relation, support relation, discrete-event systems, automata

I. INTRODUCTION

In [3] we proposedrelative observabilityfor supervisory control of discrete-event systems (DES)

under partial observation. The essence of relative observability is to set a fixed ambient language relative
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to which the standard observability conditions [8] are tested. Relative observability is proved to be

stronger than observability [5], [8], weaker than normality [5], [8], and closed under arbitrary set unions.

Therefore the supremal relatively observable sublanguageof a given language exists, and we developed

an automaton-based algorithm to compute the supremal sublanguage.

In this paper and its conference precursor [2], we present a new characterization of relative observability.

The original definition of relative observability in [3] wasformulated in terms ofstrings, while the

new characterization is given inlanguages. Based on this characterization, we propose an operator on

languages, whose largest fixpoint is precisely the supremalrelatively observable sublanguage. Iteratively

applying this operator yields a monotone sequence of languages. In the case where the relevant lan-

guages are regular, we prove that the sequence converges finitely to the supremal relatively observable

sublanguage, and the operator is effectively computable.

This new computation scheme for the supremal sublanguage isgiven entirely in terms of languages, and

the convergence proof systematically exploits the conceptof support( [9, Section 2.8]) based on Nerode

equivalence relations [7]. The solution therefore separates out the linguistic essence of the problem from

the implementational aspects of state computation using automaton models. This approach is in the same

spirit as [10] for controllability, namely operator fixpoint and successive approximation.

Moreover, the proposed language-based scheme allows more straightforward implementation, as com-

pared to the automaton-based algorithm in [3]. In particular, we show that the language operator used in

each iteration of the language-based scheme may be decomposed into a series of standard or well-known

language operations (e.g. complement, union, subset construction); therefore off-the-shelf algorithms may

be suitably assembled to implement the computation scheme.On the other hand, both the language

and automaton-based algorithms have (at least) exponential complexity in the worst case, which is the

unfortunate nature of supervisor synthesis under partial observation. Our previous experience with the

automaton-based algorithm in [3] suggests that computing the supremal relatively observable sublanguage

is fairly delicate and thus prone to error. Hence, it is advantageous to have two algorithms at hand so

that one can double check the computation results, thereby ensuring presumed correctness based on

consistency.

Finally, for the purpose of supervisory control under partial observation, we combine relative observ-

ability with controllability. In particular, we propose anoperator which in the regular case effectively

computes the supremal relatively observable and controllable sublanguage. We have implemented this

operator and tested its effectiveness on a case study.

The rest of the paper is organized as follows. In Section II wepresent a new characterization of relative
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observability, and an operator on languages that yields an iterative scheme to compute the supremal

relatively observable sublanguage. In Section III we provethat in the case of regular languages, the

iterative scheme generates a monotone sequence of languages that is finitely convergent to the supremal

relatively observable sublanguage. In Section IV we combine relative observability and controllability,

and propose an operator that effectively computes the supremal relatively observable and controllable

sublanguage. Section V presents illustrative examples, and finally in Section VI we state conclusions.

This paper extends its conference precursor [2] in the following respects. (1) In the main result of Sec-

tion III, Theorem 1, the bound on the size of the supremal sublanguage is tightened and the corresponding

proof given. (2) The effective computability of the proposed operator is shown in Subsection III-C. (3)

Relative observability is combined with controllability in Section IV, and a new operator is presented

that effectively computes the supremal relatively observable and controllable sublanguage. (4) A case

study is given in Subsection V-B to demonstrate the effectiveness of the newly proposed computation

schemes.

II. CHARACTERIZATIONS OF RELATIVE OBSERVABILITY AND ITS SUPREMAL ELEMENT

In this section, the concept of relative observability proposed in [3] is first reviewed. Then we present

a new characterization of relative observability, together with a fixpoint characterization of the supremal

relatively observable sublanguage.

A. Relative Observability

Let Σ be a finite event set. A strings ∈ Σ∗ is a prefix of another stringt ∈ Σ∗, written s ≤ t,

if there existsu ∈ Σ∗ such thatsu = t. Let L ⊆ Σ∗ be a language. The(prefix) closureof L is

L := {s ∈ Σ∗ | (∃t ∈ L) s ≤ t}. For partial observation, let the event setΣ be partitioned intoΣo,

the observable event subset, andΣuo, the unobservable subset (i.e.Σ = Σo∪̇Σuo). Bring in thenatural

projectionP : Σ∗ → Σ∗
o defined according to

P (ǫ) = ǫ, ǫ is the empty string;

P (σ) =







ǫ, if σ /∈ Σo,

σ, if σ ∈ Σo;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(1)

In the usual way,P is extended toP : Pwr(Σ∗) → Pwr(Σ∗
o), wherePwr(·) denotes powerset. Write

P−1 : Pwr(Σ∗
o) → Pwr(Σ∗) for the inverse-image functionof P .
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Throughout the paper, letM denote the marked behavior of the plant to be controlled, andC ⊆ M

an imposed specification language. LetK ⊆ C. We say thatK is relatively observable(with respect to

M , C, andP ), or simplyC-observable, if the following two conditions hold:

(i) (∀s, s′ ∈ Σ∗,∀σ ∈ Σ) sσ ∈ K, s′ ∈ C, s′σ ∈M,P (s) = P (s′) ⇒ s′σ ∈ K

(ii) (∀s, s′ ∈ Σ∗) s ∈ K, s′ ∈ C ∩M,P (s) = P (s′) ⇒ s′ ∈ K.

In words, relative observability ofK requires for every lookalike pair(s, s′) in C that (i) s ands′ have

identical one-step continuations, if allowed inM , with respect to membership inK; and (ii) if each

string is inM and one actually belongs toK, then so does the other. Note that the tests for relative

observability ofK are not limited to the strings inK (as with standard observability [5], [8]), but apply

to all strings inC; for this reason, one may think ofC as theambientlanguage, relative to which the

conditions (i) and (ii) are tested.

We have proved in [3] that in general, relative observability is stronger than observability, weaker than

normality, and closed under arbitrary set unions. Write

O(C) = {K ⊆ C | K is C-observable} (2)

for the family of allC-observable sublanguages ofC. ThenO(C) is nonempty (the empty language∅

belongs) and contains a unique supremal element

supO(C) :=
⋃

{K | K ∈ O(C)} (3)

i.e. the supremal relatively observable sublanguage ofC.

B. Characterization of Relative Observability

For N ⊆ Σ∗, write [N ] for P−1P (N), namely the set of all lookalike strings to strings inN . A

languageN is normal with respect toM if [N ] ∩M = N . ForK ⊆ Σ∗ write

N (K,M) = {K ′ ⊆ K | [K ′] ∩M = K ′}. (4)

Since normality is closed under union,N (K,M) has a unique supremal elementsupN (K,M) which

may be effectively computed [1], [4].

Write

C.σ := {sσ | s ∈ C}, σ ∈ Σ. (5)
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Let K ⊆ C and define

D(K) :=
⋃

{

[K ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

. (6)

ThusD(K) is the collection of strings in the formtσ (t ∈ C, σ ∈ Σ), that are lookalike to the strings

in K ending with the same eventσ. Note that ifK = ∅ thenD(K) = ∅. This languageD(K) turns out

to be key to the following characterization of relative observability.

Proposition 1. Let K ⊆ C ⊆M . ThenK is C-observable if and only if

(i′) D(K) ∩M ⊆ K

(ii′) [K] ∩
(

C ∩M
)

= K.

Note that condition (i′) is in a form similar to controllability ofK [10] (i.e. KΣu ∩M ⊆ K, where

Σu is the uncontrollable event set), although the expressionD(K) appearing here is more complicated

owing to the presence of the normality operator[·]. Condition (ii′) is normality ofK with respect to

C ∩M .

Proof of Proposition 1.We first show that (i′) ⇔ (i), and then (ii′) ⇔ (ii).

1. (i′) ⇒ (i). Let s, s′ ∈ Σ∗, σ ∈ Σ, and assume thatsσ ∈ K, s′ ∈ C, s′σ ∈M , andP (s) = P (s′). It

will be shown thats′σ ∈ K. SinceK ⊆ C, we haveK ⊆ C and

sσ ∈ K ⇒ sσ ∈ K ∩ C.σ

⇒ s′σ ∈ [K ∩ C.σ]

⇒ s′σ ∈ [K ∩ C.σ] ∩ C.σ

⇒ s′σ ∈ D(K)

⇒ s′σ ∈ D(K) ∩M

⇒ s′σ ∈ K (by (i′)).

2. (i′) ⇐ (i). Let s ∈ D(K)∩M . According to (6)ǫ /∈ D(K); thuss 6= ǫ. Let s = tσ for somet ∈ Σ∗
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andσ ∈ Σ. Then

s ∈ D(K) ∩M ⇒ tσ ∈ [K ∩C.σ] ∩ C.σ ∩M

⇒ t ∈ C, tσ ∈M,

(∃t′ ∈ Σ∗)(P (t) = P (t′), t′σ ∈ K ∩ C.σ)

⇒ tσ ∈ K, (by (i))

⇒ s ∈ K.

3. (ii′) ⇒ (ii). Let s, s′ ∈ Σ∗ and assume thats ∈ K, s′ ∈ C ∩M , andP (s) = P (s′). Then

s ∈ K ⇒ s′ ∈ [K]

⇒ s′ ∈ [K] ∩ C ∩M

⇒ s′σ ∈ K (by (ii′)).

4. (ii) ⇒ (ii ′). (⊇) holds becauseK ⊆ [K] andK ⊆ C∩M . To show (⊆), let s ∈ [K] ands ∈ C∩M .

Then there existss′ ∈ K such thatP (s) = P (s′). Therefore by (ii) we derives ∈ K. �

Thanks to the characterization of relative observability in Proposition 1, we rewriteO(C) in (2) as

follows:

O(C) = {K ⊆ C | D(K) ∩M ⊆ K & [K] ∩
(

C ∩M
)

= K}. (7)

In the next subsection, we will characterize the supremal elementsupO(C) as the largest fixpoint of a

language operator.

C. Fixpoint Characterization ofsupO(C)

For a strings ∈ Σ∗, write s̄ for {s}, the set of prefixes ofs. Given a languageK ⊆ Σ∗, let

F (K) := {s ∈ K | D(s̄) ∩M ⊆ K}. (8)

Lemma 1. F (K) is closed, i.e.F (K) = F (K). Moreover, ifK ∈ O(C), thenF (K) = K.

Proof. First, lets ∈ F (K); then there existsw ∈ Σ∗ such thatsw ∈ F (K), i.e. sw ∈ K and

D(sw) ∩ M ⊆ K. It follows that s ∈ K andD(s) ∩M ⊆ K, namelys ∈ F (K). This shows that

F (K) ⊆ F (K); the other directionF (K) ⊇ F (K) is automatic.
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Next, suppose thatK ∈ O(C); by (7) we haveD(K) ∩M ⊆ K. Let s ∈ K; it will be shown that

D(s̄) ∩M ⊆ K. Taking an arbitrary stringt ∈ D(s̄) ∩M , we derive

t ∈
⋃

{

[s ∩C.σ] ∩ C.σ | σ ∈ Σ
}

∩M

⇒t ∈
⋃

{

[K ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M

⇒t ∈ K.

This shows thats ∈ F (K) by (8), and henceK ⊆ F (K). The other directionF (K) ⊇ K is automatic.

�

Now define an operatorΩ : Pwr(Σ∗) → Pwr(Σ∗) according to

Ω(K) := supN
(

K ∩ F (K), C ∩M
)

, K ∈ Pwr(Σ∗). (9)

A languageK such thatK = Ω(K) is called afixpoint of the operatorΩ. The following proposition

characterizessupO(C) as thelargestfixpoint of Ω.

Proposition 2. supO(C) = Ω(supO(C)), and supO(C) ⊇ K for everyK such thatK = Ω(K).

Proof. SincesupO(C) ∈ O(C), we have

Ω(supO(C)) = supN
(

supO(C) ∩ F (supO(C)), C ∩M
)

= supN (supO(C) ∩ supO(C), C ∩M)

= supN (supO(C), C ∩M)

= supO(C).

Next letK be such thatK = Ω(K). To show thatK ⊆ supO(C), it suffices to show thatK ∈ O(C).

From

K = Ω(K) := supN
(

K ∩ F (K), C ∩M
)

we haveK ⊆ K ∩ F (K). But K ∩ F (K) ⊆ K. Hence, in fact,K = K ∩ F (K). This implies that

K = supN
(

K, C ∩M
)

; namelyK is normal with respect toC ∩M .

On the other hand, byK = K ∩ F (K) ⊆ F (K), we haveK ⊆ F (K) = F (K). But F (K) ⊆ K by

definition; thereforeK = F (K). In what follows it will be shown thatD(F (K)) ∩M ⊆ F (K), which

is equivalent toD(K)∩M ⊆ K. Let s ∈ D(F (K))∩M . As in the proof of Proposition 1 (item 2), we
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know thats 6= ǫ. So lets = tσ for somet ∈ Σ∗ andσ ∈ Σ. Then

s ∈ D(F (K)) ∩M ⇒ tσ ∈ [F (K) ∩ C.σ] ∩ C.σ ∩M

⇒ (∃t′ ∈ C)P (t) = P (t′), t′σ ∈ F (K)

⇒ D(t′σ) ∩M ⊆ K (by definition ofF (K)).

Then by (6)

⋃

{

[t′σ ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M ⊆ K.

Since tσ belongs to the left-hand-side of the above inequality, we have tσ ∈ K = F (K). Therefore

D(F (K)) ∩M ⊆ F (K); equivalentlyD(K) ∩M ⊆ K. This completes the proof ofK ∈ O(C). �

In view of Proposition 2, it is natural to attempt to computesupO(C) by iteration ofΩ as follows:

(∀j ≥ 1) Kj = Ω(Kj−1), K0 = C. (10)

It is readily verified thatΩ(K) ⊆ K; hence

K0 ⊇ K1 ⊇ K2 ⊇ · · ·

Namely the sequence{Kj} (j ≥ 1) is a monotone (descending) sequence of languages. This implies that

the (set-theoretic) limit

K∞ := lim
j→∞

Kj =

∞
⋂

j=0

Kj (11)

exists. The following result asserts that ifK∞ is reached in afinite number of steps, thenK∞ is precisely

the supremal relatively observable sublanguage ofC, i.e. supO(C).

Proposition 3. If K∞ in (11) is reached in a finite number of steps, then

K∞ = supO(C).

Proof. Suppose that the limitK∞ is reached in a finite number of steps. ThenK∞ = Ω(K∞). As in

the proof of Proposition 2, we derive thatK∞ ∈ O(C).

It remains to show thatK∞ is the supremal element ofO(C). Let K ′ ∈ O(C); it will be shown that

K ′ ⊆ K∞ by induction. The base caseK ′ ⊆ K0 holds becauseK ′ ⊆ C andK0 = C. Suppose that

8



K ′ ⊆ Kj−1. Let s ∈ K ′. Thens ∈ Kj−1 and

D(s) ∩M ⊆ D(K ′) ∩M

⊆ K ′ (by K ′ ∈ O(C))

⊆ Kj−1.

Hences ∈ F (Kj−1). This shows that

K ′ ⊆ F (Kj−1)

⇒ K ′ ⊆ F (Kj−1)

⇒ K ′ ⊆ Kj−1 ∩ F (Kj−1).

Moreover, sinceK ′ ∈ O(C), K ′ is normal with respect toC ∩ M . Thus K ′ ⊆ supN
(

Kj−1 ∩

F (Kj−1), C ∩M
)

= Kj . This completes the proof of the induction step, and therefore confirms that

K ′ ⊆ K∞. �

In the next section, we shall establish that, when the given languagesM andC are regular, the limit

K∞ in (11) is indeed reached in a finite number of steps.

III. E FFECTIVE COMPUTATION OF supO(C) IN THE REGULAR CASE

In this section, we first review the concept of Nerode equivalence relation and a finite convergence

result for a sequence of regular languages. Based on these, we then prove that the sequence generated by

(10) converges to the supremal relatively observable sublanguagesupO(C) in a finite number of steps.

Finally, we show that the computation ofsupO(C) is effective.

A. Preliminaries

Let π be an arbitraryequivalence relationon Σ∗. Denote byΣ∗/π the set ofequivalence classesof

π, and write|π| for the cardinality ofΣ∗/π. Define thecanonical projectionPπ : Σ∗ → Σ∗/π, namely

the surjective function mapping anys ∈ Σ∗ onto its equivalence classPπ(s) ∈ Σ∗/π.

Let π1, π2 be two equivalence relations onΣ∗. The partial order π1 ≤ π2 holds if

(∀s1, s2 ∈ Σ∗) s1 ≡ s2(mod π1) ⇒ s1 ≡ s2(mod π2).

The meetπ1 ∧ π2 is defined by

(∀s1, s2 ∈ Σ∗) s1 ≡ s2(mod π1 ∧ π2) iff s1 ≡ s2(mod π1) & s1 ≡ s2(mod π2).

9



For a languageL ⊆ Σ∗, write Ner(L) for the Nerode equivalence relation[7] on Σ∗ with respect to

L; namely for alls1, s2 ∈ Σ∗, s1 ≡ s2(mod Ner(L)) provided

(∀w ∈ Σ∗) s1w ∈ L⇔ s2w ∈ L.

Write ||L|| for the cardinality of the set of equivalence classes of Ner(L), i.e. ||L|| := |Ner(L)|. The

languageL is said to beregular [7] if ||L|| < ∞. Henceforth, we assume that the given languagesM

andC are regular.

An equivalence relationρ is a right congruenceon Σ∗ if

(∀s1, s2, t ∈ Σ∗) s1 ≡ s2(mod ρ) ⇒ s1t ≡ s2t(mod ρ).

Any Nerode equivalence relation is a right congruence. For aright congruenceρ and languagesL1, L2 ⊆

Σ∗, we say thatL1 is ρ-supported onL2 [9, Section 2.8] ifL1 ⊆ L2 and

{L1,Σ
∗ − L1} ∧ ρ ∧ Ner(L2) ≤ Ner(L1). (12)

Theρ-support relation istransitive: namely, ifL1 is ρ-supported onL2, andL2 is ρ-supported onL3, then

L1 is ρ-supported onL3. The following lemma is central to establish finite convergence of a monotone

language sequence.

Lemma 2. [9, Theorem 2.8.11] Given a monotone sequence of languagesK0 ⊇ K1 ⊇ K2 ⊇ · · · with

K0 regular, and a fixed right congruenceρ on Σ∗ with |ρ| < ∞, suppose thatKj is ρ-supported on

Kj−1 for all j ≥ 1. Then eachKj is regular, and the sequence is finitely convergent to a sublanguage

K. Furthermore,K is supported onK0 and

||K|| ≤ |ρ| · ||K0||+ 1.

In view of this lemma, to show finite convergence of the sequence in (10), it suffices to find a fixed

right congruenceρ with |ρ| < ∞ such thatKj is ρ-supported onKj−1 for all j ≥ 1. To this end, we

need the following notation.

Let µ := Ner(M), η := Ner(C) be Nerode equivalence relations and

ϕj := {F (Kj),Σ
∗ − F (Kj)}, κj := {Kj ,Σ

∗ −Kj} (j ≥ 1)

also stand for the equivalence relations corresponding to these partitions. Then|µ| < ∞, |η| < ∞, and

|ϕj | = |κj | = 2. Let π be an equivalence relation onΣ∗, and definefπ : Σ∗ → Pwr(Σ∗/π) according to

(∀s ∈ Σ∗) fπ(s) = {Pπ(s
′) | s′ ∈ [s] ∩

(

C ∩M
)

} (13)
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where [s] = P−1P ({s}). Write ℘(π) := ker fπ. The size of℘(π) is |℘(π)| ≤ 2|π| [9, Ex. 1.4.21].

Another property of℘(·) we shall use later is [9, Ex. 1.4.21]:

℘(π1 ∧ ℘(π2)) = ℘(π1 ∧ π2) = ℘(℘(π1) ∧ π2)

whereπ1, π2 are equivalence relations onΣ∗.

B. Convergence Result

First, we present a key result on support relation of the sequence{Kj} generated by (10).

Proposition 4. Consider the sequence{Kj} generated by (10). For eachj ≥ 1, there holds thatKj is

ρ-supported onKj−1, where

ρ := µ ∧ η ∧ ℘(µ ∧ η). (14)

Let us postpone the proof of Proposition 4, and present immediately our main result.

Theorem 1. Consider the sequence{Kj} generated by (10), and suppose that the given languagesM

andC are regular. Then the sequence{Kj} is finitely convergent tosupO(C), andsupO(C) is a regular

language with

|| supO(C)|| ≤ ||M || · ||C|| · 2||M ||·||C|| + 1.

Proof. Let ρ = µ ∧ η ∧ ℘(µ ∧ η) as in (14). Sinceµ and η are right congruences, so areµ ∧ η and

℘(µ ∧ η) ( [9, Example 6.1.25]). Henceρ is a right congruence, with

|ρ| ≤ |µ| · |η| · 2|µ|·|η|

= ||M || · ||C|| · 2||M ||·||C||.

Since the languagesM andC are regular, i.e.||M ||, ||C|| <∞, we derive that|ρ| <∞.

It then follows from Lemmas 3 and 2 that the sequence{Kj} is finitely convergent tosupO(C), and

supO(C) is ρ-supported onK0, i.e.

Ner(supO(C)) ≥ {supO(C),Σ∗ − supO(C)} ∧ ρ ∧ Ner(K0)

= {supO(C),Σ∗ − supO(C)} ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ Ner(K0)

= {supO(C),Σ∗ − supO(C)} ∧ µ ∧ ℘(µ ∧ η) ∧ Ner(K0).

11



HencesupO(C) is in fact (µ ∧ ℘(µ ∧ η))-supported onK0, which implies

|| supO(C)|| ≤ |µ ∧ ℘(µ ∧ η)| · ||K0||+ 1

≤ ||M || · ||C|| · 2||M ||·||C|| + 1 <∞.

ThereforesupO(C) is itself a regular language. �

Theorem 1 establishes the finite convergence of the sequence{Kj} in (10), as well as the fact that an

upper bound of|| supO(C)|| is exponential in the product of||M || and ||C||.

In the sequel we prove Proposition 4, for which we need two lemmas.

Lemma 3. For eachj ≥ 1, the Nerode equivalence relation onΣ∗ with respect toF (Kj−1) satisfies

Ner(F (Kj−1)) ≥ ϕj ∧ Ner(Kj−1) ∧ ℘(Ner(Kj−1) ∧ µ ∧ η).

Proof. First, let s1, s2 ∈ Σ∗ − F (Kj−1); then for allw ∈ Σ∗ it holds thats1w, s2w ∈ Σ∗ − F (Kj−1).

Thuss1 ≡ s2(mod Ner(F (Kj−1))).

Next, let s1, s2 ∈ F (Kj−1) and assume that

s1 ≡ s2(mod Ner(Kj−1) ∧ ℘(Ner(Kj−1) ∧ µ ∧ η)).

Also let w ∈ Σ∗ be such thats1w ∈ F (Kj−1). It will be shown thats2w ∈ F (Kj−1). Note first that

s2w ∈ Kj−1, sinces1w ∈ F (Kj−1) ⊆ Kj−1 ands1 ≡ s2(mod Ner(Kj−1)). Hence it is left to show that

D(s2w) ∩M ⊆ Kj−1, i.e.
⋃

{

[s2w ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M ⊆ Kj−1.

It follows from s2 ∈ F (Kj−1) that
⋃

{

[s2 ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M ⊆ Kj−1.

Thus lets′
2
∈ [s2], x′ ∈ [w], ands′

2
x′ ∈ [s2w∩C.σ]∩C.σ∩M for someσ ∈ Σ. Write x′ := y′σ, y′ ∈ Σ∗.

Sinces1 ≡ s2(mod℘(Ner(Kj−1) ∧ µ ∧ η)), there existss′
1
∈ [s1] such thats′

1
≡ s′

2
(mod Ner(Kj−1) ∧

µ ∧ η). Hences′
1
x′ ∈ M ands′

1
y′ ∈ C, and we derive thats′

1
x′ = s′

1
y′σ ∈ [{s1w} ∩ C.σ] ∩ C.σ ∩M .

It then follows froms1w ∈ F (Kj−1) that s′
1
x′ ∈ Kj−1, which in turn implies thats′

2
x′ ∈ Kj−1. This

completes the proof ofs2w ∈ F (Kj−1), as required. �

Lemma 4. For Kj (j ≥ 1) generated by (10), the following statements hold:

Kj =
⋃

{

[s] ∩
(

C ∩M
)

| s ∈ Σ∗ & [s] ∩
(

C ∩M
)

⊆ Kj−1 ∩ F (Kj−1)
}

;

Ner(Kj) ≥ µ ∧ η ∧ ℘(Ner(Kj−1) ∧ Ner(F (Kj−1)) ∧ µ ∧ η).

12



Proof. By (9) we know thatKj is the supremal normal sublanguage ofKj−1 ∩F (Kj−1) with respect

to C ∩M . Thus the conclusions follow immediately from Example 6.1.25 of [9]. �

Now we are ready to prove Proposition 4.

Proof of Proposition 4.To prove thatKj is ρ-supported onKj−1 (j ≥ 1), by definition we must show

that

Ner(Kj) ≥ κj ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ Ner(Kj−1).

It suffices to show the following:

Ner(Kj) ≥ κj ∧ µ ∧ η ∧ ℘(µ ∧ η).

We prove this statement by induction. First, we show the basecase (j = 1)

Ner(K1) ≥ κ1 ∧ µ ∧ η ∧ ℘(µ ∧ η).

From Lemma 3 andK0 = C (thus Ner(K0) = η) we have

Ner(F (K0)) ≥ ϕ1 ∧ Ner(K0) ∧ ℘(Ner(K0) ∧ µ ∧ η)

= ϕ1 ∧ η ∧ ℘(µ ∧ η).

It then follows from Lemma 4 that

Ner(K1) ≥ µ ∧ η ∧ ℘(Ner(K0) ∧ Ner(F (K0)) ∧ µ ∧ η)

≥ µ ∧ η ∧ ℘(η ∧ ϕ1 ∧ η ∧ ℘(µ ∧ η) ∧ µ ∧ η)

= µ ∧ η ∧ ℘(ϕ1 ∧ µ ∧ η) ∧ ℘(µ ∧ η)

= µ ∧ η ∧ ℘(ϕ1 ∧ µ ∧ η). (15)

We claim that

Ner(K1) ≥ κ1 ∧ µ ∧ η ∧ ℘(µ ∧ η).

To show this, lets1, s2 ∈ Σ∗ and assume thats1 ≡ s2(mod κ1 ∧ µ∧ η ∧ ℘(µ∧ η)). If s1, s2 ∈ Σ∗ −K1,

then for all w ∈ Σ∗, s1w, s2w ∈ Σ∗ − K1; thus s1 ≡ s2(mod Ner(K1)). Now let s1, s2 ∈ K1. By

Lemma 4 we derive that for alls′
1
∈ [s1] ∩

(

C ∩M
)

and s′
2
∈ [s2] ∩

(

C ∩M
)

, s′
1
, s′

2
∈ K1. Since

K1 ⊆ F (K0), s′1, s
′
2
∈ F (K0) and hence

{Pϕ1∧µ∧η(s
′
1) | s

′
1 ∈ [s1] ∩

(

C ∩M
)

} = {Pϕ1∧µ∧η(s
′
2) | s

′
2 ∈ [s2] ∩

(

C ∩M
)

}.

13



Namelys1 ≡ s2(mod℘(ϕ1∧µ∧η)). This implies thats1 ≡ s2(mod Ner(K1)) by (15). Hence the above

claim is established, and the base case is proved.

For the induction step, suppose that forj ≥ 2, there holds

Ner(Kj−1) ≥ κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η).

Again by Lemma 3 we have

Ner(F (Kj−1)) ≥ ϕj−1 ∧ Ner(Kj−1) ∧ ℘(Ner(Kj−1) ∧ µ ∧ η)

≥ ϕj−1 ∧ κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ ℘(κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ µ ∧ η)

= ϕj−1 ∧ κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ ℘(κj−1 ∧ µ ∧ η)

= ϕj−1 ∧ κj−1 ∧ µ ∧ η ∧ ℘(κj−1 ∧ µ ∧ η)

Then by Lemma 4,

Ner(Kj) ≥ µ ∧ η ∧ ℘(Ner(Kj−1) ∧ Ner(F (Kj−1)) ∧ µ ∧ η)

≥ µ ∧ η ∧ ℘(ϕj−1 ∧ κj−1 ∧ µ ∧ η ∧ ℘(κj−1 ∧ µ ∧ η))

= µ ∧ η ∧ ℘(ϕj−1 ∧ κj−1 ∧ µ ∧ η). (16)

We claim that

Ner(Kj) ≥ κj ∧ µ ∧ η ∧ ℘(µ ∧ η).

To show this, lets1, s2 ∈ Σ∗ and assume thats1 ≡ s2(mod κj ∧ µ∧ η ∧ ℘(µ∧ η)). If s1, s2 ∈ Σ∗ −Kj ,

then for allw ∈ Σ∗, s1w, s2w ∈ Σ∗ − Kj; hences1 ≡ s2(mod Ner(Kj)). Now let s1, s2 ∈ Kj . By

Lemma 4 we derive that for alls′
1
∈ [s1] ∩

(

C ∩M
)

and s′
2
∈ [s2] ∩

(

C ∩M
)

, s′
1
, s′

2
∈ Kj . Since

Kj ⊆ F (Kj−1) ⊆ Kj−1,

{Pϕj−1∧κj−1∧µ∧η(s
′
1) | s

′
1 ∈ [s1] ∩

(

C ∩M
)

}

={Pϕj−1∧κj−1∧µ∧η(s
′
2) | s

′
2 ∈ [s2] ∩

(

C ∩M
)

}.

Namelys1 ≡ s2(mod℘(ϕj−1∧κj−1∧µ∧η). This implies thats1 ≡ s2(mod Ner(Kj)) by (16). Therefore

the above claim is established, and the induction step is completed.

�
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C. Effective Computability ofΩ

We conclude this section by showing that the iteration scheme in (10) yields an effective procedure

for the computation ofsupO(C), when the given languagesM andC are regular. For this, owing to

Theorem 1, it suffices to prove that the operatorΩ in (9) is effectively computable.

Recall that a languageL ⊆ Σ∗ is regular if and only if there exists a finite-state automaton G =

(Q,Σ, δ, q0, Qm) such that

Lm(G) = {s ∈ Σ∗ | δ(q0, s) ∈ Qm} = L.

Let O : (Pwr(Σ∗))k → (Pwr(Σ∗)) be an operator that preserves regularity; namelyL1, ..., Lk regular

impliesO(L1, ..., Lk) regular. We say thatO is effectively computableif from eachk-tuple (L1, ..., Lk)

of regular languages, one can construct a finite-state automatonG with Lm(G) = O(L1, ..., Lk).

The standard operators of language closure, complement,1 union, and intersection all preserve regularity

and are effectively computable [6]. Moreover, both the operator supN : Pwr(Σ∗) → Pwr(Σ∗) given

by

supN (L) :=
⋃

{L′ ⊆ L | [L′] ∩H = L′}, for some fixedH ⊆ Σ∗

and the operatorsupF : Pwr(Σ∗) → Pwr(Σ∗) given by

supF(L) :=
⋃

{L′ ⊆ L | L′ = L′}

preserve regularity and are effectively computable (see [4] and [10], respectively).

The main result of this subsection is the following theorem.

Theorem 2. Suppose thatM andC are regular. Then the operatorΩ in (9) preserves regularity and is

effectively computable.

The following proposition is a key fact.

Proposition 5. For eachK ⊆ Σ∗,

F (K) = K ∩ supF
(

⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ)c | σ ∈ Σ}
)

.

Proof. By (8) and (6),

F (K) = {s ∈ K |
⋃

{

[s ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M ⊆ K}.

1For a languageL ⊆ Σ∗, its complement, writtenLc, is Σ∗ − L.
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Hence

s ∈ F (K) ⇔ s ∈ K and
⋃

{

[s ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

∩M ⊆ K

⇔ s ∈ K and
⋃

{

[s ∩ C.σ] ∩ C.σ | σ ∈ Σ
}

⊆ K ∪ (M )c

⇔ s ∈ K and (∀σ ∈ Σ) [s ∩ C.σ] ∩ C.σ ⊆ K ∪ (M)c

⇔ s ∈ K and (∀σ ∈ Σ) [s ∩ C.σ] ⊆ K ∪ (M)c ∪ (C.σ)c

⇔ s ∈ K and (∀σ ∈ Σ) [s ∩ C.σ] ⊆ K ∪ (M ∩C.σ)c

⇔ s ∈ K and (∀σ ∈ Σ) s ∩ C.σ ⊆ supN (K ∪ (M ∩C.σ)c)

⇔ s ∈ K and (∀σ ∈ Σ) s ⊆ supN (K ∪ (M ∩C.σ)c) ∪ (C.σ)c

⇔ s ∈ K ands ⊆
⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ)c | σ ∈ Σ}

⇔ s ∈ K ands ∈ supF
(

⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ)c | σ ∈ Σ}
)

⇔ s ∈ K ∩ supF
(

⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ)c | σ ∈ Σ}
)

.

�

We also need the following lemma.

Lemma 5. Let σ ∈ Σ be fixed. Then the operatorBσ : Pwr(Σ∗) → Pwr(Σ∗) given by

Bσ(L) := L.σ = {sσ | s ∈ L}

preserves regularity and is effectively computable.

Proof. Let G = (Q,Σ, δ, q0, Qm) be a finite-state automaton withLm(G) = L. We will construct a

new finite-state automatonH such thatLm(H) = Bσ(L). The construction is in two steps. First, letq∗

be a new state (i.e.q∗ /∈ Q), and defineG′ = (Q′,Σ, δ′, q0, Q
′
m) where

Q′ := Q ∪ {q∗}, δ′ := δ ∪ {(q, σ, q∗)|q ∈ Q}, Q′
m := {q∗}.

ThusG′ is a finite-state automaton withLm(G′) = Bσ(L). However,G′ is nondeterministic, inasmuch

asδ′(q, σ) = {q′, q∗} wheneverδ(q, σ) is defined andδ(q, σ) = q′. The second step is hence to apply the

standard subset construction to convert the nondeterministic G
′ to a deterministicfinite-state automaton

H with Lm(H) = Lm(G′) = Bσ(L). This completes the proof. �

Finally we present the proof of Theorem 2.

16



Proof of Theorem 2.By Proposition 5 and the definition ofΩ : Pwr(Σ∗) → Pwr(Σ∗) in (9), for each

K ⊆ Σ∗ we derive

Ω(K) = supN
(

K ∩ supF
(

⋂

{supN (K ∪ (M ∩ C.σ)c) ∪ (C.σ)c | σ ∈ Σ}
))

.

Since the language closure, complement, union, intersection, supN , supF and C.σ (by Lemma 5)

all preserve regularity and are effectively computable, the same conclusion for the operatorΩ follows

immediately. �

In the proof, we see that the operatorΩ in (9) is decomposed into a sequence of standard or well-known

language operations. This allows straightforward implementation ofΩ using off-the-shelf algorithms.

IV. RELATIVE OBSERVABILITY AND CONTROLLABILITY

For the purpose of supervisory control under partial observation, we combine relative observability

with controllability and provide a fixpoint characterization of the supremal relatively observable and

controllable sublanguage.

Let the alphabetΣ be partitioned intoΣc, the subset of controllable events, andΣu, the subset of

uncontrollable events. For the givenM andC, we say thatC is controllable with respect toM if

CΣu ∩M ⊆ C.

Whether or notC is controllable, writeC(C) for the family of all controllable sublanguages ofC. Then

the supremal elementsup C(C) exists and is effectively computable [10].

Now write CO(C) for the family of controllable andC-observable sublanguages ofC. Note that the

family CO(C) is nonempty inasmuch as the empty language is a member. Thanks to the closed-under-

union property of both controllability andC-observability, the supremal controllable andC-observable

sublanguagesup CO(C) therefore exists and is given by

sup CO(C) :=
⋃

{K | K ∈ CO(C)}. (17)

Define the operatorΓ : Pwr(Σ∗) → Pwr(Σ∗) by

Γ(K) := supO(sup C(K)). (18)

The proposition below characterizessup CO(C) as the largest fixpoint ofΓ.

Proposition 6. sup CO(C) = Γ(sup CO(C)), and sup CO(C) ⊇ K for everyK such thatK = Γ(K).
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Proof. Sincesup CO(C) ∈ CO(C), i.e. both controllable andC-observable,

Γ(sup CO(C)) = supO(sup C(sup CO(C)))

= supO(sup CO(C))

= sup CO(C).

Next letK be such thatK = Γ(K). To show thatK ⊆ sup CO(C), it suffices to show thatK ∈ CO(C).

Let H := sup C(K); thusH ⊆ K. On the other hand, fromK = Γ(K) = supO(H) we haveK ⊆ H.

HenceK = H. It follows that K = sup C(K) and K = supO(K), which means thatK is both

controllable andC-observable. Therefore we conclude thatK ∈ CO(C). �

In view of Proposition 6, we computesup CO(C) by iteration ofΓ as follows:

(∀j ≥ 1) Kj = Γ(Kj−1), K0 = C. (19)

It is readily verified thatΓ(K) ⊆ K, and thus

K0 ⊇ K1 ⊇ K2 ⊇ · · ·

Namely the sequence{Kj} (j ≥ 1) is a monotone (descending) sequence of languages. Recalling the

notation from Section III-A, we have the following key result.

Proposition 7. Consider the sequence{Kj} generated by (19) and letρ = µ ∧ η ∧ ℘(µ ∧ η). Then for

eachj ≥ 1, Kj is ρ-supported onKj−1.

Proof. Write Hj := sup C(Kj−1) andψj := {Hj,Σ
∗ − Hj} for j ≥ 1. Then by [10, p. 642] there

holds

Ner(Hj) ≥ ψj ∧ µ ∧ Ner(Kj−1).

We claim that forj ≥ 1,

Ner(Kj) ≥ κj ∧ µ ∧ η ∧ ℘(µ ∧ η).

We prove this claim by induction. For the base case (j = 1),

Ner(H1) ≥ ψ1 ∧ µ ∧ Ner(K0)

= ψ1 ∧ µ ∧ η

SinceK1 = supO(H1), we set up the following sequence to computeK1:

(∀i ≥ 1) Ti = Ω(Ti−1), T0 = H1.
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Following the derivations in the proof of Proposition 4, it is readily shown that eachTi is ρ-supported

onH1; in particular,

Ner(K1) ≥ κ1 ∧ ρ ∧ Ner(H1)

≥ κ1 ∧ ψ1 ∧ µ ∧ η ∧ ℘(µ ∧ η)

= κ1 ∧ µ ∧ η ∧ ℘(µ ∧ η).

This confirms the base case.

For the induction step, suppose that forj ≥ 2, there holds

Ner(Kj−1) ≥ κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η).

Thus

Ner(Hj) ≥ ψj ∧ µ ∧ Ner(Kj−1)

≥ ψj ∧ κj−1 ∧ µ ∧ η ∧ ℘(µ ∧ η)

= ψj ∧ µ ∧ η ∧ ℘(µ ∧ η).

Again set up a sequence to computeKj as follows:

(∀i ≥ 1) Ti = Ω(Ti−1), T0 = Hj.

We derive by similar calculations as in Proposition 4 that each Ti is ρ-supported onHj; in particular,

Ner(Kj) ≥ κj ∧ ρ ∧ Ner(Hj)

≥ κj ∧ ψj ∧ µ ∧ η ∧ ℘(µ ∧ η)

= κj ∧ µ ∧ η ∧ ℘(µ ∧ η).

Therefore the induction step is completed, and the above claim is established. Then it follows immediately

Ner(Kj) ≥ κj ∧ µ ∧ η ∧ ℘(µ ∧ η) ∧ Ner(Kj−1)

= κj ∧ ρ ∧ Ner(Kj−1).

Namely,Kj is ρ-supported onKj−1, as required. �

The following theorem is the main result of this section, which follows directly from Proposition 7

and Lemma 2.
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∗ → Σ∗

o

initial state

marker state

Fig. 1. Example: computation of the supremalC-observable sublanguagesupO(C) by iteration of the operatorΩ in (9)

Theorem 3. Consider the sequence{Kj} in (19), and suppose that the given languagesM and C

are regular. Then the sequence{Kj} is finitely convergent tosup CO(C), and sup CO(C) is a regular

language with

|| sup CO(C)|| ≤ ||M || · ||C|| · 2||M ||·||C|| + 1.

Finally, sup CO(C) is effectively computable, inasmuch as the operatorssup C(·) and supO(·) are

(see [10] and Theorem 2, respectively). In particular, the operatorΓ in (18) is effectively computable.

V. EXAMPLES

In this section, we first give an example to illustrate the computation of the supremalC-observable

sublanguagesupO(C) (by iteration of the operatorΩ). Then we present an empirical study on the

computation of the supremal controllable andC-observable sublanguagesup CO(C) (by iteration of the

operatorΓ, which has been implemented by a computer program).

A. An Example of ComputingsupO(C)

Consider the example displayed in Fig. 1. The observable event set isΣo = {α, γ, σ} and unobservable

Σuo = {β1, β2, β3, β4, β5}; thus the natural projection isP : (Σo ∪ Σuo)
∗ → Σ∗

o. Let

M := Lm(G) = {ǫ, α, γ, ασ, γσ, β1ασ, β2α, β2αβ5σ, β3γ,

β3γβ5σ, β4, β4α, β4γ, β4αβ5, β4γβ5}
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and the specification language

C :=M − {β4αβ5, β4γβ5}.

Both M andC are regular languages.

Now apply the operatorΩ in (9). InitializeK0 = C. The first iterationj = 1 starts with

F (K0) = {s ∈ K0 | D(s) ∩M ⊆ K0}

= {ǫ, α, γ, ασ, γσ, β1 , β1α, β1ασ, β2, β2α, β3, β3γ, β4, β4α, β4γ}

= K0 − {β2αβ5, β2αβ5σ, β3γβ5, β3γβ5σ}.

Note that sinceβ2αβ5σ ∈ K0, stringsβ2αβ5, β2αβ5σ ∈ K0. But β2αβ5, β2αβ5σ /∈ F (K0); this is

because the stringβ4αβ5 belongs toD(β2αβ5) ∩M andD(β2αβ5σ) ∩M , but β4αβ5 does not belong

to K0. For the same reason,β3γβ5, β3γβ5σ ∈ K0 but β3γβ5, β3γβ5σ /∈ F (K0). Next calculate

F (K0) ∩K0 = {ǫ, α, γ, ασ, γσ, β1ασ, β2α, β3γ, β4, β4α, β4γ}

= K0 − {β2αβ5σ, β3γβ5σ}.

Removing stringsβ2αβ5σ, β3γβ5σ from K0 makesF (K0) ∩ K0 not normal with respect toC ∩M .

Indeed,ασ, β1ασ ∈ [β2αβ5σ]∩C ∩M andγσ ∈ [β3γβ5σ]∩C ∩M violate the normality condition and

therefore must also be removed. Hence,

K1 = supN (F (K0) ∩K0, C ∩ Lm(G))

= {ǫ, α, γ, β2α, β3γ, β4, β4α, β4γ}

= (F (K0) ∩K0)− {ασ, β1ασ, γσ}.

This completes the first iterationj = 1.

SinceK1 $ K0, we proceed toj = 2,

F (K1) = {s ∈ K1 | D(s) ∩M ⊆ K1}

= {ǫ, γ, β2, β3, β3γ, β4, β4γ}

= K1 − {α, β2α, β4α}.

We see thatα, β2α, β4α ∈ K1 but α, β2α, β4α /∈ F (K1). This is because the stringβ1α ∈ D(α) ∩M ,

D(β2α) ∩M , andD(β4α) ∩M , but β1α /∈ K1. Note thatβ1α was inK0 sinceβ1ασ ∈ K0, but β1ασ
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was removed so as to ensure normality ofK1; this in turn removedβ1α, which now causes removal of

stringsα, β2α, β4α altogether. Continuing,

F (K1) ∩K1 = {ǫ, γ, β3γ, β4, β4γ}

= K1 − {α, β2α, β4α}.

Removing stringsα, β2α, β4α does not destroy normality ofK1. IndeedF (K1) ∩ K1 is normal with

respect toC ∩M and we have

K2 = supN (F (K1) ∩K1, C ∩M)

= {ǫ, γ, β3γ, β4, β4γ}

= F (K1) ∩K1.

This completes the second iterationj = 2.

SinceK2 $ K1, we proceed toj = 3 as follows:

F (K2) = {s ∈ K2 | D(s) ∩M ⊆ K2}

= {ǫ, γ, β3, β3γ, β4, β4γ} = K2;

F (K2) ∩K2 = K2 ∩K2 = K2;

K3 = supN (F (K2) ∩K2, C ∩M)

= supN (K2, C ∩M) = K2.

SinceK3 = K2, the limit of the sequence in (10) is reached. Therefore

K3 = {ǫ, γ, β3γ, β4, β4γ}

is the supremalC-observable sublanguage ofC.

B. A Case Study of Computingsup CO(C)

Consider the same case study as in [3, Section V-B], namely a manufacturing workcell served by five

automated guided vehicles (AGV). Adopting the same settings, we apply the implementedΓ operator to

compute the supremal relatively observable and controllable sublanguagesup CO(C), as represented by

a finite-state automaton, saySUPO. That is,

Lm(SUPO) = sup CO(C).

For this case study, the full-observation supervisor (representing the supremal controllable sublan-

guage) has 4406 states and 11338 transitions. Selecting different subsets of unobservable events, the
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TABLE I. SUPO COMPUTED FOR DIFFERENT SUBSETS OF UNOBSERVABLE EVENTS IN THE AGV CASE STUDY

Σuo = Σ−Σo State #, transition # ofSUPO

{13} (4406,11338)

{21} (4348,10810)

{31} (4302,11040)

{43} (4319,10923)

{51} (4400,11296)

{12,31} (1736,4440)

{24,41} (4122,10311)

{31,43} (4215,10639)

{32,51} (2692,6596)

{41,51} (3795,9355)

{11,31,41} (163,314)

{12,33,51} (94,140)

{12,24,33,44,53} (72,112)

{12,21,32,43,51} (166,314)

{13,23,31,33,
(563,1244)

41,43,51,53}

computational results for the supremal relatively observable and controllable sublanguages, orSUPO,

are listed in Table I. We see in all cases but the first (Σuo = {13}) that the state and transition numbers of

SUPO are fewer than those of the full-observation supervisor. WhenΣuo = {13}, in fact, the supremal

controllable sublanguage is already observable, and is therefore itself the supremal relatively observable

and controllable sublanguage.

Moreover, we have confirmed that the computation results agree with those by the algorithm in [3].

Thus the new computation scheme provides a useful alternative to ensure presumed correctness based on

consistency.

VI. CONCLUSIONS

We have presented a new characterization of relative observability, and an operator on languages whose

largest fixpoint is the supremal relatively observable sublanguage. In the case of regular languages and

based on the support relation, we have proved that the sequence of languages generated by the operator

converges finitely to the supremal relatively observable sublanguage, and the operator is effectively
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computable.

Moreover, for the purpose of supervisory control under partial observation, we have presented a second

operator that in the regular case effectively computes the supremal relatively observable and controllable

sublanguage. Finally we have presented an example and a casestudy to illustrate the effectiveness of the

proposed computation schemes.
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