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Abstract This paper studies an optimal ON-OFF control problem for a class
of discrete event systems with real-time constraints. Our goal is to minimize
the overall costs, including the operating cost and the wake-up cost, while still
guaranteeing the deadline of each individual task. In particular, we consider
the homogeneous case in which it takes the same amount of time to serve each
task and each task needs to be served by d seconds upon arrival. The problem
involves two subproblems: (i) finding the best time to wake up the system
and (ii) finding the best time to let the system go to sleep. We study the
two subproblems in both off-line and on-line settings. In the off-line case that
all task information is known a priori, we combine sample path analysis and
dynamic programming to come up with the optimal solution. In the on-line
scenario where future task information is completely unknown, we show that
the optimal time to wake up the system can be obtained without relying on fu-
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ture task arrivals. We also perform competitive analysis for on-line control and
derive the competitive ratios for both deterministic and random controllers.

Keywords discrete event systems · real-time systems · quality-of-service ·
optimization · dynamic programming · competitive ratio

1 Introduction

There exists a large amount of Discrete Event Systems (DESs) that involve al-
location of resources to satisfy real-time constraints. One commonality of these
DESs is that certain tasks must be completed by their deadlines in order to
guarantee Quality-of-Service (QoS). Examples arise in wireless networks and
computing systems, where communication and computing tasks must be trans-
mitted/processed before the information they contain becomes obsolete [1] [2],
and in manufacturing systems, where manufacturing tasks must be completed
before the specified time in the production schedule [3]. Another commonality
of these DESs is that they all require the minimization of cost (e.g., energy).
An interesting question then arises naturally: how can we allocate resources to
such DESs so that the cost is minimized and the real-time constraints are also
satisfied? To answer this question, one often has to study the trade-off be-
tween minimizing the cost and satisfying the real-time constraints: processing
the tasks at a higher speed makes it easier to satisfy the real-time constraints
but harder to reduce the cost; conversely, processing the tasks at a lower speed
makes it harder to satisfy the real-time constraints but easier to reduce the
cost. This trade-off is often referred to as the energy-latency trade-off and has
been widely studied in the literature [1] [4] [5].

In this paper, our objective is to utilize the energy-latency trade-off to
minimize the cost while guaranteeing the real-time constraint for each task.
Different from most existing papers that assume the system’s service rate (the
control variable) is a continuous function of time, we assume that the DES
only operates at one of the two states: ON and OFF. One motivating example
of such DES is wireless sensor networks, in which operation simplicity must be
maintained. For example, the radio of a ZigBee wireless device can be either
completely off or transmitting at a fixed-rate, e.g., 250kb/s in the 2.4GHz
band. Another difference between this paper and others is that we assume
that a wake-up cost is incurred whenever the system transits from the OFF
state to the ON state.

In this paper, we solve both off-line and on-line optimal ON-OFF control
problems. Our main contributions are two-fold: (i) We combine sample path
analysis and Dynamic Programming (DP) to obtain the optimal off-line so-
lution and (ii) We perform competitive analysis and derive the competitive
ratios of both deterministic and random on-line controllers. Some results of
this paper are previously shown in two conference papers: [6] and [7], which
primarily focus on off-line control. One new contribution of this paper is the
competitive analysis for on-line control. Another new contribution is that we
introduce an idling cost in the system model. We point out that the addition
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of this idling cost makes our problem formulation more realistic because it
often exists in real-world applications. For example, energy is consumed when
a motor is spinning without any load attached and when a sensor is turned
on, but not actively processing information.

In this journal version, we improve some proofs to incorporate the idling
cost; we also move all the proofs and tables to the appendix in order to enhance
the continuity of the analysis in the paper. The organization of the rest of the
paper is as follows: in Section 2, we discuss related work; we introduce the
system model and formulate our optimization problem in Section 3; the off-
line and on-line results are presented in Sections 4 and 5, respectively; finally,
we conclude in Section 6.

2 Related Work

There are two lines of work that are closely related to this paper. One is trans-
mission scheduling for wireless networks, in which the transmission rate of a
wireless device is adjusted so as to minimize the transmission cost and satisfy
real-time constraints. This line of work is initially studied in [8] with follow-
up work in [4] where a homogeneous case is considered, assuming all packets
have the same deadline and number of bits. By identifying some properties
of this convex optimization problem, Gamal et al. propose the “MoveRight”
algorithm in [4] to solve it iteratively. However, the rate of convergence of
the MoveRight algorithm is only obtainable for a special case of the problem
when all packets have identical energy functions; in general the MoveRight
algorithm may converge slowly. Zafer et al. [9] study an optimal rate control
problem over a time-varying wireless channel, in which the channel state was
modeled as a Markov process. In particular, they consider the scenario that B
units of data must be transmitted by a common deadline T, and they obtain
an optimal rate-control policy that minimizes the total energy expenditure
subject to short-term average power constraints. In [10] and [11], the case of
identical arrival time and individual deadline is studied by Zafer et. al. In [12],
the case of identical packet size and identical delay constraint is studied by
Neely et. al. They extend the result for the case of individual packet size and
identical delay constraint in [13]. In [5], Zafer et. al. use a graphical approach
to analyze the case that each packet has its own arrival time and deadline.
However, there are certain restrictions in their setting; for example, the packet
that arrives later must have later deadlines. Wang and Li [14] analyze schedul-
ing problems for bursty packets with strict deadlines over a single time-varying
wireless channel. Assuming slotted transmission and changeable packet trans-
mission order, they are able to exploit structural properties of the problem to
come up with an algorithm that solves the off-line problem. In [15], Poulakis
et. al. also study energy efficient scheduling problems for a single time-varying
wireless channel. They consider a finite-horizon problem where each packet
must be transmitted before Dmax. Optimal stopping theory is used to find
the optimal start transmission time between [0, Dmax] so as to minimize the
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expected energy consumption and the average energy consumption per unit
of time. Zhong and Xu [16] formulated optimization problems that minimize
the energy consumption of a set of tasks with task-dependent energy functions
and packet lengths. In their problem formulation, the energy functions include
both transmission energy and circuit power consumption. To obtain the op-
timal solution for the off-line case with backlogged tasks only, they develop
an iterative algorithm RADB whose complexity is O(n2) (n is the number of
tasks). The authors show via simulation that the RADB algorithm achieves
good performance when used in on-line scheduling. [1] studies a transmission
control problem for task-dependent cost functions and arbitrary task arrival
time, deadline, and number of bits. They propose a GCTDA algorithm that
solves the off-line problem efficiently by identifying certain critical tasks. The
GCTDA algorithm is an extension to the CTDA algorithm [17] designed by
Mao and Cassandras for dynamic voltage scaling related applications. They
extend the CTDA algorithm to multilayer scenarios in [18]. Our model is dif-
ferent from all the above works by letting the system operate in one of the
discrete modes and also including a wake-up cost at each time instant that
the system transitions from OFF to ON state.

The other line of research studies On-OFF scheduling in Wireless Sensor
Networks (WSNs). Solutions in the Medium Access Control (MAC) layer, such
as the S-MAC protocol [19], have been developed to coordinate neighboring
sensors’ ON-OFF schedule in order to reduce both energy consumption and
packet delay. These approaches do not provide specific end-to-end latency
guarantee. In [20], routing problems are considered in WSNs where each sensor
switches between ON and OFF states. The authors formulate an optimization
problem to pick the best path that minimizes the weighted sum of the expected
energy cost and the exponent of the latency probability. In another work in
[21], Ning and Cassandras formulate a dynamic sleep control problem in order
to reduce the energy consumed in listening to an idle channel. The idea is to
sample the channel more frequently when it is likely to have traffic and less
frequently when it is not. The authors extend their work in [22], by formulating
an optimization problem with the goal of minimizing the expected total energy
consumption at the transmitter and the receiver. Dynamic programming is
used to come up with an optimal policy that is shown to be more effective
in cost saving than the fixed sleep time. [23] studies the ON-OFF scheduling
in wireless mesh networks. By assuming a fixed routing tree topology used
for task transmission, each child in the tree knows exactly when its parents
will wake up, and the traffic is only generated by the leaves of the tree, the
authors formulate and solve an optimization problem that minimizes the total
transmission energy cost while satisfying the latency and maximum energy
constraints on each individual node. The major difference between this paper
and the existing ones in this line of research is that we study a system with
a real-time constraint for each individual task. To the best of our knowledge,
ON-OFF scheduling with a real-time constraint for each individual task has
not been studied extensively.
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It is worth noting that there also exists papers related to the service rate
control problem, in which the optimal service rate policy of either single-server
or multi-server queueing systems are derived in order to minimize an average
cost. A recent representative work along this line can be found in [24] where Xia
et al. study the service rate problem for tandem queues with power constraints.
They formulate the model as a Markov decision process with constrained ac-
tion space and use sensitivity-based optimization techniques to derive the con-
ditions of optimal service rates, the optimality of the vertexes of the feasible
domain for linear and concave operating cost, and an iterative algorithm that
provides the optimal solution. Our problem formulation is different from these
works in two aspects: (i) We consider tasks with real-time constraints and (ii)
We include system wake-up cost on top of the service cost.

3 System Model and Problem Formulation

We consider a finite horizon scenario that a DES processes N tasks with
real-time constraints. In particular, task i, i = 1, . . . , N, has arrival time ai
(generally random), deadline di = ai + d, and B number of operations. Both
d and B are constants. In the off-line setting, we assume that the task arrival
time ai is known to the controller a priori. The DES can only operate in one
of the two modes: ON and OFF. When it is in the OFF mode, there is no
operating cost associated. When it is in the ON or active mode, the system
can either be busy or idling. When the system is busy, it processes the tasks
at a constant rate R with fixed operating cost CB per unit time. When the
system is idling, no tasks are waiting to be served, and the system cost is CI
(CI≤CB) per unit time. Furthermore, we assume that whenever a transition
from the OFF mode to the ON mode occurs, a fixed wake-up cost CW is
incurred; examples of such costs include: the large amount of current (known
as inrush current) required when a motor is turned on, the energy needed to
initialize electric circuits when RF radio is turned on in a wireless device, and
so on. Note that the wake-up cost may also include system wearout cost, if the
system can only be turned on for certain number of times during its lifetime.
In our previous work in [6] and [7], CI = CB . As we will show later, when CI
is different from CB , it does not make the analysis significantly harder, and
the off-line optimal solution can still be obtained by DP.

Our system model above is quite generic and is applicable to a wide range
of engineering applications; for example, one can use ultra-low power wake-
up receivers [25] to conserve energy in WSNs. Next, we formulate the off-line
optimization problem.

As we mentioned earlier, the task information is known to the controller
a priori in the off-line setting. Our objective is to find the optimal ON and
OFF time periods so as to (i) finish all the tasks by their deadlines and (ii)
minimize the cost.
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Definition 1 Suppose the system is woken up at t1, put to sleep at t2 (t1 <
t2), and kept active from t1 to t2. Then, we call the time interval [t1, t2] an
Active Period (AP).

Definition 2 In any AP, the periods during which the system is actively
serving tasks are known as Busy Periods (BPs). The rest of the time periods
in that AP are known as Idle Periods (IPs).

Let r(t) be the rate that the system is capable of serving tasks at time t. It
is piecewise constant and at any given time t, it can only be either 0 (when the
system is OFF) or R (when the system is ON). See Fig. 1 for an illustration
of how r(t) looks like and how the APs are formed. Note that r(t) is not the
actual service rate since the system is only serving tasks during the BPs, not
the IPs.

…

1a 2a Na1a d+ 2a d+ Na d+ t

t

( )r t

…
R

0

Fig. 1: Off-line control illustration.

We now introduce the control variables. Our first control variable is α, the
number of APs. The second control variable is a α × 2 array t that contains
2α time instants. These time instants satisfy:

ti,1 < ti,2 < tj,1 < tj,2, ∀i, j ∈ {1, . . . , α}, i < j

and define α number of APs. See Fig. 1 for illustration. The off-line problem
Q(1, N) can then be formulated:

min
α,t

J = αCW +

α∑
i=1

[CI(ti,2 − ti,1 − τi,B) + CBτi,B ]

s.t.

∫ xj

max(aj ,xj−1)

r(t)dt = B,

xj ≤ dj , x0 = 0, j = 1, . . . , N

r(t) = R

α∑
i=1

[u(t− ti,1)− u(t− ti,2)]
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where xj is the departure time of task j, u(t) is the unit step function, and τi,B
is the length of the busy periods in the i-th AP. The first constraint ensures
that exactly B number of operations are executed for each task. The second
one is the real-time constraint. The third one makes sure that the processing
rate is R only during each AP. Note that τi,B is dependent on the number of
tasks served in APi. To represent τi,B , we use NS

i and NE
i to denote the first

(starting) task and the last (ending) task in APi, respectively:

NE
i = arg max

j∈{1,...,N}
(dj ≤ ti,2)

NS
i = arg min

j∈{1,...,N}
(aj ≥ ti,1)

τi,B = max((NE
i −NS

i + 1)
B

R
, 0)

Notice that Q(1, N) above may not always be feasible. Consider the case
that N tasks arrive at the same time and need to be served in d seconds. In
order to meet the deadlines of all the tasks, we must have R ≥ NB

d . Since R is
a constant, the condition above obviously is not true when N is large. In this
paper, we only consider the case that Q(1, N) is indeed feasible, and we have
the following assumption on the task arrival rate.

Assumption 1 Within any time interval of d seconds, the number of task
arrivals must not exceed b dβ c, where β = B/R is the time it takes to process a
single task.

We emphasize that d in Assumption 1 is the deadline of each task upon
arrival. To make the problem more interesting, we also assume that b dβ c > 1.

Lemma 1 Under Assumption 1, P1 is always feasible.

Q(1, N) is a hard optimization problem, due to the nondifferentiable terms
in the constraints and the objective function. It cannot be easily solved by
standard optimization software. In what follows, we will first discuss optimal
off-line control, using which we will then establish the results for on-line con-
trol.

4 Off-line Control

In this section, we focus on the off-line control problem, in which all task
arrivals are known to us a priori. We need to find out when the system should
wake up and start to serve the first task in an AP. Similar to the “just-in-time”
idea exploited in [4] for adaptive modulation, the system should wake up as late
as possible so that it may potentially reduce the active time. The question is
how late the system should wake up. This is answered by the following results.
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Lemma 2 Suppose that tasks {k, . . . , n} are all the tasks served in an AP on
the optimal sample path of Q(1, N) and starting the AP at time either tA or
tB , ak ≤ tA < tB ≤ dk − β, is feasible. Then,

CAk,...,n ≥ CBk,...,n
where CAk,...,n and CBk,...,n are the corresponding costs of serving tasks {k, . . . , n}
in the AP for the two different starting time tA and tB, respectively.

Lemma 2 indicates that an AP on the optimal sample path of Q(1, N)
should be started as late as possible. We now utilize this result to figure out
when exactly the first task k should be served.

Lemma 3 If tasks {k, . . . , n} are all the tasks served in an AP on the optimal
sample path of Q(1, N) and the number of task arrivals in [ak, dk − β) is 0,
then the optimal starting time to transmit task k is dk − β, i.e.,

x∗k = dk,

where x∗k is the optimal departure time of task k.

Lemma 3 shows that we can delay the transmission of the first task in an
AP to β seconds before its deadline, provided that there are no other arrivals
before that time. Next, we discuss the case that there exists other task arrivals
before dk − β.

Lemma 4 Suppose task k is the first task in an AP on the optimal sample path
of Q(1, N) and the number of task arrivals in [ak, dk−β) is m, 0 < m ≤ b dβ c−1.
Let

δj = β(j − k)− (aj − ak) (1)

z = arg max{δj
j=k+1,...,k+m

}

The optimal starting time to serve task k is:{
dk − β, if δz ≤ 0

dk − β − δz, if δz > 0

Having discussed when to wake up the system, we now find out when the
system should go to sleep. Apparently, the optimal time to end an AP depends
on future task information. In what follows, we first establish some results that
identify the end of an AP based on future task arrival information.

Lemma 5 If dj + CW /CI < aj+1, j ∈ {1, . . . , N − 1}, then task j ends an
AP on the optimal sample path of Q(1, N).

Lemma 5 basically indicates that if the deadline of task j is at least CW /CI
seconds apart from the next task arrival, then task j ends an AP on the optimal
sample path. Note that this is just a sufficient, but not necessary condition
of an AP ending on the optimal sample path. In some cases, whether a task
should end an AP is determined by not only the next arrival, but also all
subsequent ones. Let d0 = −∞ and aN+1 = ∞. We introduce the following
definition.
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Definition 3 Consecutive tasks {k, . . . , n}, 1 ≤ k ≤ n ≤ N, belong to a super
active period (SAP) in problem Q(1, N) if dk−1+CW /CI < ak, dn+CW /CI <
an+1, and dj + CW /CI ≥ aj+1, ∀j ∈ {k + 1, . . . , n− 1}.

Each SAP contains one or more APs. SAPs can be easily identified by
simply examining all the task deadlines and arrival times and applying Lemma
5. It implies that instead of working on the original problem Q(1, N), we now
only need to focus on each SAP, which is essentially a subproblem Q(k, n).

We now define our decision points in each SAP. A decision point xt, t ∈
{k, . . . , n− 1}, is the departure time of task t satisfies xt < at+1. If xt ≥ at+1,
then xt is not a decision point because the system should stay active at xt
and process task t+1. At each decision point, the control is letting the system
either go to sleep or stay awake. Let us take a look at some examples, in which
d = 10, CW = 10, and CB = CI = C = 1. Note that CB and CI could
be different in general; for simplicity, we let them equal to each other in the
examples. We also assume that B = R, i.e., it takes a unit of time to complete
a task. Fig. 2 and Fig. 3 show two different sample paths for a simple two-task
scenario: a1 = 0 and a2 = 19. In both sample paths, task 1’s optimal wake
up time is determined by Lemmas 4.2 and 4.3. The only decision point is x1,
at which the system needs to decide if it should go to sleep or stay awake.
In particular, the system in Fig. 2 wakes up at t1 = 9, finishes task 1 at its
deadline d1 = 10, stays awake, and finishes task 2 at t2 = 20. The total cost
is: CW + C(t2 − t1) = 21. In Fig. 3, the system wakes up at t1 = 9, finishes
task 1 at its deadline d1 = t2 = 10, and goes to sleep. Then, it wakes up at
t3 = 28 (once again determined by Lemmas 4.2 and 4.3 and finishes task 2 at
t4 = 29. The total cost of this case is: 2CW + C[(t2 − t1) + (t4 − t3)] = 22.
It is evident that at decision point x1 = 10, the optimal control is to let the
system stay awake (shown in Fig. 2).

t

t

( )r t

R

0

𝑎𝑎1 = 0

𝑎𝑎1 + 𝑑𝑑 = 10

𝑎𝑎2 = 19

𝑎𝑎2 + 𝑑𝑑 = 29

𝑥𝑥1∗ = 10

𝑡𝑡1 = 9 𝑡𝑡2 = 20

𝑥𝑥2∗ = 20

Fig. 2: Sample path #1 of scenario #1.

Now, let us consider another scenario (Fig. 4 and Fig. 5), in which we keep
the previous tasks 1 and 2 unchanged and add task 3. Our first decision point
is again at x1 = 10. In Fig. 4, the system wakes up at t1 = 9, finishes task 1 at
its deadline d1 = 10, stays awake, finishes task 2 at time 20, stays awake, and
finally finishes task 3 at time t2 = 30. The total cost is: CW +C(t2− t1) = 31.
In Fig. 5, the system wakes up at t1 = 9, finishes task 1 at its deadline d1 =
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t

( )r t

R

0

t

𝑎𝑎1 = 0

𝑎𝑎1 + 𝑑𝑑 = 10

𝑎𝑎2 = 19

𝑎𝑎2 + 𝑑𝑑 = 29

𝑥𝑥1∗ = 10 𝑥𝑥2∗ = 29

𝑡𝑡1 = 9 𝑡𝑡2 = 10 𝑡𝑡3 = 28 𝑡𝑡4 = 29

Fig. 3: Sample path #2 of scenario #1.

t2 = 10, and goes to sleep. Then, it wakes up at t3 = 28 and finishes tasks 2 and
3 at t4 = 30. The total cost of this case is: 2CW +C[(t2− t1) + (t4− t3)] = 23.
It is evident that at decision point x1 = 10, the optimal control is to let the
system go to sleep (shown in Fig. 5).

t

t

( )r t

R

0

𝑎𝑎1 = 0

𝑎𝑎1 + 𝑑𝑑 = 10

𝑎𝑎2 = 19

𝑎𝑎2 + 𝑑𝑑 = 29

𝑥𝑥1 = 10

𝑡𝑡1 = 9 𝑡𝑡2 = 30

𝑥𝑥2 = 20

𝑎𝑎3 = 29

𝑥𝑥3 = 30

Fig. 4: Sample path #1 of scenario #2.

t

( )r t

R

0

t

𝑎𝑎1 = 0

𝑎𝑎1 + 𝑑𝑑 = 10

𝑎𝑎2 = 19

𝑎𝑎2 + 𝑑𝑑 = 29

𝑥𝑥1∗ = 10 𝑥𝑥2∗ = 29

𝑡𝑡1 = 9 𝑡𝑡2 = 10 𝑡𝑡3 = 28 𝑡𝑡4 = 30

𝑎𝑎3 = 29

𝑥𝑥3∗ = 30

Fig. 5: Sample path #2 of scenario #2.

From the above examples, we can conclude that the optimal decision on if
the system should stay awake or go to sleep when it finishes all on-hand tasks
depends on future task arrivals (task 3 in the examples above). A first look at
the problem seems to suggest that in the worst case, the system may have to
make a decision about if it should go to sleep or stay awake after each task
departure; the total number of possible sample paths could be as high as 2N ,
which makes the problem intractable when N is large. However, a closer look
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at the problem indicates that the off-line optimal ON-OFF control problem
can be solved by DP, which has been widely used to solve a large class of
problems with special structural properties. In the context of DES, however,
its usage has been very limited to date. For example, in [17] and [1] where
the problem formulation is similar to the one in this paper, both CTDA and
GCTDA algorithms are not DP-based. We will show next that for the DES
studied by this paper, DP and sample path analysis can be used together to
obtain the optimal solution. In particular, it is done by introducing two types
of tasks: starting and following.

Definition 4 In problem Q(k, n), where tasks {k, . . . , n} form an SAP, the
first task of any AP is called a starting task. Tasks that are not starting tasks
are known as following tasks.

Since the case that k = n is trivial, we assume that k < n in our analysis in
order to make the problem more interesting. Note that APs contain one task
only do not have following tasks. For any task i ∈ {k, . . . , n}, it must either
be a starting task or a following one. We are interested in finding out the
optimal cost of serving tasks {i, . . . , n}, and we use QS(i, n) and QF (i, n) to
denote the optimization problems of serving tasks {i, . . . , n} when task i is a
starting and following task, respective. Note that in these two problems, only
tasks {i, . . . , n} are served and all other tasks in {k, . . . , n} are not considered.
In problem QF (i, n), the system is active when task i arrives; therefore, task
i will be served right after its arrival. Let JSi and JFi be the minimum cost
of QS(i, n) and QF (i, n), respectively. When i = n, we can easily calculate
JSn and JFn : JSn = CW + CBβ, J

F
n = CBβ. Note that JFn does not include

the wake-up cost CW , since by assumption, task n is a following task. The
operating cost, CBβ, is identical in both cases. Suppose that JSi and JFi ,
i ∈ {k + 1, . . . , n} are both known, the next step is to find JSi−1 and JFi−1.

We first focus on JSi−1. By assumption, task i−1 is a starting task. We use
Lemmas 3 and 4 to find out the optimal starting time of task i− 1 in problem
QS(i − 1, n). Let the optimal starting time be si−1i−1,n. For tasks in {i, . . . , n},
find task l that satisfies the following:

si−1i−1,n + (j − i+ 1)β ≥ aj ,∀j ∈ {i− 1, . . . , l − 1},
and si−1i−1,n + (l − i+ 1)β < al

(2)

If task l does not exist, then it is a trivial case that the system is always busy
serving tasks {i − 1, . . . , n}, and there is a single AP that starts from si−1i−1,n
and ends at si−1i−1,n+(n− i+2)β. In this case, JSi−1 = CW +(n− i+2)βCB . We
now consider the more interesting case that task l does exist. In particular,

JSi−1 = min(V SSi−1,l + JSl , V
SF
i−1,l + JFl ) (3)

where V SSi−1,l is the cost of serving tasks {i − 1, . . . , l − 1} when task l is a
starting task:

V SSi−1,l = CW + (l − i+ 1)βCB (4)
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V SFi−1,l is the cost of serving tasks {i − 1, . . . , l − 1} when task l is a following
task:

V SFi−1,l = CW + (l − i+ 1)βCB + [al − si−1i−1,n − (l − i+ 1)β]CI (5)

We now focus on JFi−1. We emphasize again that in this case, task i − 1
sees an active system upon its arrival; it will be served right away since it is
the first task in QF (i− 1, n). For tasks in {i, . . . , n}, find task l that satisfies
the following:

ai−1 + (j − i+ 1)β ≥ aj ,∀j ∈ {i− 1, . . . , l − 1},
and ai−1 + (l − i+ 1)β < al

(6)

Once gain, task l may not exist, and it corresponds to the case that the system
is always busy serving tasks {i−1, . . . , n}. In this case, there is a single AP that
starts from ai−1 and ends at ai−1+(n−i+2)β. We have JFi−1 = (n−i+2)βCB .
We now consider the more interesting case that task l does exist. We have:

JFi−1 = min(V FSi−1,l + JSl , V
FF
i−1,l + JFl ) (7)

where V FSi−1,l is the cost of serving tasks {i − 1, . . . , l − 1} when task l is a
starting task:

V FSi−1,l = (l − i+ 1)βCB (8)

V FFi−1,l is the cost of serving tasks {i−1, . . . , l−1} when task l is a following
task:

V FFi−1,l = (l − i+ 1)βCB + [al − ai−1 − (l − i+ 1)β]CI (9)

In Table 1, we show the algorithm that returns the optimal cost of Q(k, n).
This algorithm involves two more algorithms that return the optimal costs of
QS(i− 1, n) (Table 2) and QF (i− 1, n) (Table 3), respectively.

Theorem 1 JSk is the optimal cost of problem Q(k, n).

We have proved that when the algorithm in Table 1 stops, JSk is the optimal
cost of problem Q(k, n). The corresponding optimal control, i.e., the starting
time and ending time of each AP, can be traced back iteratively by identifying
the JSl or JFl that each JSi−1 or JFi−1 points to. The procedure is provided in
Table 4.

Next, we use the example in Fig. 4 and Fig. 5 to show how the above
algorithms work. We have three tasks 1, 2, and 3 belong to a SAP (k = 1 and
n = 3). Initially, JSn = JS3 = CB + Cβ = 11, and JFn = JF3 = Cβ = 1. In the
first iteration (i = n = 3), we calculate JSi−1 and JFi−1. To calculate JSi−1 = JS2 ,
we first figure out s22,3 = 28. Then, we find out that no task l satisfies (2).

Therefore, tasks 2 and 3 form a single AP in problem QS(2, 3), and JS2 = 12.
To calculate JFi−1 = JF2 , we identify that task l = 3 satisfies (6). We then use
(7) to obtain JF2 = min(V FS2,3 + JS3 , V

FF
2,3 + JF3 ) = min(1 + JS3 , 10 + JF3 ) = 11.

In the final iteration (i = n − 1 = 2), we only need to calculate JSi−1 = JS1 .
Because s11,3 = 9 and task l = 2 satisfies (2), we use (3) to calculate JS1 :
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JS1 = min(V SS1,2 + JS2 , V
SF
1,2 + JF2 ) = min(11 + JS2 , 20 + JF2 ) = 23. This is the

optimal cost obtained in Fig. 5. If we follow the procedure in Table 4, we
will get the exact same optimal solution as shown in Fig. 5. The details are
omitted.

Next, we use simulation results to show how the optimal solution performs
compared with a naive approach, in which the controller simply goes to sleep
when there is no backlog and wakes up when a new task arrives. Let optimal
to naive ratio be the ratio between the optimal cost and the cost of the naive
controller. Fig. 6 shows how the optimal to naive ratio varies when the task
arrival process and the wake-up cost CW change. In the simulation, we have 100
runs that correspond to 100 maximum interarrival time from 1ms to 100ms
with step size 1ms. 1000 tasks and various CW values are used in each run. The
interarrival time between two adjacent tasks is uniformly distributed between
0 and the maximum interarrival time in each run. The values of the other
parameters are as follows: d = 20ms, CB=30mW, CI=100µW, and β = 1ms.

0 20 40 60 80 100
maximum interarrival time
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d=20
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Cw=13mJ
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Cw=19mJ
Cw=22mJ
Cw=25mJ
Cw=28mJ

Fig. 6: Optimal to naive ratio under various wake-up cost and interarrival time

We have a couple of observations. First, the cost saving of the optimal
solution is greater when CW is larger. Second, the maximum cost saving occurs
when the interarrival time is not too small or too large: when it is too small, a
single AP will be sufficient to complete all the tasks, and the optimal and the
naive solutions are essentially the same; when it is too large, many APs are
needed, and the advantage of the optimal controller gets smaller. As we can
see from the result, the cost saving of the DP algorithm in the CW = 28mJ
case is as large as 50%, and it will be ever greater when CW is higher.
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5 On-line Control

In the previous section, we combine structural properties of the optimal sample
path and dynamic programming to find the optimal solution to the off-line
control problem. In this section, we study on-line control where future task
arrival information is unknown to the controller. Essentially, the controller
needs to decide the starting time and ending time for each AP.

5.1 Starting an AP

We first focus on the following questions: how can we determine the best time
to start an AP in on-line control and how different is it from the optimal time
in off-line control?

The system is sleeping and 
waiting for the first task

The first task arrives

Pick the optimal wake-up 
time based on Lemma 4.2

Another arrival 
before the 
scheduled 

wake-up time?

Wake up the system at the 
scheduled time

No

Yes Calculate the optimal wake-
up time based on Lemma 4.3

Fig. 7: On-line control: starting an AP

Fig. 7 shows the proposed on-line control mechanism for determining the
wake-up time. It is an iterative algorithm that dynamically adjusts the wake-up
time based upon the backlog and the newly available task information. Ini-
tially, right after the first task arrives, the scheduled wake-up time is a1+d−β
(determined by Lemma 3). If there are other task arrivals before the scheduled
wake-up time, the controller will recalculate the wake-up time using the results
in Lemma 4; otherwise, the system will be woken up at the scheduled time.

Lemma 6 Suppose that tasks {k, . . . , n} form an AP on the optimal sample
path of Q(1, N). If the system is OFF before task k arrives in on-line control,
then the wake-up time returned by the on-line control mechanism in Fig. 7 is
optimal.
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Lemma 6 indicates that for on-line control, the lack of future task infor-
mation does not incur any penalty when starting an AP: the optimal time to
start an AP can be determined iteratively using the backlog and the newly
available task information.

We now turn our attention to ending an AP in on-line control.

5.2 Ending an AP

When all backlogged tasks have been served in an on-line setting, the controller
needs to decide when to end an AP and put the system to sleep. This decision
depends on future task information and the values of idling cost CI and wake-
up cost CW . For example, if the next task t+ 1 arrives very soon, the optimal
control at decision point xt might be letting the system stay active; conversely,
if the next task t+ 1 arrives after a long time, then the system perhaps should
go to sleep at decision point xt.

When some future task information is known, techniques such as Receding
Horizon Control (RHC) can be utilized to make decisions. In this paper, we
focus on the scenario that no future task information is available at all.

In general, the control at each decision point is the following: let the system
stay awake for another θt seconds. If no task arrives within the θt seconds, then
put the system to sleep after θt seconds; o.w., serve the newly arrived tasks
and wait for the next decision point. Note that the subscript t indicates θt
could be different at each decision point.

Let J∗ be the optimal cost of the off-line problem Q(1, N) and J̃ be the
cost of the on-line controller. Our objective is to develop competitive on-line
controllers which can quantify their worst-case performance deviation from
the optimal off-line solution.

One challenge of competitive analysis is to find out the worst-case scenario.
In our problem, the unnecessary cost in on-line control occurs when the system
is idling: the controller must decide if and when to sleep. Therefore, the worst
case occurs when each AP contains only one task so that the decision has to be
made over and over again for every single task. This property actually simplifies
our analysis, and in particular, we tackle the competitive ratio problem from
two different aspects: a deterministic controller and a randomized one.

5.2.1 Deterministic Controller

We first consider a deterministic controller in which θt is a fixed constant value
θ. The on-line controller is c-competitive if J̃(I, θ) ≤ cJ∗,∀I ∈ I , where I is
the set of all possible task arrival instances and I is one task arrival instance.
c is called the competitive ratio of the deterministic on-line controller and is
essentially the upper-bound (i.e., worst case) of the ratio between the on-line

cost J̃ and the off-line optimal cost J∗.
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Lemma 7 The best competitive ratio c∗ of a deterministic controller is ob-
tained when θ = CW /CI , and limN→∞ c∗ = (2 + γ)/(1 + γ), where N is the
number of tasks and γ = CBβ/CW .

Lemma 7 shows that the competition ratio of a deterministic algorithm
depends on the ratio between CBβ, the cost of serving one task, and CW , the
cost of waking up the system. If this ratio is very small, then the competitive
ratio is close to 2; if the ratio is very large, then the competitive ratio is close
to 1.

5.2.2 Randomized Controller

In a different methodology, we assume that θt is determined by a random-
ized algorithm that returns a value based on certain probability distribution
P . During on-line control, the controller essentially is playing a game with
an adversary (i.e., the task arrival process). Our job is to find the optimal
probability distribution and the corresponding competitive ratio. We point
out that the competitive ratio of a randomized on-line algorithm A is de-
fined with respect to a specific type of adversary. In this paper, we assume
an oblivious adversary [26], in which the worst instance for the randomized
algorithm A is chosen without the the knowledge of the realization of the ran-
dom variable used by A. We say randomized algorithm A is c-competitive if
EP [J̃(A, I)] ≤ cJ∗(I),∀I ∈ I , where J̃(A, I) is the cost of algorithm A under
task arrival instance I in on-line control and J∗(I) is the corresponding off-
line optimal cost. Note that the task arrival instance I must be fixed before
the expectation is taken. The competition ratio of randomized algorithm AP
(algorithm A using probability distribution P ) is:

c(AP ) = sup
I∈I

EP [J̃(AP , I)]

J∗(I)

Our goal is to find the best possible probability distribution that yields the
best competitive ratio c∗:

c∗ = inf
P

sup
I∈I

EP [J̃(AP , I)]

J∗(I)

This is essentially a minimax problem, and one way of solving it is to use
Yao’s minimax principle [27], which states: a randomized algorithm may be
viewed as a random choice between deterministic algorithms; in particular, the
competitive ratio of a randomized algorithm against any oblivious adversary
is the same as that of the best deterministic algorithm under the worst-case
distribution of the adversary’s input. In our case, the adversary’s input is the
task arrival instance after each AP. Let its probability distribution be G. Using
Yao’s principle and von Neumann minimax theorem, we get:

c∗ = sup
G

inf
A∈A

EG[J̃(A, IG)]

J∗(IG)
(10)
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where A is the set of all randomized algorithms, IG is a specific task arrival in-
stance under probability distribution G, and the expectation is now performed
with respect to G. We now use the following lemma to find c∗.

Lemma 8 The best competitive ratio c∗ of a randomized controller is obtained
when θt is a random variable X, whose probability density function is

fX(x) =

{
1

CW
CI

(e−1)
ex/(CW /CI), if x ≤ CW /CI
0, if x > CW /CI

(11)

When this controller is used, limN→∞ c∗ = (γ + 1.58)/(γ + 1), where γ =
CBβ/CW .

Lemma 8 shows that the competition ratio of a random controller also
depends on the ratio between CBβ and CW . If this ratio is very small, then the
competitive ratio is close to 1.58; if the ratio is very large, then the competitive
ratio is close to 1.

6 Conclusions

In this paper, we study the optimal ON-OFF control problem for a class
of DESs with real-time constraints. The DESs have operating costs CB and
CI per unit time and wake-up cost CW . Our goal is to switch the system
between the ON and the OFF states so as to minimize cost and satisfy real-
time constraints. In particular, we consider a homogeneous case that all tasks
have the same number of operations and each one’s deadline is d seconds after
the arrival time. For the off-line scenario that all task information is known to
the controller a priori, we show that the optimal solution can be obtained via
a two-fold decomposition: (i) super active periods that contain one or more
active periods can be identified easily using the task arrival times and deadlines
and (ii) the optimal solution to each super active period can be solved using
dynamic programming. Simulation results show that compared with a simple
heuristic, the cost saving of the DP algorithm can be 50% or more.

In on-line control, we show that the best time to start an AP can be ob-
tained via an iterative algorithm and is guaranteed to be the same as the
off-line problem. To decide the best time to end an AP in the on-line setting
where no future task arrival information is available, we evaluate both de-
terministic and random controllers and derive their competitive ratios; these
results quantify the worst-case on-line performance deviation from the optimal
off-line solution.
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APPENDIX

Proof of Lemma 1: To see this, consider the solution that the system is woken up at
a1 and stays active until dN . Because in any d seconds,

Rd ≥ b
d

β
cB,

that is, the number of task departures is not less than the number of task arrivals, the backlog
is always zero at the integer multiples of d seconds. This means that all task arrivals can be
served within d seconds. Hence, the proposed solution is always feasible under Assumption
1. �

Proof of Lemma 2: Because

ak ≤ tA < tB ≤ dk − β

we have
xAj ≤ xBj , j = k, . . . , n (12)

where xAk , . . . , x
A
n and xBk , . . . , x

B
n are the task departure times in the two sample paths,

respectively. It means that the departure time of task j in sample path A is no later than
that in sample path B. Note that (12) holds because the sensor stays on in the AP and
tA < tB .

Let tEA and tEB be the ending time of the AP when the starting time is tA and tB ,
respectively. We have:

CAk,...,n = Cw + CB(n− k + 1)β + CI [tEA − tA − (n− k + 1)β]

CBk,...,n = Cw + CB(n− k + 1)β + CI [tEB − tB − (n− k + 1)β]

where the three terms in each equation correspond to the wake-up cost, the cost of serving
the n− k + 1 tasks, and the idling cost, respectively.

By assumption that tA < tB , we know for sure that the idling time of sample path A is
not less than that of sample path B, i.e., tEA − tA ≥ tEB − tB . Therefore,

CAk,...,n ≥ C
B
k,...,n �

Proof of Lemma 3: Time dk−β is the latest time to serve task k, in order to meet its
hard deadline requirement. Invoking Lemma 2, we only need to show that Q(1, N) is still
feasible when we delay the transmission of task k until dk − β. Under Assumption 1 and in
the worst case, there could be b d

β
c − 1 tasks {k + 1, . . . , k + b d

β
c − 1} arriving at dk − β. It

means that at time dk − β, we have b d
β
c tasks in the backlog. If we start transmitting all

these tasks {k, . . . , k + b d
β
c − 1} at dk − β, then it takes maximum d seconds to send all of

them, and each task’s deadline is met. Again, under Assumption 1, the earliest time that
task k + b d

β
c can arrive is dk. If the system stays active at dk + d − β, then task a

k+b d
β
c
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can be served by its deadline dk + d. Similarly, all subsequent tasks can be transmitted by
their deadlines. Therefore, Q(1, N) is still feasible after we postpone task k’s transmission
time to dk − β. �

Proof of Lemma 4: Invoking Lemma 2 again, we need to show that dk − β and
dk − β − δ are the latest feasible starting times for the two cases, respectively.

In the worse case, there could be b d
β
c − m − 1 tasks arriving at dk − β. As we have

shown in Lemma 3, these tasks and all subsequent ones can be served before their deadlines
as long as we start the AP no later than dk − β. Therefore, we only need to focus on the
tasks that arrive before dk − β.

Case 1: δz ≤ 0. This implies that

aj − ak
j − k

≥ β, for j ∈ {k + 1, . . . , k +m} (13)

dk − β is the latest possible starting time for task k. We need to show that Q(1, N) is
still feasible when we start serving task k at dk − β, i.e., starting serving tasks at this time
will satisfy the real-time constraints for tasks {k+ 1, . . . , k+m}. If task k is done at dk−β,
then the departure time xj of task j, j ∈ {k + 1, . . . , k +m}, is

xj = dk + β(j − k)

From (13), we have
xj ≤ dk + aj − ak = aj + d = dj

Thus, the deadlines of all the tasks {k + 1, . . . , k + m} are met, and dk − β is the optimal
starting time.

Case 2: δz > 0. We need to show dk − β − δz is a feasible starting time for all tasks
{k, . . . , k+m}. We first show causality. The starting time sj of task j ∈ {k+ 1, . . . , k+m}
is:

sj = dk − β − δz + β(j − k) (14)

Using (1),

sj = dk − β − [β(z − k)− (az − ak)] + β(j − k) (15)

= dk − β + β(j − z) + (az − ak)

= d− β + β(j − z) + az

We use contradiction to prove it. Suppose sj < aj , we have

d− β + β(j − z) + az < aj , i.e.,

d− β + β(j − z) < aj − az (16)

1) When k < j ≤ z ≤ k +m, we have

aj − az ≤ 0 (17)

By Assumption 1,
β(j − z) = −β(z − j) ≥ −(d− β),

i.e.,
d− β + β(j − z) ≥ 0 (18)

Combining (17) and (18), (16) is not true.
2) When k < z < j ≤ k +m, we have

d− β > aj − az > 0

and
d− β + β(j − z) > d

Combining the two inequalities, we conclude that (16) is not true either.
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We can now assert
sj ≥ aj

which satisfies causality.
Next, we show the departure time of each task j ∈ {k+1, . . . , k+m} is before the task’s

deadline. Again, we use xj to denote the departure time of task j, and

xj = sj + β

Invoking (15),
xj = d+ β(j − z) + az

We need to show
xj = d+ β(j − z) + az ≤ aj + d,

i.e.,
β(j − z) + az ≤ aj (19)

From (1), we have

δj = β(j − k)− (aj − ak) ≤
δz = β(z − k)− (az − ak),

j = k + 1, ..., k +m

Rearranging the terms above, we obtain (19).
Finally, the departure time of task z is exactly az + d, indicating that dk −β− δz is the

latest possible time to start serving task z. �
Proof of Lemma 5: We use x∗j and s∗j+1 to denote the departure time of task j and

the starting time of task j + 1, respectively, on the optimal sample path of Q(1, N). Using
Lemma 1, we have

x∗j ≤ dj (20)

From casualty,
s∗j+1 ≥ aj+1 (21)

By assumption, we have
aj+1 − dj > CW /CI (22)

Combining (20), (21), and (22), we get

s∗j+1 − x∗j > CW /CI (23)

Next, we use a contradiction argument to prove the lemma. Let the optimal sample path of
Q(1, N) be sp∗ and the corresponding cost is J∗. Suppose that task j does not end an AP
on sp∗. It means that the system stays active from x∗j to s∗j+1. The optimal cost is then

J∗ = (s∗j+1 − x∗j )CI + JR, where JR is the rest of the cost beyond time interval [x∗j , s
∗
j+1].

Consider another sample path sp
′
, which is identical to sp∗, except that the system goes to

sleep at x∗j and wakes up at s∗j+1. The system cost is now J
′

= CW + JR. Using (23), we

obtain J
′
< J∗, which contradicts the assumption that sp∗ is the optimal sample path. �

Proof of Theorem 1: We use induction to prove it.
Step 1 : Task n can either be a starting task or a following task. When it is a starting

task, it is obvious that JSn is the optimal cost of QS(n, n). When it is a following task, it is
also obvious that JFn is the optimal cost of QF (n, n).

Step 2 : Suppose that JSj is the optimal cost of problem QSj (j, n), and JFj is the optimal

cost of problem QFj (j, n), j ∈ {i, . . . , n}. We need to show that JSi−1 and JFi−1 are the optimal

cost of problem QSi−1(i− 1, n) and QFi−1(i− 1, n), respectively. Since the proofs are similar,

we only show that JSi−1 is the optimal cost of problem QSi−1(i− 1, n). By assumption, task

i − 1 is a starting task. We can use Lemmas 3 and 4 to find si−1
i−1,n, the optimal starting

time of task i− 1. We now discuss two cases:
Case 1: Task l that satisfies (2) does not exist.
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It implies that si−1
i−1,n+(j−i+1)β > aj , ∀j ∈ {i−1, . . . , n}, i.e., the system is busy serving

tasks whenever a task j ∈ {i− 1, . . . , n} arrives. Therefore, there is no reason to go to sleep,
and tasks {i−1, . . . , n} form a single AP. From Line 14 of Table 2, JSi−1 = CW+(n−i+2)βCB

is the optimal cost of problem QS(i− 1, n).
Case 2: Task l that satisfies (2) does exist.
In this case, task l has not arrived when task l − 1 departs the system. It has two

subcases: the system should either go to sleep when task l − 1 departs or stay awake (and
serve task l when it arrives). The subcase that yields a smaller cost is the optimal solution,
and this is calculated in (3). �

Proof of Lemma 6: We consider two cases.
Case 1: The optimal wake-up time is dk − β. This happens when either Lemma 3 or

the δz ≤ 0 case of Lemma 4 applies. The on-line control mechanism picks the same wake-up
time upon the arrival of task k, and it does not change. Therefore, the wake-up time in
on-line control is the same as the optimal wake-up time on the optimal sample path.

Case 2: The optimal wake-up time is dk − β − δz . This happens when the δz < 0 case
of Lemma 4 applies. In on-line control, the initial wake-up time is set to dk − β. With the
arrival of tasks between ak and dk − β, this scheduled time is adjusted to dk − β − δj , for
some j ∈ {k + 1, . . . , k +m}. By definition of δz , we have

dk − β − δj ≥ dk − β − δz
= dk − β − [β(z − k)− (az − ak)]

= d− β − β(z − k) + az

≥ az

The above implies that all intermediate wake-up times and the optimal wake-up time are
after the arrival of task z. Therefore, the on-line control policy is able to wake up the system
at the optimal time dk − β − δz after task z arrives. �

Proof of Lemma 7: The worst-case happens when each AP only contains a single task.
After each task is served, the system stays active for θ seconds and then goes to sleep; it
wakes up again after the next task arrives. For any θ, we have the ratio between the on-line
cost and the optimal cost:

c(θ) =
CW +NCBβ + (N − 1)(CIθ + CW )

CW +NCBβ + (N − 1) min(CIθ, CW )
(24)

where the numerator is the on-line cost and the denominator is the off-line cost. Note that
both costs have three terms: the first term CW is the wake-up cost for serving the very first
task; the second term NCBβ is the actual cost of serving the N tasks; and the last term is
the cost between two adjacent tasks. We can rewrite (24) into:

c(θ) =
CW /N + CBβ + (N − 1)(CIθ + CW )/N

CW /N + CBβ + (N − 1) min(CIθ, CW )/N

It follows that

lim
N→∞

c(θ) =
CBβ + (CIθ + CW )

CBβ + min(CIθ, CW )
.

Because
CIθ + CW

min(CIθ, CW )
≥ 2

and the equality holds when θ = CW /CI , we have

c∗ = lim
N→∞

c(CW /CI) =
CBβ + 2CW

CBβ + CW
=

2 + γ

1 + γ
�

Proof of Lemma 8: Similar to the deterministic algorithm case, the worst case also
occurs when each AP only contains a single task. At the i-th decision point, the system
stays active for θt = X seconds, where X is a random variable returned by algorithm A,
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and then goes to sleep if no tasks arrive during this period. For serving N tasks, the ratio
between the on-line cost and the optimal-cost is:

c(θt) =
CW +NCBβ + (N − 1)EG[J̃b(A, IG)]

CW +NCBβ + (N − 1)J∗b (IG)
(25)

where the numerator is the on-line cost and the denominator is the off-line cost. Note that
both costs have three terms: the first term CW is the wake-up cost for serving the very first
task; the second term NCBβ is the actual cost of serving the N tasks; and the last term
is the cost between two adjacent tasks. Note that the reason why the expectation is taken
with respect to G is due to the insight provided by equation (10). We can rewrite (25) into:

c(θt) =
CW /N + CBβ + (N − 1)EG[J̃b(A, IG)]/N

CW /N + CBβ + (N − 1)J∗b (IG)/N
.

It follows that

lim
N→∞

c(θt) =
CBβ + EG[J̃b(A, IG)]

CBβ + J∗b (IG)
. (26)

Let y be the time it takes for the next task to arrive after the system finishes serving
the previous task. Similar to other on-line scheduling scenarios such as the ski rental and the
snoopy caching problems [28] , it can be seen via variational analysis that EG[J̃b(A, IG)]/J∗b (IG)

is uniform with respect to y, i.e., it is independent from y. Letting c̃ = EG[J̃b(A, IG)]/J∗b (IG),
our goal is to come up the best algorithm A that minimizes c̃. It has been shown in [28]
that c̃∗ is e/(e− 1) ≈ 1.58, and the probability distribution P that achieves this ratio is in
(11). Note that J∗b (IG) = min(CI × y, CW ). The impact of c̃ to (26) is the greatest when

J∗b (IG) takes the maximum value CW . In this case, EG[J̃b(A, IG)] takes its value 1.58CW .
Therefore,

lim
N→∞

c∗ =
CBβ + 1.58CW

CBβ + CW
=
γ + 1.58

γ + 1
�

1. JSn = CW + CBβ, J
F
n = CBβ, and

set both JSn → next and JFn → next to NULL.
2. for (i = n; i− k >= 1; i−−) {
3. Initialize JSi−1 → next and JFi−1 → next to NULL

4. Solve QS(i− 1, n)
5. Solve QF (i− 1, n)
6. }

Table 1: The algorithm that returns the optimal cost of Q(k, n)
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1. Use Lemmas 3 and 4 to find

si−1
i−1,n, the optimal starting time of task i− 1

2. If (there exists l that satisfies (2)) {
3. Calculate V SSi−1,l and V SFi−1,l using (4) and (5), respectively

4. If (V SSi−1,l + JSl ≤ V
SF
i−1,l + JFl ) {

5. JSi−1 = V SSi−1,l + JSl
6. JSi−1 → next = JSl
7. }
8. else {
9. JSi−1 = V SFi−1,l + JFl
10. JSi−1 → next = JFl
11. }
12. }
13. else { // single AP case
14. JSi−1 = CW + (n− i+ 2)βCB
15. }

Table 2: The algorithm that returns the optimal cost of QS(i− 1, n)

1. If (there exists task l that satisfies (6)) {
2. Calculate V FSi−1,l and V FFi−1,l using (8) and (9), respectively

3. If (V FSi−1,l + JSl ≤ V
FF
i−1,l + JFl ) {

4. JFi−1 = V FSi−1,l + JSl
5. JFi−1 → next = JSl
6. }
7. else {
8. JFi−1 = V FFi−1,l + JFl
9. JFi−1 → next = JFl
10. }
11. }
12. else { //single AP case
13. JFi=1 = (n− i+ 2)βCB
14. }

Table 3: The algorithm that returns the optimal cost of QF (i− 1, n)
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1. J = JSk , i = J.task = J ′s subscript, and
J.type = J ′s superscript

2. while ( J → next is not NULL){
3. J ′ = J− > next
4. next task = J ′.task
5. next type = J ′.type
6. If (J.type = “S”){
7. AP starts at sii,n;

8. }
9. If (next type = “S”) {
10. AP ends after task next task − 1 is served;
11. J = J ′ and i = J.task; continue;
12. }
13. If (next type = “F”) {
14. Keep the system active through anext task
15. }
16. J = J ′ and i = J.task
17. }

Table 4: The procedure that returns the optimal control to Q(k, n)
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