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Abstract

We study sparsity in the max-plus algebraic setting. We seek both exact and approximate
solutions of the max-plus linear equation with minimum cardinality of support. In the former
case, the sparsest solution problem is shown to be equivalent to the minimum set cover problem
and, thus, NP-complete. In the latter one, the approximation is quantified by the ℓ1 residual
error norm, which is shown to have supermodular properties under some convex constraints,
called lateness constraints. Thus, greedy approximation algorithms of polynomial complexity
can be employed for both problems with guaranteed bounds of approximation. We also study
the sparse recovery problem and present conditions, under which, the sparsest exact solution
solves it. Through multi-machine interactive processes, we describe how the present framework
could be applied to two practical discrete event systems problems: resource optimization and
structure-seeking system identification. We also show how sparsity is related to the pruning
problem. Finally, we present a numerical example of the structure-seeking system identification
problem and we study the performance of the greedy algorithm via simulations.

1 Introduction

Max-plus algebra has been used to model a subclass of nonlinear phenomena with some linear-like
structure. It is obtained from the linear algebra if we replace addition with maximum and multipli-
cation with addition (Butkovič, 2010). The development of this algebraic theory was motivated by
problems arising in scheduling theory, graph theory and operations research (Cuninghame-Green,
1979). Later on, max-plus algebra was also employed in discrete event systems to deal mainly with
synchronization problems (Cohen et al, 1985; Baccelli et al, 1992; Cohen et al, 1999; De Schutter and van den Boom,
2008). Other applications include the max-algebraic approach to optimal control (Litvinov et al,
2001; McEneaney, 2006), general max-plus dynamical systems and control (Adzkiya et al, 2015;
Hardouin et al, 2011) and generalized HMMs for audiovisual event detection (Maragos and Koutras,
2015). An extensive survey about the applications of the max-plus algebra can be found in Gaubert
(2009). Generalizations of max-plus algebra using other idempotent semirings are described in Gondran and Minoux
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(2008). A unification of max-type algebras and their duals using weighted lattices with applications
to nonlinear dynamical systems was presented in Maragos (2017).

Meanwhile, in the last decade, we have experienced an increase of interest in sparsity in linear
equations and linear systems. A solution of a linear equation is sparse when it has many zero
elements. The reason we are interested in such solutions, is that they need less elements to describe
the same information. They provide us a way of compressing the available data, throwing away
those that are unnecessary (Donoho, 2006). They also reveal the structure of partially known signals
(Candès et al, 2006) or systems (Chen et al, 2009). In control systems, sparsity has been sought
in the sense of minimizing the number of sensors or actuators, subject to energy (Tzoumas et al,
2016; Summers et al, 2016) or observability-controllability constraints (Pequito et al, 2016).

Although sparsity has been extensively studied in the linear setting (Elad, 2010), it is still not
much developed in more general nonlinear settings. In this work, we aim to define and study sparsity
in the max-plus algebraic setting. A sparse solution of a max-plus equation is a solution with many
non-informative elements, i.e. the infinite elements. As in the linear case, such solutions use the least
number of elements to describe the same information, thus yielding compressed data. But there are
many other applications where sparsity could be relevant. For example, in max-plus systems (either
static or dynamical), finding sparse inputs implies that we are activating fewer actuators/machines,
thus, saving resources. Similarly, the problem of selecting few sensors to observe a max-plus system
could be expressed in terms of designing sparse output matrices. Another application could be in
max-plus system identification problems, where the sparsity structure is unknown. In this case,
sparse solutions could be employed to reveal the unknown structure of the original system.

Our theoretical contributions are the following:

i) We define sparsity in the max-plus algebraic setting (see Section 3); a vector is defined to be
sparse when it has many −∞ elements.

ii) We define the problem of finding the sparsest exact solution to the max-plus equation (see
problem (6)). Then, in Section 4, we show that this problem is equivalent to the minimum
set-cover one and, thus, NP-complete (Theorem 1).

iii) We define the problem of finding the sparsest approximate solution (see problem (7)). Here,
we are searching for the sparsest solution that satisfies the following constraints: i) its ℓ1
approximation error is bounded and ii) it satisfies some additional convex constraints, called
lateness constraints. In Section 5, we show that the ℓ1-error of approximation has supermodular
properties (Theorem 3). Thus, a suboptimal greedy approximate algorithm of polynomial
complexity can be employed with guaranteed bounds on the suboptimality ratio (Theorem 4).
Our analysis is extended to the case when the components of the matrices are allowed to take
−∞ values (Theorem 5).

iv) We study the sparse recovery problem (see Section 6, Theorem 6). In particular, it is explored
whether we can recover a vector, for which we do not know the sparsity pattern, from its image
under a max-plus linear transformation. We derive sufficient conditions, under which, we can
use the sparsity framework to recover that vector and its sparsity pattern.

The paper is organized as follows. In Section 2, we revisit the max-plus equation and its prop-
erties. Section 3 formulates the problems of finding the exact and approximate sparsest solutions
to the max-plus equation. Then, in Sections 4, 5, we present possible solutions to the the former

2



and the latter problem respectively. For completeness, in Section 5, we also include a brief intro-
duction to the supermodularity literature. In Section 6, we study the sparse recovery problem.
In Section 7, we study two applications of the sparsity framework to multi-machine interactive
production processes (Butkovič, 2010): i) application to resource optimization and ii) application
to structure-seeking system identification. There, we also show how our sparsity framework is re-
lated to the pruning problem (McEneaney, 2009; Gaubert et al, 2011). In Section 8, we present
a numerical example of the system identification problem and we study the performance of the
greedy algorithm via simulations. Finally, in Section 9, we conclude the paper and discuss possible
extensions of the present work. All proofs which do not appear in the main text are included in
the Appendix.

1.1 Related Work

The relation between set covers and solutions to the max-plus equation has been known be-
fore ((Vorobyev, 1967; Zimmermann, 1976; Butkovič, 2003; Akian et al, 2005)). We use those
previous results to prove the equivalence between the sparsest exact solution problem and the min-
imum set cover problem in Theorem 1. Still, our paper is the first to explicitly define and study
the problem of finding the sparsest exact solution.

The most related problem to sparsity is the pruning one (McEneaney, 2009; Gaubert et al,
2011). It arises in optimal control problems, where we try to approximate value functions as the
supremum of certain basis functions. The goal there is to replace the supremum over many basis
functions with the supremum over a smaller subset of basis functions, which has fixed-cardinality;
this subset is selected via minimizing an ℓ1 approximation error cost. The problem of finding the
sparsest approximate solution (problem (7)) defined in this paper is a “dual” version of the pruning
one–see also Section 7. The minimization is over the cardinality of the subset such that the ℓ1-
error remains bounded. Another difference is that the pruning problem deals with basis functions
defined on infinite spaces; the sparsity problem deals with basis vectors instead of basis functions.
In Gaubert et al (2011), equation (34), the pruning problem is reduced to a k−median problem,
which can be shown to have supermodular properties (Nemhauser et al, 1978). This argument
could lead to an alternative proof of Theorem 3. Finally, our sparsity framework also applies when
the basis vectors are allowed to have −∞ (null) components (Theorem 5).

The recovery problem, without any sparsity considerations, is related to the uniqueness of the
max-plus equation (see Chapter 15 of Cuninghame-Green (1979) or Butkovič (2010) or Corollary 4.8
in Akian et al (2005)). However, the sparse recovery problem is quite different; we might be able to
solve the sparse recovery problem even if we have have infinite solutions to the max-plus equation–
see Section 6 for more details. The results of Schullerus et al (2006) are related to the result
of Theorem 6. However, in Schullerus et al (2006) there are no sparsity considerations, e.g. the
sparsity pattern of the involved matrices is considered known. To the best of our knowledge, our
paper is the first to define and address the sparse recovery problem.

2 Notation and Background

Throughout this paper, matrices and vectors will be denoted by bold characters. If A is a m× n

matrix then its columns (m × 1 vectors) are denoted by Aj, j = 1, . . . , n. Its components are
denoted by Aij or [A]ij , for i = 1, . . . ,m, j = 1, . . . , n. The transpose matrix is denoted by A⊺. If
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x is a n×1 vector, its components are denoted by xj or [x]j, for j = 1, . . . , n. Finally, for simplicity
we denote the row and column index sets by I = {1, 2, . . . ,m} and J = {1, 2, . . . , n}, respectively.

2.1 The Max-Plus Algebra

The max-plus algebra (or the (∨,+) semiring) is the set Rmax = R ∪ {−∞} equipped with the
maximum operator ∨ as “addition” and + as “multiplication” (Gaubert and Plus, 1997).1 If x, y ∈
Rmax, then x ∨ y , max {x, y}. The zero element for the maximum operator ∨ is −∞. The
operator + is defined in the usual way with 0 as the identity element and −∞ as the null element.
Similarly, we can define the min-plus algebra on Rmin = R ∪ {+∞}, equipped with the minimum
operator ∧ and addition +.

If x,y ∈ R
n
max are vectors, we overload ∨ with componentwise maximum

[x ∨ y]i = xi ∨ yi, i = 1, · · · , n.

Operators <,≤ are interpreted with the vector partial order, induced by componentwise compari-
son. We also define the addition x + a of a scalar a ∈ Rmax to a vector x ∈ R

n
max componentwise

as follows:
[x+ a]i = xi + a, i = 1, · · · , n,

This can be interpreted as the scalar “multiplication” counterpart of linear algebra.
IfA ∈ R

m×n
max , B ∈ R

m×n
max are matrices, then we define their componentwise maximum [A ∨B]ij =

Aij ∨ Bij , i = 1, · · · ,m, j = 1, · · · , n. If A ∈ R
m×n
max and B ∈ R

n×p
max, then their max-plus matrix

“multiplication” A⊞B ∈ R
m×p
max is defined as:

[A⊞B]ij =

n∨

k=1

(Aik +Bkj) , i = 1, · · · ,m, j = 1, · · · , p.

If A ∈ R
m×n
min

, B ∈ R
n×p
min

, their min-plus matrix multiplication A⊞′ B ∈ R
m×p
min

is defined similarly:

[
A⊞′ B

]

ij
=

n∧

k=1

(Aik +Bkj) , i = 1, · · · ,m, j = 1, · · · , p.

2.2 Max-plus Linear Equation and Exact Solution

The max-plus equation has a form similar to the linear equationAx = b, though we replace addition
with maximum and multiplication with addition. In particular, given A ∈ R

m×n
max , x ∈ R

n
max,

b ∈ R
m, it is given by the following formula2:

n∨

j=1

(Aij + xj) = bi, i = 1, · · · ,m

1An alternative notation that has been used in the literature is ⊕ for maximum (max-plus “addition”) and ⊗
for addition (max-plus “multiplication”)–see Cuninghame-Green (1979) or Baccelli et al (1992). Here, we follow the
notation of lattice theory–see Birkhoff (1967), Maragos (2013), Maragos (2017), where the symbol ∨/∧ is used for
max/min operations. We also use the classic symbol ”+” for real addition, without obscuring the addition with the
less intuitive symbol ⊗. Further, we avoid the symbol ⊕ because it is used in signal and image processing to denote
max-plus convolution and in set theory to denote Minkowski set addition.

2In the general case, b ∈ R
m
max (Butkovič, 2010). However, in this paper we will only consider finite b ∈ R

m. See
also Assumption 1 in Section 3.
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or in compact form
A⊞ x = b. (1)

Next, we define the set of all solutions of (1) S (A, b):

S (A, b) = {x ∈ R
n
max : A⊞ x = b} (2)

We can also write (1) as A⊞x =
n∨

j=1

(Aj + xj) = b. Hence, in this form, A⊞x can be interpreted

as a “max-plus linear combination” of the columns of A with weights xj .
To analyze the max-plus equation, we need the definition of the principal solution x̄ ∈ R

n
min

(Cuninghame-Green, 1979) 3:
x̄ = (−A)⊺ ⊞′ b,

whose components can be expressed as:

x̄j =
m∧

i=1

(bi −Aij) , ∀j ∈ J. (3)

Although the principal solution belongs to R
n
min, in this paper we will only deal with cases where

x̄ ∈ R
n. When the max-plus equation (1) admits a solution, it turns out that the principal solution

x̄ is also an actual solution (see Theorem 7 in the Appendix). In other words, the set S (A, b) is
non-empty if and only if x̄ is a solution to equation (1) (Cuninghame-Green, 1979).

2.3 Max-plus Linear Equation and Approximate Solution

Although the principal solution x̄ is always defined, it may not be a solution of (1). In this case,
system (1) cannot be solved. However, we may find an approximate solution, by minimizing the ℓ1
norm of the residual error b−A⊞ x. Still, without any additional constraint this problem is hard
to solve. For this reason, the convex constraint

A⊞ x ≤ b, (4)

also called the lateness constraint (Cuninghame-Green, 1979), is added to the minimization prob-
lem. This relaxation, adopted in Cuninghame-Green (1979), is also motivated by time constraints
in operations research (see also Section 7.1.1). The approximate solution problem can be described
with the following optimization problem:

minimize
x∈Rn

max

‖b−A⊞ x‖1

subject to A⊞ x ≤ b,
(5)

which can be recast as a linear program. It turns out that the principal solution x̄ is the largest
possible element that satisfies the constraint A ⊞ x ≤ b. Therefore, it is also an optimal solution
to problem (5) (see Theorem 8 in the Appendix).

3The principal solution can also be expressed in terms of residuation theory–see, for example, Baccelli et al (1992).
The map Π(x) = A⊞x is residuated, with Π♯(b) = (−A

⊺)⊞′
b being the residual map, where ⊞′ denotes the min-plus

matrix product. Both maps are increasing and they satisfy the property
(

Π ◦ Π♯
)

(b) ≤ b,
(

Π♯ ◦ Π
)

(x) ≥ x. Then,

the principal solution x̄ can be written as x̄ = Π♯(b). The notion of residuated and residual maps is also related to
the notion of adjunctions in lattice theory, e.g. see Maragos (2013), Maragos (2017), as well as the notion of Galois
Connections, e.g see Akian et al (2005).
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3 Problem Statement

In this section, we define the problem of finding the sparsest exact and approximate solutions to
the max-plus equation A ⊞ x = b. In linear algebra, the sparsity pattern of a vector or a matrix
is determined by the set of its nonzero components. In a similar fashion, in max-plus algebra, the
sparsity pattern of any matrix or vector is determined by the set of its finite elements, since the
zero element is −∞. We define the support of an element x ∈ R

n
max as

supp (x) = {j ∈ J : xj 6= −∞} ,

i.e. the set of the indices of its finite components.
The first problem studied in this paper is finding the sparsest solution to equation (1). Formally,

given the matrices A ∈ R
m×n
max , b ∈ R

m, we want to determine the optimal (possibly non-unique)
solution x∗ ∈ R

n
max to the following optimization problem:

x∗ =arg min
x∈Rn

max

|supp (x)|

subject to A⊞ x = b
(6)

where |T | denotes the cardinality of a set T .
However, a solution to equation A⊞x = b may not exist. Meanwhile, solving problem (5) might

not work either, since it does not guarantee a sparse approximate solution. Instead of optimizing
with respect to the residual error, one option would be to search for sparse approximate solutions
to (1), within some allowed error. We define an ǫ-approximate solution to (1) as a vector x ∈ R

n
max

that: i) has residual error bounded by positive constant ǫ > 0 or ‖b−A⊞ x‖1 ≤ ǫ, and ii) satisfies
the lateness constraint A⊞ x ≤ b.

In the second problem, given a prescribed constant ǫ > 0, we seek the sparsest (possibly non-
unique) ǫ-approximate solution. Equivalently, we solve the optimization problem:

x∗ =arg min
x∈Rn

max

|supp (x)|

subject to ‖b−A⊞ x‖1 ≤ ǫ

A⊞ x ≤ b

(7)

We may recover the exact sparsest solution problem if we select ǫ = 0. Notice that we need to
select ǫ ≥ ‖b−A⊞ x̄‖1 in order to guarantee feasibility of problem (7) (follows from Theorem 8).

To guarantee that the problem we are solving is not trivial, we make the following assumption
about A and b, which holds throughout the paper. It has been a standard assumption in the
literature (see chapter 15 in Cuninghame-Green (1979)).

Assumption 1. All elements of b in equation (1) are finite: b ∈ R
m. Every row and column of

matrix A ∈ R
m×n
max in (1) has at least one finite element4 :

i-th row:

n∨

k=1

Aik 6= −∞, i = 1, . . . ,m

j-th column:

m∨

l=1

Alj 6= −∞, j = 1, . . . , n

4Such matrices are also called doubly R-astic in Butkovič (2010) and doubly G-astic in Cuninghame-Green (1979).
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If this assumption is not satisfied, it leads to trivial situations. For example, if the k-th column
Ak consists only of −∞ elements, then xk does not influence the solution at all, since Aik + xk =
−∞, i = 1, . . . m for every x ∈ R

n
max. So, we may remove k-th column and variable xk without any

effect.

Remark 1. The lateness constraint A⊞ x ≤ b is desirable in many discrete-event systems appli-
cations (see also Section 7.1.1), where we want some tasks to be completed at times A⊞ x, before
some deadlines b. In general, it makes problem (7) more tractable. However, in other situations
where it is not needed, it might lead to less sparse solutions or higher residual error. It is a subject
of future work to explore how we could remove it in problem (7).

Remark 2. The sparsest solution problem makes sense even if m > n and we have an overde-
termined system. When system (1) is solvable, we might have infinite solutions. Among those
solutions some might be sparse.

In the following sections we study problems (6), (7). Then, we explore the sparse recovery
problem as well as applications.

4 Sparsest Exact Solution

In this section, we present our results about the solution to the first problem (6). We show that the
sparsest solution problem is equivalent to a minimum set cover problem and, thus, NP-complete.
Recall that J = {1, . . . , n} is used for column indices, while I = {1, . . . ,m} is used for row indices.

Although the principal solution x̄ defined in (3) is a solution when S(A, b) is non-empty, it is
not sparse, as the next result shows.

Lemma 1. Under Assumption 1, the principal solution x̄ of (1), defined in (3), is finite or equiv-
alently x̄ ∈ R

n. ⋄

Proof. Since bi is finite (Assumption 1), for every i ∈ I, j ∈ J , we have bi − Aij > −∞. Thus,
x̄j > −∞, for all j ∈ J . Moreover, from Assumption 1, for every j ∈ J , there exists at least one
k ∈ I, such that Akj is finite, which implies bk −Akj is finite. Thus,

x̄j =
m∧

i=1

(bi −Aij) ≤ bk −Akj < +∞,

and x̄j is finite for all j ∈ J .

The above result implies that we should find another way to compute sparse solutions. In
particular, we can leverage results from Vorobyev (1967), Zimmermann (1976), (see Butkovič (2003)
for an English source or Theorem 7 in the Appendix) which show that any solution of equation (1)
has to agree with the principal one at some components. To each element x ∈ S (A, b), we assign
the set of indices Jx, which indicates the components where x agrees with x̄:

Jx = {j ∈ J : xj = x̄j} (8)

We will call this set the agreement set of x. By Lemma 1, since x̄ if finite, we have Jx ⊆ supp (x)
for every solution x ∈ S (A, b). The main idea is that if x ∈ S (A, b) is a solution, we can construct
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a new sparser solution x̂ ∈ S (A, b) such that supp (x̂) = Jx. Thus, solving the sparsest solution
problem is equivalent to finding an agreement set of the smallest possible cardinality |Jx|.

However, we cannot have arbitrarily small agreement set Jx. There are some necessary condi-
tions that should be satisfied. For each j ∈ J , we define the set of row indices Ij ⊆ I, where the
minimum in (3) is attained:

Ij =

{

i ∈ I : bi −Aij =
m∧

k=1

(bk −Akj) = x̄j

}

. (9)

Those necessary conditions require the sub-collection Ij , j ∈ Jx to be a set cover of I (see Theorem 7
in the Appendix).

The next theorem proves that the solution to problem (6) can be reduced to finding the minimum
set cover of I, by the subsets Ij , j ∈ J ; the minimum is with respect to the number of subsets
required for the cover. Conversely, any minimum set cover problem can be reduced to solving an
instance of problem (6), for suitably defined matrices A, b. Thus, problem (6) is NP-complete.

Theorem 1. i) The problem (6) of computing the sparsest max-plus solution is equivalent to finding
the minimum set cover of I by the subset-collection {Ij : j ∈ J} defined in (9). In particular, let
x̄ be the principal solution defined in (3). Given a minimum set cover {Ij : j ∈ K⋆}, K⋆ ⊆ J , the
element x̂ ∈ Rn

max defined as:
x̂j = x̄j, j ∈ K⋆

x̂j = −∞, j ∈ J \K⋆,
(10)

is an optimal solution to problem (6).
ii) Any minimum set cover problem can be reduced to solving problem (6), for suitably defined
matrices A, b. Thus, problem (6) is NP-complete. ⋄

Remark 3 (Suboptimal solution to problem (6)). According to Theorem 1, we can solve prob-
lem (6), by finding the minimum set cover {Ij : j ∈ K∗} of I, and by using (10) to construct an
optimal solution x∗. Although the minimum set cover is an NP-complete problem, it can be ap-
proximated by a greedy algorithm of polynomial complexity with approximation ratio 1 + log (n)
(Chvatal, 1979). Alternatively, we could solve problem (6) by solving problem (7) for ǫ = 0, using
the techniques of Section 5.

The next example illustrates the results of this section.

Example 1. Suppose we are given the equation





1 0 1
−2 2 1
1 1 0



⊞





x1
x2
x3



 =





2
0
2





From (3), the principal solution is

x̄ =





(2− 1) ∧ (0 + 2) ∧ (2− 1)
(2− 0) ∧ (0− 2) ∧ (2− 1)
(2− 1) ∧ (0− 1) ∧ (2− 0)



 =





1
−2
−1



 .

8



From (9), the row index sets Ij are:

I1 = {1, 3} , I2 = {2} , I3 = {2} .

The minimum set cover of I = {1, 2, 3} is either I1 ∪ I2 or I1 ∪ I3. Hence, we have two possible

sparsest solutions: x∗
1 =

[
1 −2 −∞

]T
and x∗

2 =
[
1 −∞ −1

]T
. ⋄

5 Approximate Solution and Supermodular Approach

In this section, we present the approximate solution to problem (7), which uses tools from the
supermodular optimization literature; a brief introduction to supermodularity is included in Sub-
section 5.1. In Subsection 5.2, we reformulate problem (7) to a simpler one, where we only optimize
over the support of the optimal solution. Then, in Subsection 5.3, we prove that this new opti-
mization problem has supermodular properties if A has only finite elements (Theorem 3). This
allow us to approximately solve problem (7) via a greedy algorithm of polynomial complexity with
guaranteed bounds of approximation (Theorem 4). In some sense, this greedy solution is similar to
the “matching pursuit” algorithm in Mallat and Zhang (1993), applied to linear systems. Finally,
in Subsection 5.4, we extend the results to the case where matrix A can also have infinite elements
(Theorem 5).

5.1 Supermodularity Preliminaries

Supermodularity (Krause and Golovin, 2012) is a property of set functions, which enables us to
approximately solve some optimization problems of combinatorial complexity. In particular, greedy
algorithms of polynomial complexity can be employed, with theoretical guarantees (bounds) regard-
ing the ratio of approximation (Wolsey, 1982), (Nemhauser et al, 1978). A set function f : 2J → R

is a function that takes a subset T ⊆ J and returns a real value f (T ). Two useful properties of set
functions are supermodularity and monotonicity. A set function f : 2J → R is supermodular if for
every C ⊆ B ⊆ J and k ∈ J :

f (C ∪ {k})− f (C) ≤ f (B ∪ {k})− f (B) (11)

Respectively, a set function f : 2J → R is decreasing if for every C ⊆ B ⊆ J , f (C) ≥ f (B).
Finally we present a result from Wolsey (1982)5, which shows how we can approximately solve

cardinality minimization problems subject to a supermodular equality constraint. Let the opti-
mization problem be:

minimize
T⊆J

|T |

subject to f (T ) = f (J)
(12)

where f : 2J → R is supermodular and decreasing, while |T | denotes the cardinality of set T .
Suppose we use the following greedy algorithm.

The following theorem provides a bound on the approximation ratio of Algorithm 1.

5The result in Wolsey (1982) is for submodular and increasing functions. But f is supermodular (decreasing) if
and only if −f is submodular (increasing). Hence, the result is also valid for supermodular and decreasing functions.
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Algorithm 1 Greedy Approximate Solution of (12)

1: Set T0 = ∅, k = 0
2: while f (Tk) 6= f (J) do
3: k = k + 1
4: j = arg min

s∈J\Tk−1

{f (Tk−1 ∪ {s})}

5: Tk = Tk−1 ∪ {j}
6: end while
7: return Tk

Theorem 2 (Wolsey (1982)). Suppose f : 2J → R is supermodular and decreasing. Algorithm 1
returns a suboptimal solution Tk ⊆ J to problem (12) with |Tk| = k. If T ∗ is the optimal solution
then the following bound holds

|Tk|

|T ∗|
≤ 1 + log

(
f (∅)− f (J)

f (Tk−1)− f (J)

)

(13)

⋄

In the next sections, we reformulate problem (7) in order to reveal its supermodular structure
and leverage the results of Theorem 2.

5.2 Reformulation of Problem (7)

Given any feasible point 6 x of problem (7), we can construct a new one by forcing every component
in the support to be equal to the respective component of the principal solution. In this way, we
reduce problem (7) to just finding the support of x, skipping the decision over the finite values of
x. Formally, suppose x ∈ R

n
max, with support supp (x) = T , satisfies the inequality A ⊞ x ≤ b.

Now, define a new element z ∈ R
n
max with the same support as x, supp (z) = T . Then, replace all

its finite components with the ones of the principal solution: zj = x̄j , j ∈ supp (x). In terms of
the agreement set defined in (8), we have Jz = supp (z) = T . The next lemma shows that the new
vector z not only is feasible, but also has smaller residual error than x.

Lemma 2. Fix a subset T ⊆ J . Let

XT = {x ∈ R
n
max : supp (x) = T, A⊞ x ≤ b}

be the set of elements which satisfy the lateness constraint and have support equal to T . Assume
that z ∈ R

n
max has support and agreement set equal to T :

Jz = T

supp (z) = T.

Then, z ∈ XT and
‖b−A⊞ x‖1 ≥ ‖b−A⊞ z‖1 ,

for all x ∈ XT . ⋄

6The feasible points of an optimization problem are the elements that satisfy the constraints.
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Since for any fixed support supp (x) = T ⊆ J , we can select xj = x̄j, j ∈ T and xj =
−∞, j ∈ J \T , the only decision variable that matters in problem (7) is T ⊆ J . To introduce more
compact notation, we can rewrite A⊞ x =

∨

j∈J (Aj + xj) as a max-plus linear combination. But
if supp (x) = T ⊆ J , then this max-plus linear combination becomes:

A⊞ x =
∨

j∈T

(Aj + xj) , if supp (x) = T.

Choosing xj = −∞ is equivalent to ignoring column Aj in the max-plus linear combination. The
next definition uses this notation.

Definition 1. We define the error vector e : 2J → R
m
min as:

e(T ) = b−
∨

j∈T

(Aj + x̄j) , for T 6= ∅

e(∅) =
∨

j∈J

e({j}).

(14)

The ℓ1-error function E(T ) : 2J → Rmin is defined as the ℓ1-norm of the error vector:

E (T ) = ‖e(T )‖1 , (15)

where ‖e(T )‖1 = ∞ if ej(T ) = ∞, for some j ∈ J . ⋄

We note that for the empty set we consider the singletons’ error vectors and take the component-
wise maximum in the above definition. This selection guarantees that the ℓ1-error function E is
supermodular and decreasing.

The next corollary exploits the result of Lemma 2 and proves that we can rewrite problem (7)
as:

min |T | subject to E (T ) ≤ ǫ (16)

Corollary 1. Problem (7) is equivalent to problem (16). In particular, if T̂ is a optimal solution
to problem (16), then the element x̂ ∈ R

n
min defined as:

x̂j = x̄j , j ∈ T̂

x̂j = −∞, j ∈ J \ T̂ ,
(17)

is an optimal solution to problem (7). ⋄

5.3 Finite Element Case

Now, we can show that if A has only finite elements, the ℓ1 error set function E (T ), defined in
(15), is supermodular. An alternative proof can be found if we follow the steps of Gaubert et al
(2011), Section VI7.

7 Function E(T ) can be expressed as the cost function of a k-median problem–see Gaubert et al (2011). This
function is known to be supermodular (Nemhauser et al, 1978).
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Theorem 3. Suppose A ∈ R
m×n. The ℓ1 error set function E(T ) defined in (15), is decreasing

and supermodular. ⋄

The above result along with Corollary 1 enable us to approximately solve problem (7), using
Algorithm 2 below. First, we compute the approximate solution to problem (16) in a greedy way.
Define Tk ⊂ J to be the collection of k elements, selected greedily in a sequential way. Starting
from the empty set T0 = ∅, at each time k, we select the index j, which achieves the smallest ℓ1-
error E (Tk−1 ∪ {j}). Then, we update Tk = Tk−1 ∪ {j} and this is repeated until the error E (Tk)
becomes less than ǫ. After the selection of Tk, we construct an approximate solution according to
equation (17). The complexity of the algorithm is O(n2), since the minimization step requires an
inner loop of at most n iterations, while the outer loop requires at most n iterations.

Algorithm 2 Approximate Solution of Problem (7)

Input: A, b

1: Compute x̄ from (3)
2: if E(J) > ǫ then
3: return Infeasible
4: end if
5: Initialize x̂j = −∞, for all j ∈ J

6: Set T0 = ∅, k = 0
7: while E (Tk) > ǫ do
8: k = k + 1
9: j = arg min

s∈J\Tk−1

E (Tk−1 ∪ {s})

10: Tk = Tk−1 ∪ {j}
11: end while
12: Update x̂j = x̄j , j ∈ Tk

13: return x̂,Tk

Since E (T ) is a supermodular function, it follows that Ē(T ) = max (E (T ) , ǫ) is also super-
modular (Krause and Golovin, 2012). Thus, the constraint E (TN ) > ǫ is equivalent to Ē(T ) = ǫ.
Now, by applying the results of Wolsey (1982) (Theorem 2), we can obtain an upper bound to the
approximation ratio of Algorithm 2.

Theorem 4. Assume that A ∈ R
m×n has only finite elements. Suppose ǫ ≥ 0 is such that E (J) ≤ ǫ

and E (∅) > ǫ, where E is defined in (15). Let k be the time Algorithm 2 terminates with x̂, Tk the
respective outputs. Then, x̂ is a suboptimal solution to problem (7) with Tk = supp (x̂). Moreover,
if T ∗ = supp (x∗), where x∗ is an optimal solution of problem (7), the following inequality holds:

|Tk|

|T ∗|
≤ 1 + log

(
m∆

E (Tk−1)− ǫ

)

(18)

where ∆ =
∨

i∈I,j∈J
(bi −Aij − x̄j) and x̄j are the components of the principal solution defined in (3).

⋄

Parameter ∆ is the largest element of the normalized matrix [bi −Aij − x̄j], i ∈ I, j ∈ J . Since
A has only finite elements, ∆ is also finite. The presence of the logarithm mitigates the effect of
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a large ∆ or small E (Tk−1) − ǫ differences. In general, term E (Tk−1) depends on A, b, but by
allowing more memory, it can be precomputed for all possible k with complexity O(n2) (O(n) per
k).

Nonetheless, there are special cases, where data independent bounds for the differenceE (Tk−1)−
ǫ are possible. For example, if both A and b are integer valued, which is common in timing appli-
cations, then the error function is also integer valued and E (Tk−1) ≥ ⌊ǫ+ 1⌋. Then, the bound of

Theorem 4 becomes |Tk|
|T ∗| ≤ 1 + log

(
m∆

⌊ǫ+1⌋−ǫ

)

and does not depend any more on the specific A, b.

Quantized elements can also be dealt in a similar fashion.

5.4 Infinite Element Case

If A has infinite elements, then we cannot directly apply the results of Theorem 2. However,
we can replace the infinite elements of the error vector e (T ), T ⊆ J with a sufficiently large
positive constant M > 0 and then exploit the results of the finite case. The idea to replace
infinite elements with big constants M is motivated by the “big-M” method in linear optimiza-
tion (Bertsimas and Tsitsiklis, 1997).

It is sufficient to replace matrix A ∈ R
m×n
max with a new one, denoted by Â(M) ∈ R

m×n
max , where:

Âij (M) =
Aij , if Aij 6= −∞

−M + bi − x̄j, if Aij = −∞

}

, for all i ∈ I, j ∈ J. (19)

This new matrix Â (M) has only finite elements. Thus, we can now apply Algorithm 2 to matrices
Â (M) , b instead of A, b and leverage Theorem 4 to bound the approximation ratio. However, we
first have to require that the optimal solution remains the same with this change. This is indeed the
case if M is large enough. In particular, if M > ǫ, it turns out that the optimal solution remains
the same, as the following lemma shows.

Lemma 3. Suppose M > ǫ ≥ 0. Then for Â (M) defined in (19) the following problem:

min
x∈Rn

max

|supp (x)|

subject to
∥
∥
∥b− Â (M)⊞ x

∥
∥
∥
1
≤ ǫ

Â (M)⊞ x ≤ b

(20)

is equivalent to problem (7).

Now, we can just apply Theorem 4 to the finite matrices Â (M) and b.

Theorem 5. Suppose M > ǫ ≥ 0 are constants such that E (∅) > ǫ and E (J) ≤ ǫ, where E is
defined in (15). Let k be the time Algorithm 2 terminates under input Â (M) , b, where Â (M) is
defined in (19). Let x̂, Tk be the respective outputs. Then, x̂ is a suboptimal solution to problem (7)
with Tk = supp (x̂). Moreover, if T ∗ = supp (x∗), where x∗ is an optimal solution of problem (7),
the following inequality holds:

|Tk|

|T ∗|
≤ 1 + log

(
m∆

min {E (Tk−1) ,M} − ǫ

)

(21)

where ∆ =
∨

i∈I,j∈J

(

bi − Âij(M)− x̄j

)

. ⋄
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Proof. Let Ê (T ) = b−
∨

j∈T

(

Â(M)j + x̄j

)

be the ℓ1-error function for Â(M), b. From Theorem 4

and Lemma 3, we obtain:

|Tk|

|T ∗|
≤ 1 + log

(

m∆

Ê (Tk−1)− ǫ

)

But either Ê (Tk−1) = E (Tk−1) if there is no infinite component in e(Tk−1), or Ê (Tk−1) ≥ M if
there is some infinite component in e(Tk−1).

Remark 4. Consider the notation of the previous theorem. Notice that:

∆ = max{
∨

i∈I,j∈J,Aij 6=−∞

(bi −Aij − x̄j) ,M},

where M is used to replace the −∞ elements in (19). By increasing M we might make the nominator
in (21) bigger. Thus, in the sufficient condition M > ǫ it might be a good choice to select M close to
ǫ. On the other hand, we should not choose M too close to ǫ, since we might make the denominator
small. In the case of integer valued elements, a reasonable selection could be M = ǫ + 1, since it

guarantees |TN |
|T ∗| ≤ 1 + log

(
m∆

⌊ǫ+1⌋−ǫ

)

as in the finite element case.

6 Application to the Sparse Recovery Problem

In the recovery problem, the goal is to reconstruct an unknown vector z ∈ R
n
max from the measure-

ments A⊞ z ∈ R
m, by solving the equation:

A⊞ x = A⊞ z. (22)

If the equation A ⊞ x = A ⊞ z has a unique solution then the principal solution can recover z.
Uniqueness holds only if the whole collection {Ij : j ∈ J} is needed to cover I (see Chapter 15 of
Cuninghame-Green (1979) or Butkovič (2010) or Corollary 4.8 in Akian et al (2005)), where Ij are
defined in (9). In other words, the principal solution will recover z only if z is dense. If the original
z is sparse then, in general, the equation A⊞ x = A⊞ z, will not have a unique solution and the
principal solution will misidentify the −∞ elements as finite.

Here, we explore conditions under which we could estimate a sparse z by computing x∗, i.e.
one of the sparsest solutions to problem (6). We call this the sparse recovery problem.

Problem 1 (Sparse Recovery). Consider an arbitrary vector z ∈ R
n
max such that the pair (A, b) =

(A, A⊞ z) satisfies Assumption 1. Let x∗ be the optimal solution of problem (6) for the pair
(A, b) = (A, A⊞ z). We say that the Sparse Recovery Problem is solved if x∗ recovers z or

z = x∗.

This problem is also related to the system identification problem (Schullerus et al, 2006), where,
however, the sparsity patter is considered known. Notice that in general there might be multiple
sparsest solutions to the max-plus equation–see Example 1. However, the sparse recovery problem
above can only be solved exactly when the sparsest solution x∗ = z is unique8. Even if x∗ is unique,

8We note that uniqueness of the sparsest solution x∗ is different than the uniqueness of the equation A⊞ x = b.
The former requires a unique minimum set-cover, while the later requires that the minimum set-cover is the whole
collection {Ij : j ∈ J}.
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it will have more −∞ components than z in general. Nonetheless, under some sufficient conditions,
the sparse recovery problem can be solved as the next theorem proves.

Theorem 6. Consider an element z ∈ R
n
max such that the pair (A, A⊞ z) satisfies Assumption 1.

Let x∗ be the optimal solution of problem (6) for (A, b) = (A, A⊞ z). Then, x∗ = z if the
following sufficient condition holds: For every finite component j ∈ supp (z), there exists a row
index i = i(j) ∈ I such that:

a) for all other indices in the support, k ∈ supp (z), k 6= j, we have:

Aij > Aik + zk − zj

b) for all indices in the complement of the support, l ∈ J \ supp (z), there exists at least one row
index s = s(j, l) ∈ I, such that:

Asl > Ail + [A⊞ z]s − [A⊞ z]i.

Intuitively, the first part of the condition of the preceding theorem states that for any component
j ∈ J with zj 6= −∞, there must be at least one row index i for which Aij is large enough, in order to
observe the influence of zj in A⊞z. Given the previous pair (i, j), the second part of the condition
requires that for every l ∈ J \ supp (z), there exists some row s ∈ I such that the component Asl

is large enough to reveal that zl is smaller than zj ; small enough to be −∞.
Both conditions can be guaranteed if, for example, m ≥ n and A has large enough leading

diagonal elements (or large diagonal elements up to permutations–see Section 8). In this case, if
Ajj, j ∈ supp (z), is large enough across the j-th row then part a) is satisfied with i = j. Similarly
if All, l ∈ J \ supp (z), is large enough across the l-th column, then part b) is satisfied by choosing
s(j, l) = l for all j ∈ supp (z).

7 Applications

In this section, we give several applications of the present framework. First, we provide two possible
applications in discrete-event systems: i) resource optimization; and ii) system identification with
unknown sparsity pattern. Then, we show how the pruning problem can be formulated as a sparsity
problem.

7.1 Discrete Event Systems

We motivate the application to discrete-event systems through multi-machine interactive production
processes (Butkovič, 2010). Consider m different products, which are made using n machines. A
machine j ∈ J contributes to the completion of a product i ∈ I by making a partial product. It
processes all partial products in parallel as soon as it starts working. A system matrix G ∈ R

m×n
max

determines how much time it takes for the partial products to be made. Each element Gij represents
the time needed for machine j to make the partial product for product i. Thus, either Gij ≥ 0 or
Gij = −∞ if product i does not depend on machine j. An input u ∈ Rn describes the times the
machines start working; uj is the time, at which machine j starts working. If uj = −∞, then the
machine j is not used at all. The output

y = G⊞ u (23)
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describes the times the products are made; product i is completed at time yi. We will use the above
model to explore the following problems.

7.1.1 Resource Optimization

Suppose that the products have delivery deadlines d ∈ R
m, which should not be exceeded. This

implies that the outputs y should satisfy the lateness constraint y ≤ d. Meanwhile, it costs storage
resources to make the products before the delivery time. Thus, we wish to restrict the earliness
‖d− y‖1. Suppose now that we have an extra constraint; we also want to minimize the number
of machines used, which consume energy resources. Recall that when uj = −∞, then machine j is
not used. Thus, the number of used machines is equal to the cardinality of the support of vector
u. This problem could be formulated as an instance of problem (7) with A = G, x = u, b = d.
Sparsity here implies resource efficiency, since we use fewer machines. Notice that in this case the
lateness constraint is not a relaxation but a desired property.

7.1.2 Structure-seeking System Identification

Assume we have an unknown system matrix G ∈ R
m×n
max . Our goal is to recover G from a sequence

of K input-output pairs (ul,yl) ∈ R
n
max ×R

m, l ∈ L = {1, . . . ,K}. Those pairs are related via the
max-plus model (23): yl = G ⊞ ul, l ∈ L (we assume the output is finite). If we stack the inputs
and outputs together, we obtain a set of max-plus equations:






y
⊺
1
...

y
⊺
K






︸ ︷︷ ︸

Y

=






u
⊺
1
...

u
⊺
K






︸ ︷︷ ︸

U

⊞G⊺

or
Y = U ⊞G⊺. (24)

Notice that Y ∈ R
K×m, U ∈ R

K×n
max . System (24) consists of m separate max-plus equations written

together in matrix form.
In this scenario, the infinite elements of G reflect the structure of the system. As mentioned

before, Gij = −∞ means that the product i does not depend on the machine j. Here, we are
interested in obtaining a solution that not only solves the above equation but also reveals the
system structure. (We assume that we do not have any a priori knowledge about the structure of
system G; the only information is input-output pairs.)

Without any sparsity constraints, the principal solution Ḡ will have only finite elements, hiding
the actual sparsity pattern of the original system matrix G. Thus, we have to find another way to
identify the −∞ elements. One way to approach this problem would be to solve the sparse recovery
problem instead. If the sufficient conditions of Theorem 6 are satisfied, then exact reconstruction
is possible. In fact, those conditions also suggest a way to do experiment design, i.e. to design the
inputs U . It is sufficient to select U with large enough leading diagonal elements such that the
sparsest solution recovers G. Without knowing G, we may not be able to compute how large the
leading diagonal elements should be. Nonetheless, we could overcome this problem by exploiting
bounds on the finite elements of G.
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7.2 Pruning

The pruning problem emerged as a curse-of-dimensionality-free method for approximating optimal
control value functions–see McEneaney (2009), Gaubert et al (2011) for more details and motivation
behind the method. Next, we show that a “dual” version of the pruning problem can be formulated
in terms of a sparsity problem as in (7).

Suppose that φ =
n∨

j=1

φj, where φj ∈ R
m
max are basis vectors. The goal is to find a reduced

representation φ̃ =
∨

j∈S⊆J

φj such that the approximation error
∥
∥
∥φ− φ̃

∥
∥
∥
ℓ1

is small. Let x ∈ R
n
max

indicate which basis columns should be selected. If xj = −∞, then we ignore column φj, otherwise
we select it. To solve the pruning problem, we could formulate it as an ǫ−approximate sparsity
problem:

min
x∈Rn

max

|supp (x)|

subject to
∥
∥φ−

[
φ1 . . . φn

]
⊞ x

∥
∥
1
≤ ǫ

[
φ1 . . . φn

]
⊞ x ≤ φ.

The formulation here is a “dual” version of the one that appears in Gaubert et al (2011). There, the
minimization is with respect to

∥
∥φ−

[
φ1 . . . φn

]
⊞ x

∥
∥
1
, while the cardinality of the support

|supp (x)| = k is kept fixed to a value k.

8 Numerical Examples and Simulations

8.1 System Identification

In this subsection, we present a numerical example, where we apply our results to the system
identification problem. We implemented the greedy Algorithm 2 in Matlab to obtain solutions to
problems (6), (7). For the small examples below, we can verify by hand that the greedy solution
will also be optimal.

Consider a multi-machine interactive production process, as defined in Section 7, with system
matrix G ∈ R

m×n
max

G =





2 3 −∞
1 1 −∞

−∞ 2 6





Now consider K = 4 input instances ul, l = 1, . . . , 4, which are imposed to the system:

U⊺ =
[
u1 . . . u4

]
=





0 10 0 2
10 0 0 0
5 5 10 2





. For each input instance ul, the respective outputs yl, l = 1, . . . , 4 are:

Y ⊺ =
[
y1 . . . y4

]
= G⊞U⊺ =





13 12 3 4
11 11 1 3
12 11 16 8



 .
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Our goal is to determine G from the given inputs and the corresponding outputs. The principal
solution gives:

Ḡ =





2 3 −7
1 1 −9
1 2 6



 ,

which hides the sparsity pattern of the original matrix G. Notice that some −∞ elements in G, i.e.
G13, correspond to negative elements in Ḡ, i.e. Ḡ13 = −7. Those can be identified as −∞, since
G, can only have positive or −∞ elements. However, not all of them are negative. For instance,
Ḡ31 = 1. Thus, this method does not guarantee that all −∞ elements are revealed.

Suppose now that we compute the sparsest solution G∗, by solving problem (6). In this case,
we obtain:

G∗ = G.

This result is expected, since U is designed to have large diagonal values under the column per-
mutation {2, 1, 3} and satisfies the assumptions of Theorem 6. Thus, without any prior knowledge,
we managed to identify for all products, which machines they depend on. If this condition is
not satisfied, i.e. if we change U12 from 10 to U12 = 1, then the sparsest solution falsely yields
G∗

32 = −∞ 6= G32, but it correctly identifies the remaining elements.
For the next example, suppose that due to some unexpected delay the last output is y4 =

[
4.2 3 8

]⊺
. The equation Y = U ⊞G⊺ is no longer satisfied. In this case, we solve problem (7)

and find the sparsest approximate solution Ĝ. For ǫ = 0.3, we have Ĝ = G and we recover G.
However, if the error gets bigger, for example Y41 = 5, the sparsest approximate solution falsely
returns G∗

32 = −∞ for ǫ = 1. The results for the sparse recovery problem, presented in Section 6,
are only applicable to the exact solution case. Nonetheless, from the last numerical example, it
seems that if the delay is small, they might still be valid for the approximate solution case. It is
subject of future work to provide a formal analysis.

8.2 Greedy Algorithm Performance

In this subsection, we explore the performance of the greedy Algorithm 2 with respect to prob-
lem (7). First, we construct an example where the greedy Algorithm 2 is suboptimal. Then, we
compare Algorithm 2 with the brute force one, using random matrices A, b. For the brute force
algorithm, we solve a combinatorial problem; we search over all possible supports supp (x).

Example 2 (Suboptimality of greedy algorithm). Consider the matrices:

A =





0 0 −10
−2 0 −10
−2 −10 0



 , b =





0
0
0





and let ǫ = 1. The optimal solution to problem (7) is x∗ =
[
−∞ 0 0

]⊺
. The greedy algorithm

will initially select T1 = {1}, since the first column of A leads to the smallest error. However, in
this example, it is sufficient and necessary for both components 2, 3 to be included in the support
in order to have error less than ǫ. Hence, the greedy algorithm will return the set T3 = {1, 2, 3}
and the suboptimal solution x̂ =

[
0 0 0

]⊺
. ⋄
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(m,n) (8,16) (8,17) (9,18) (9,19) (10,20) (10,21) (11,22)

suboptimality ratio 0.970 0.948 0.952 0.968 0.967 0.955 0.979

time greedy (sec) 0.0012 0.0013 0.0015 0.0017 0.0019 0.0020 0.0022
time brute force (sec) 0.09 1.33 2.72 5.56 11.30 22.37 46.73

Table 1: Comparison between the greedy and the brute force algorithm for random matrices A,
b. For every pair of (m,n), the average is over 40 independent samples. The greedy algorithm
performs very well on average for small (m,n). It has suboptimality ratio close to one and is much
faster than the brute force algorithm.

Next, we compare the greedy algorithm with the brute force one. Both were implemented
in Matlab. For the comparison we compute the suboptimality ratio of the greedy algorithm as
well as the execution times. Due to the exponential complexity of the brute force algorithm, this
comparison can only be made for small values of n, where n is the number of columns of matrix A.

We generated randomm×nmatrices A with elements taking values in the set {0, . . . , n− 2} and
m× 1 vectors b with elements taking values in {0, . . . , n + 5}, for several (m,n) pairs–see Table 1.
Because the times and the suboptimality ratios depend on the randomly sampled matrices, we
averaged them over 40 independent iterations for each (m,n) pair. To guarantee feasibility, in
all of the cases we selected ǫ = ‖b−A⊞ x̄‖ + 1, where x̄ is the principal solution. We observe
that the average suboptimality ratio of the greedy algorithm is very close to one and does not
decrease noticeably. Meanwhile, as we expected, the execution time of the greedy algorithm scales
much better than the brute force one. Thus, empirically the greedy algorithm performs very well
on average for small values of m,n. As we stated above, it is not easy to empirically evaluate
the performance for larger values of m,n since the brute force algorithm requires a lot of time to
terminate.

9 Conclusion

We studied the problem of finding the sparsest solution of the max-plus equation and proved that it
is NP-complete. Then we studied the problem of finding the sparsest approximate solution subject
to a lateness constraint. The degree of approximation was measured via a ℓ1 norm function, which
was proved to have supermodular properties. Thus, we developed a greedy algorithm of polynomial
complexity, which approximates the optimal solution with guaranteed ratio of approximation. We
also derived sufficient conditions such that the sparse recovery problem can be solved. The present
framework can be applied to discrete event systems applications such as resource optimization or
system identification. In future work we will explore whether we can drop the lateness constraint
when searching for the sparsest approximate solution. We will also study whether the sufficient
conditions of the sparse recovery problem can be relaxed. Another direction is extending the
concepts of sparsity to max-plus dynamical systems. Finally, we would like to extend the results
to more general idempotent semi-rings by using residuation theory.
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Appendix A: Previous Results

The result below was originally proved in Vorobyev (1967) and Zimmermann (1976). A reference
in English can be found in Butkovič (2003).

Theorem 7 (Covering theorem). An element x ∈ R
n
max is a solution to (1) or x ∈ S (A, b) if and

only if:

a) x ≤ x̄

b)
⋃

j∈Jx

Ij = I,

where x̄ is the principal solution defined in (3), set Jx is defined in (8), and sets Ij are defined in
(9). ⋄

Theorem 8 (Cuninghame-Green (1979)). Let x̄ be the principal solution defined in (3). The
following equivalence holds:

A⊞ x ≤ b ⇔ x ≤ x̄. (25)

Moreover, x̄ is an optimal solution to problem (5). ⋄

Appendix B: Proofs

Proof of Theorem 1

First, we prove i). Suppose that x∗ is an optimal solution to (6). Since it is a solution of the
equation A⊞x = b, by Theorem 7, the subcollection {Ij : j ∈ Jx∗}, determined by the agreement

set Jx∗ =
{

j ∈ J : x∗j = x̄j

}

, is a set cover of I. We will show that the size |Jx∗ | of the set cover is

minimum. By optimality of x∗, we necessarily have x∗j = −∞, for j ∈ J \ Jx∗ and the support of
x∗ is the same as the agreement set; otherwise, we could create a sparser solution by forcing the
elements outside of the agreement set to be −∞. So, |supp (x∗)| = |Jx∗ |. Now, take any set cover
{Ij : j ∈ K ⊆ J} of I and define element x (K) as:

x (K)j = x̄j, j ∈ K

x (K)j = −∞, j ∈ J \K
(26)

Notice that |supp (x (K))| = |K| and by Theorem 7, x (K) is also a solution to the max-plus
equation A⊞ x = b. By optimality, x∗ has the smallest support, or |supp (x∗)| ≤ |supp (x (K))|.
But this implies that |Jx∗ | ≤ |K|, which shows that {Ij : j ∈ Jx∗} is a minimum set cover of I.

Conversely, suppose the collection {Ij : j ∈ K∗ ⊆ J} is a minimum set cover of I. Then, we
can define the solution x̂ as in (10). We will show that x̂ is an optimal solution to (6). Sup-
pose x∗ is one optimal solution to (6). Then, the collection {Ij : j ∈ Jx∗} is a set cover with

Jx∗ =
{

j ∈ J : x∗j = x̄j

}

. Since x∗ is the sparsest solution, we can only have |supp (x∗)| = |Jx∗ |.

Meanwhile, by optimality of the set cover we have

|supp (x̂)| = |K∗| ≤ |Jx∗ | = |supp (x∗)| .

Hence, x̂ is also an optimal solution to (6).
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Second, we prove ii). This part is adapted from Butkovič (2003). Suppose we are given an
arbitrary collection of nonempty subsets

Sj ⊆ {1, . . . ,m} = I, j ∈ {1, . . . , n} = J,

for some m, n ∈ N, such that
⋃

j∈J Sj = I. Define Aij = 1 (i ∈ Sj) for all i ∈ I, j ∈ J , where 1 is
the indicator function, and bi = 1, for all i ∈ I. By equations (3), (9), it follows that the principal
solution is x̄ =

[
1 . . . 1

]⊺
, while the sets Sj are equal to the sets Ij. But following the analysis

of i), finding the minimum set cover of I using Sj = Ij is equivalent to finding the solution to
problem (6) with the above selection of A, b. This completes the proof of part ii).

Proof of Lemma 2

By construction, the agreement set and the support are equal to T or

zj = x̄j, for j ∈ T

zj = −∞, for j ∈ J \ T

Thus, z ≤ x̄ and by Theorem 8, also A⊞ z ≤ b, which proves that z ∈ XT .
To prove the second part, again from Theorem 8, if x ∈ XT then

xj ≤ x̄j = zj, for j ∈ T

xj = zj = −∞, for j ∈ J \ T

As a result, x ≤ z for any x ∈ XT . Now, since A⊞ · is increasing (Cuninghame-Green, 1979) we
obtain the inequality:

b−A⊞ z ≤ b−A⊞ x,

for any x ∈ XT . Since both x,z satisfy the lateness constraint (4), we finally have

‖b−A⊞ x‖1 = 1⊺ (b−A⊞ x) ≥ 1⊺ (b−A⊞ z) = ‖b−A⊞ z‖1

for any x ∈ XT , where 1 =
[
1 · · · 1

]⊺
.

Proof of Corollary 1

Let x∗, T̂ be the optimal solutions of problems (7), (16) respectively. Denote by T ⋆ = supp (x∗) the
support of x∗. Then construct a new vector z∗ such that z∗j = x̄j , j ∈ T ∗ and z∗j = −∞, i ∈ J \T ∗.
By Lemma 2,

E (T ∗) = ‖b−A⊞ z∗‖1 ≤ ‖b−A⊞ x∗‖1 ≤ ǫ.

Thus, T ∗ = supp (x∗) is a feasible point of problem (16), implying |T̂ | ≤ |T ∗|.
Conversely, define x̂ as in (17). By construction and the feasibility of T̂ and Lemma 2, we have:

‖b−A⊞ x̂‖1 = E(T̂ ) ≤ ǫ.

A⊞ x̂ ≤ b

Thus, x̂ is a feasible point of problem (7), which implies |T ∗| ≤ |T̂ |. From the above inequalities
we obtain |T ∗| = |T̂ |, which also proves that x̂ is an optimal solution to problem (7).
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Proof of Theorem 3

Notice that we have:
∨

j∈T

(Aj + x̄j) ≤
∨

j∈J

(Aj + x̄j) = A⊞ x̄ ≤ b

Thus, we get by construction that the error vector e(T ) has only positive components, for every
T ⊆ J , which implies:

E (T ) = ‖e(T )‖ = 1⊺e(T ), (27)

where 1⊺ =
[
1 . . . 1

]⊺
. For convenience, define matrix Â ∈ R

m×n
max as Âij = Aij + x̄j . Then, by

the definition (14) of error vector:
∨

j∈T

Âj = b− e (T ) .

First, we show that E (T ) is decreasing. Let B, C be two nonempty subsets of J with C ⊆

B ⊂ J . Then,
∨

j∈C
Âj ≤

∨

j∈B
Âj . Consequently, e (B) ≤ e (C). Now if C is empty and B is

non-empty, then by construction e (∅) ≥
∨

k∈J

e ({k}) ≥ e (B) (if C, B are both empty we trivially

have e (C) = e (B)). In any case, by (27), we obtain E (C) ≥ E (B).
Second, we show that E (T ) is supermodular. Let C ⊆ B ⊆ J and k ∈ J \B. It is sufficient to

prove that:
e(C ∪ {k})− e(C) ≤ e(B ∪ {k})− e(B). (28)

For C 6= ∅ define:

u =
∨

j∈C

Âj , v =
∨

j∈C∪{k}

Âj

z =
∨

j∈B

Âj , w =
∨

j∈B∪{k}

Âj .

By this definition, vi = ui∨ Âik, wi = zi∨ Âik for every i ∈ I. Also, by monotonicity u ≤ z, v ≤ w.
There are three possibilities:

i) If ui > Âik then vi = ui. But also wi = zi, since by monotonicity z ≥ u and zi ≥ ui > Âik. In
this case, vi − ui = wi − zi = 0.

ii) If ui ≤ Âik and zi > Âik then vi − ui = Âik − ui ≥ 0 and wi − zi = 0 ≤ vi − ui.

iii) If both ui ≤ Âik and zi ≤ Âik then vi−ui = Âik−ui ≥ Âik−zi = wi−zi, since by monotonicity
zi ≥ ui.

If C is the empty set, we define u = b−e(∅) and u,z,w are defined as before. Since by construction
e(∅) ≤ e(k) for all k ∈ J , we also have u ≤ v and u ≤ z. Thus, either case ii) or case iii) apply.

In any case, v − u ≥ w − z which is equivalent to (28). Finally, multiplying both sides of (28)
from the left by 1⊺ gives the desired result: E (C ∪ {k})− E (C) ≤ E (B ∪ {k})− E (B).
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Proof of Theorem 4

Define the truncated error set function

Ē (T ) = max (E (T ) , ǫ) .

By Theorem 3, the error set function E(T ) is supermodular and decreasing. Thus, so is the
truncated error function (Krause and Golovin, 2012). This enables as to express the constraint
E (T ) ≤ ǫ as Ē (T ) = Ē (J). Then, the lines 6 − 11 of Algorithm 2 are a version of Algorithm 1.
Hence, Theorem 2 readily applies giving the bounds

|Tk|

|T̂ |
≤ 1 + log

(
Ē (∅)− Ē (J)

Ē (Tk−1)− Ē (J)

)

,

where T̂ is the optimal solution of problem (16). From Corollary 1, we can replace T̂ with T ∗. By
the assumption E(∅) > ǫ and the definition of the ℓ1-error set function at ∅:

Ē (∅) = E (∅) =
∑

i∈I

∨

j∈J

(bi −Aij − x̄j) ≤ m∆.

Meanwhile, we have Ē(J) ≥ 0 and the result for the nominator in the logarithm follows. For the
denominator, notice that k is such that E (Tk−1) > ǫ and E (Tk) ≤ ǫ. Such k exists since E (J) ≤ ǫ

and in the worst case, Algorithm 2 halts at k = |J | with Tk = J . Thus, we have Ē (Tk−1) = E (Tk−1)
and Ē (J) = ǫ.

Proof of Lemma 3

It is sufficient to prove that the feasible regions of both problems are identical. First, we prove
that:

A⊞ x ≤ b ⇔ Â(M)⊞ x ≤ b (29)

But from Theorem 8, it is equivalent to show that x̄ = ˆ̄x, where x̄ is the original principal solution
defined in (3) and ˆ̄x is the new principal solution with Â(M) instead of A:

ˆ̄xj =

m∧

i=1

(

bi − Âij(M)
)

, ∀j ∈ J. (30)

By construction, Aij ≤ Âij(M), which by (3), (30), implies ˆ̄x ≤ x̄. To show the other direction,
we have

ˆ̄xj = bk − Âkj(M), for some k ∈ I.

There are two cases:

i) Âkj(M) = Akj. Then, ˆ̄xj = bk −Akj ≥
∧

i∈I
bi −Aij = x̄j .

ii) Âkj(M) = bk −M − x̄j. Then, ˆ̄xj = M + x̄j > x̄j, since M > 0.
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Thus, we also have ˆ̄x ≥ x̄. This proves x̄ = ˆ̄x.
Second, we prove that under the constraint A ⊞ x ≤ b (which we showed is equivalent to

Â(M)⊞ x ≤ b) we have:

‖b−A⊞ x‖1 ≤ ǫ ⇔ ‖b− Â(M)⊞ x‖1 ≤ ǫ (31)

“⇒” direction. Since Aij ≤ Âij(M), we obtain

A⊞ x ≤ Â(M)⊞ x.

But we have A⊞ x ≤ b, Â(M)⊞ x ≤ b. Thus,

‖b− Â(M)⊞ x‖1 ≤ ‖b−A⊞ x‖1 ≤ ǫ.

“⇐” direction. For every i ∈ I, there exists an index ji ∈ J such that:

‖b− Â(M)⊞ x‖1 =
m∑

i=1

(bi − Âiji(M)− xji)

Now assume that some element Âkjk(M) is equal to −M + bi − x̄ji , for some k ∈ I. Then, this
implies

ǫ ≥ ‖b− Â(M)⊞ x‖1 =
m∑

i=1

(bi − Âiji(M)− xji)

≥ bk − Âkjk(M)− x̄jk = M,

where the second inequality follows from Â(M) ⊞ x ≤ b and the equivalent fact x ≤ x̄ (see
Theorem 8). But since M > ǫ, this is a contradiction and the only possible case is Âijk(M) = Aiji ,
for all i ∈ I. Finally,

ǫ ≥ ‖b− Â(M)⊞ x‖1 =
m∑

i=1

(bi −Aiji − xji)

≥
m∑

i=1

(bi −
∨

j∈J

(Aij + xj)) = ‖b−A⊞ x‖1 .

This completes the proof.

Proof of Theorem 6

Define b = A ⊞ z. It is sufficient to show that for any solution x ∈ R
n
max of equation A⊞ x = b,

we have:
xj = zj , for all j ∈ supp (z). (32)

Then, since x∗ is also a solution we have x∗j = zj , for j ∈ supp (z). But x∗ is the sparsest solution.
Thus, we necessarily have x∗j = −∞ for j 6∈ supp (z); otherwise, z would be a sparser solution
contradicting the assumptions. This implies that z = x∗.
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We now prove (32). Given a j ∈ supp (z), let i = i(j) ∈ I be the row index such that the
condition of the theorem holds. Consider the row index sets Ij ⊆ I, j ∈ J defined in (9). Part b)
of the condition implies that

x̄l =
∧

t∈I

bt −Atl ≤ bs −Asl < bi −Ail, for all l ∈ J \ supp (z).

This implies that the above minimum is not attained at i or:

i 6∈ Il, for all l ∈ J \ supp (z). (33)

Part a) of the condition implies that

bi =
∨

p∈J

(Aip + zp) = Aij + zj .

Moreover, by the definition (3) of the principal solution:

x̄j =
∧

q∈I

(bq −Aqj) ≤ bi −Aij = zj .

But by Theorem 7, only x̄j = zj is possible since the principal solution dominates every other
solution. Let k ∈ supp (z), k 6= j be another index in the support of z. We can similarly show
that x̄k = zk. Now, we claim that i 6∈ Ik. If we had i ∈ Ik, then zk = x̄k = bi −Aik or by replacing
bi = Aij + zj :

Aij + zj = Aik + zk,

which contradicts the theorem hypothesis Aij + zj > Aik + zk. Thus:

i 6∈ Ik, for all k ∈ supp (z) \ {j} . (34)

Since the system A ⊞ x = b is solvable, from (33), (34) j is the unique index such that i ∈ Ij .
Hence, set I cannot be covered without including set Ij in the covering. By Theorem 7, any solution
x ∈ R

n
max must necessarily have xj = x̄j = zj .
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