
Noname manuscript No.
(will be inserted by the editor)

Submodular Optimization Problems and Greedy
Strategies: A Survey

Yajing Liu 1 · Edwin K. P. Chong2 ·
Ali Pezeshki2 · Zhenliang Zhang3

Received: date / Accepted: date

Abstract The greedy strategy is an approximation algorithm to solve op-
timization problems arising in decision making with multiple actions. How
good is the greedy strategy compared to the optimal solution? In this survey,
we mainly consider two classes of optimization problems where the objective
function is submodular. The first is set submodular optimization, which is to
choose a set of actions to optimize a set submodular objective function, and
the second is string submodular optimization, which is to choose an ordered
set of actions to optimize a string submodular function. Our emphasis here
is on performance bounds for the greedy strategy in submodular optimization
problems. Specifically, we review performance bounds for the greedy strategy,
more general and improved bounds in terms of curvature, performance bounds
for the batched greedy strategy, and performance bounds for Nash equilibria.

Keywords Curvature · greedy strategy · Nash equilibrium · optimization ·
performance · submodular

Yajing Liu
yajing.liu@nrel.gov

Edwin K. P. Chong
edwin.chong@colostate.edu

Ali Pezeshki
ali.pezeshki@colostate.edu

Zhenliang Zhang
zhenliang.zhang@alibaba-inc.com

1 National Renewable Energy Laboratory (NREL), Golden, CO
2 Department of Electrical and Computer Engineering, and Department of Mathematics,
Colorado State University, Fort Collins, CO
3 Alibaba iDST, Seattle, WA

ar
X

iv
:1

90
5.

03
30

8v
1

 [
m

at
h.

O
C

]
 8

 M
ay

 2
01

9

2 Yajing Liu 1 et al.

1 Introduction

We are often faced with choosing a set of actions from a ground set of ac-
tions to optimize an objective function. Such problems arise in a multitude
of applications of interest to discrete-event dynamic system researchers. A
specific example is the task assignment problem (Streeter and Golovin 2008;
Zhang et al. 2016; Liu et al. 2018d), one of the fundamental combinatorial
optimization problems in the study of optimization or operations research.
This problem involves a number of agents and a number of tasks. Each agent
successfully accomplishes a task with a certain probability and the aim is to
assign the available tasks to a given number of agents such that the probability
of accomplishing the tasks is maximized.

When the number of agents is relatively small, we can use brute-force
search (Paar and Pelzl 2010) to enumerate all possible candidate solutions to
find the optimal solution. However, when the number of agents is large, it is
impractical to enumerate all the possible candidate solutions. At this point,
we have to resort to approximation methods. One of the most well-studied
approximation methods is the greedy strategy (Nemhauser et al. 1978), which
starts with the empty set and iteratively adds to the current solution set
an element that results in the largest gain in the objective function while
satisfying the constraints. The greedy strategy yields an approximation to an
optimal solution in a reasonable amount of time. The downside is that there is
often no theoretical guarantee for the greedy strategy. But when the problem
has a special property called submodularity, the greedy strategy is provably
guaranteed to produce a solution with an objective value at least a constant
scalar times the optimum value. Celebrated results by Fisher et al. (1978)
and Nemhauser et al. (1978) prove that when the objective function f is a
monotone submodular set function with f(∅) = 0, the greedy strategy yields a
1/2-approximation1 for a general matroid and a (1 − e−1)-approximation for
a uniform matroid.

For set optimization problems, the objective function is not influenced by
the order of actions. However, a great number of problems in engineering and
applied science aim to optimally choose a string (finite sequence) of actions
over a finite horizon to maximize an objective function whose value depends
on the order of actions. The problem arises in sequential decision making in
engineering, economics, management science, and medicine. A motivating ex-
ample is the problem of scheduling sensors to detect targets (Li et al. 2009).
Suppose that a given number of sensors are distributed in a sensor field to
detect a certain number of targets. The goal is to activate sensors sequentially
to maximize the total coverage area. If the coverage region of each sensor re-
mains constant over time, the total coverage area is not influenced by the order
of the sensors activated, and the problem becomes a set optimization prob-
lem. However, if the sensors are moving, then the total coverage area depends

1 The term β-approximation means that f(G)/f(O) ≥ β, where G and O denote a greedy
solution and an optimal solution, respectively.

Submodular Optimization Problems and Greedy Strategies: A Survey 3

on the order of the sensors activated, which makes the problem fall into the
framework of string optimization problems. The optimal solution to a string
optimization problem is characterized by dynamic programming via Bellman’s
principle (Powell 2007). However, the approach suffers from the curse of di-
mensionality and is therefore impractical for many problems of interest. This
motivates the study of approximation algorithms, among which the greedy
strategy is easy to implement and has guaranteed performance bounds under
certain conditions. For example, Streeter and Golovin (2008) prove that when
the objective function is prefix and postfix monotone and has the diminishing-
return property (as defined later in the paper), the greedy strategy yields a
(1− e−1)-approximation.

In this paper, we review the performance guarantees for greedy strate-
gies in submodular maximization problems. The paper is organized as fol-
lows. In Section 2, we review results that are related to choosing sets of ac-
tions. This involves introducing set functions, set optimization problem, perfor-
mance bounds for the greedy strategy, examples, curvature, improved bounds,
batched actions, and noncooperative games. In Section 3, we review results
related to choosing strings of actions. This involves introducing new nota-
tion and terminology, string optimization problem, performance of the greedy
strategy, and applications. In Section 4, we conclude by listing a number of
related papers that consider extensions and/or variation of greedy strategies
and their performance bounds in combinatorial optimization problems.

2 Sets of Actions

In this section, we first introduce our notation for sets, properties of set func-
tions, and set optimization problems. Then, we review various performance
bounds for the greedy strategy.

2.1 Set Functions

Before we introduce functions defined on sets, we would like to introduce
some similar and familiar properties for functions defined on real numbers.
Consider a real function f : R → R. The function f is said to be monotone
and submodular if it satisfies properties 1 and 2 below, respectively:

1. Monotone: ∀x ≤ y ∈ R, f(x) ≤ f(y).
2. Submodular: ∀x ≤ y ∈ R, ∀z ∈ R, f(x+ z)− f(x) ≥ f(y + z)− f(y)

The ‘monotone’ property here simply means being ‘nondecreasing’. The
function in Fig. 1 satisfies the monotone property. From Fig. 1, we can see that
the function is a concave function – adding z to x gains more than adding z
to y, which tells us that the additional value accrued by adding a number to a
smaller number is larger than adding it to a bigger number. This is consistent
with the inequality f(x+ z)−f(x) ≥ f(y+ z)−f(y) for x ≤ y, so we say that
‘submodularity’ here boils down to ‘concavity’ in some sense.

4 Yajing Liu 1 et al.

Fig. 1 Illustration of submodularity

In this paper, we want to go beyond the real line to a more general setting.
Specifically, we will consider objective functions with multiple decision “ac-
tions” as arguments. The first setting is sets of actions, and the second one is
strings (ordered sets) of actions. We introduce functions defined on sets first.

Let X denote a ground set, which includes all possible actions. Let 2X

denote the power set of X, which includes all possible subsets of X. The size
or cardinality of a set S ∈ 2X is denoted by |S|, and the empty set is denoted
by ∅. Define a set function f : 2X −→ R. The set function f is said to be
monotone and submodular if it satisfies properties i and ii below, respectively:

i. Monotone: ∀A ⊆ B ⊆ X, f(A) ≤ f(B).
ii. Submodular: ∀A ⊆ B ⊆ X and ∀j ∈ X \ B, f(A ∪ {j}) − f(A) ≥ f(B ∪
{j})− f(B).

Notice the similarity between these properties and those involving functions
on the real line introduced earlier.

For convenience, we denote the incremental value of adding a set T to the
set A ⊆ X as %T (A) = f(A ∪ T) − f(A) (following the notation in Conforti
and Cornuéjols (1984)).

A set function f : 2X −→ R is called a polymatroid set function (Boros
et al. 2003) if it is monotone, submodular, and f(∅) = 0. Submodularity
in property ii means that the additional value accruing from an extra ac-
tion decreases as the size of the input set increases, and is also called the
diminishing-return property in economics. Submodularity has many equiva-
lent definitions; for example, f : 2X −→ R is submodular if ∀A,B ⊆ X,
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). For more equivalent definitions, see
Nemhauser et al. (1978).

Submodular Optimization Problems and Greedy Strategies: A Survey 5

The set function f is called supermodular if −f is submodular. Moreover,
f is called modular if it is both submodular and supermodular, i.e., for any
A ⊆ B ⊆ X,

f(A) + f(B) = f(A ∪B) + f(A ∩B). (1)

By induction, (1) implies that for any S ⊆ X,

f(S)− f(∅) =
∑
s∈S

(f({s})− f(∅)). (2)

By (2), f − f(∅) is additive when f is modular. If f(∅) = 0, then f(S) =∑
s∈S f({s}), which implies that f is additive. It is also easy to check that f

is modular iff for any subset S ⊆ X,

f(S) = ω(∅) +
∑
s∈S

ω(s) (3)

for some weight function ω : X → R (Krause and Golovin 2012).
There are many non-trivial examples of submodular or supermodular set

functions. We only consider submodular maximization problems in this paper,
so we only give submodular function examples. For supermodular examples,
see Lovász (1983). To easily understand submodularity, we provide a simple
example as follows.

Example 1 Sensor Coverage. Let X be a family of locations in space where
we can place sensors. If a sensor is placed at a particular location in space, it
covers a circular area around it as illustrated in Fig. 2. Let f(S) denote the
total area covered if we place sensors at locations S ⊆ X (see Fig. 2). The set
function f is submodular. An instance of submodularity is illustrated in the
figure. As can be seen, the gain in adding sensor 3 after placing sensor 1 is
larger than the gain in adding sensor 3 after placing sensors 1, 2. ut

Submodular functions arise in many applications, such as the rank function
of the matrix formed by its columns, weighted coverage functions, the rank
function of a matroid, Shannon entropy, mutual information, cut capacity
functions, some measurements on the graph, etc. (Lovász 1983; Krause and
Golovin 2012)

2.2 Submodular Set Optimization Problem

Submodular set optimization plays an important role in combinatorial opti-
mization. It has a wide range of applications, including generalized assignment
(Shmoys and Tardos 1993; Cohen et al. 2006; Nauss 2003; Fleischer et al. 2006;
Bator 1957; Korula et al. 2015; Vondrák 2008), matroid partition (Edmonds
and Fulkerson 1965; Cunningham 1986; Knuth 1973), maximum cut (Goe-
mans and Williamson 1995; Sahni and Gonzalez 1976), maximum coverage
location (Church and Velle 1974; Khuller et al. 1999; Cornuéjols et al. 1977),
multi-agent coverage problem (Sun et al. 2017), leader-selection problem in

6 Yajing Liu 1 et al.

 𝒇 𝟏, 𝟑 − 𝒇 𝟏 ≥ 𝒇 𝟏, 𝟐, 𝟑 − 𝒇(𝟏, 𝟐)

Location 1

Location 2

Location 3

black area + red area black area

Fig. 2 Sensor coverage as an example of a submodular function

multi-agent systems (Clark and Poovendran 2011), welfare maximization (Ko-
rula et al. 2015; Vondrák 2008; Kapralov et al. 2013), and data summarization
(Lin and Bilmes 2011; Badanidiyuru et al. 2014; Mirzasoleiman et al. 2017).
The aim is to find a set of actions satisfying some constraints to maximize the
objective function. The set optimization problem can be formulated as follows:

maximize f(M), subject to M ∈ I, (4)

where I is a non-empty collection of subsets of a finite set X, and f is a
real-valued submodular set function defined on the power set 2X of X. Before
proceeding any further with discussing optimization problem (4), we will need
to introduce some concepts related to the constraint set I.

Let X be a finite set, and I be a non-empty collection of subsets of X. The
collection I is said to be hereditary if it satisfies property i below and has the
augmentation property if it satisfies property ii below:

i. Hereditary: For all B ∈ I, any set A ⊆ B is also in I.
ii. Augmentation: For any A,B ∈ I, if |B| > |A|, then there exists j ∈ B \A

such that A ∪ {j} ∈ I.

The pair (X, I) is called an independence system if it satisfies property i. In
this case, the sets in I are called independent sets. A maximal independent
set is an independent set that is not a subset of any other independent set
(Conforti and Cornuéjols 1984). The independence system (X, I) is called a
matroid if it satisfies property ii (Edmonds 1970). The pair (X, I) is called a
uniform matroid if I = {S ⊆ X : |S| ≤ K} for a given K (Nemhauser et al.

Submodular Optimization Problems and Greedy Strategies: A Survey 7

1978). All maximal independent sets in a matroid have the same cardinality.
We call this cardinality the rank of the matroid. In the uniform matroid above,
the rank is K.

Example 2 We now give three example collections to illustrate the no-
tions of independence systems and matriods. Let X = {a, b, c}, I1 =
{{a}, {b}, {a, c}, {c}, ∅}, I2 = {{a}, {a, b}}, and I3 = {∅, {a}, {b}, {a, b}}. It
is easy to check that I1 satisfies the hereditary property but not augmenta-
tion, I2 satisfies augmentation but not the hereditary property, and I3 satisfies
both hereditary and augmentation properties. Hence, (X, I1) is an indepen-
dence system, (X, I3) is a matroid, and (X, I2) is neither an independence
system nor a matroid. The maximal independent sets in (X, I1) are {b} and
{a, c}, and (X, I3) only has one maximal independent set {a, b}. ut

Let (X, I) be an independence system where I is nonempty, and let S ⊆ X
be an arbitrary subset of X. A basis of S is a subset B of S that satisfies
the following two conditions: 1. It is an independent set; i.e., B ∈ I. 2. It
is maximal; i.e., B is not a subset of any other independent subset of S.
The subset B satisfying the above two conditions is also called a maximal
independent subset of S. Define

lower rank of S = lr(S) = min{|B| : B is a basis of S},

upper rank of S = ur(S) = max{|B| : B is a basis of S}.

Note that lr(S) and ur(S) might not be well defined, depending on S. Note
also that in the definition above, S is not necessarily in I. The number

q(X, I) = min

{
lr(S)

ur(S)
: S ⊆ X and ur(S) > 0

}
(5)

is called the rank quotient of (X, I) (Hausmann et al. 1980).

Example 3 To illustrate the concept of rank quotient, again consider the in-
dependence system (X, I1) given in Example 2. We now consider all the sub-
sets of X and calculate their lower and upper ranks. If S is a singleton (i.e.,
{a}, {b}, or {c}), then S has only one basis, which is S itself. In this case,
lr(S) = ur(S) = 1, which means that lr(S)/ur(S) = 1.

If S = {a, b}, its bases are {a} and {b}. Again, lr(S) = ur(S) = 1, which
means that lr(S)/ur(S) = 1. Note that {a, b} is not a basis of S because it
does not belong to I1. If S = {a, c}, it has only one basis, which is itself, and
again lr(S)/ur(S) = 1. If S = {b, c}, its bases are {b} and {c}, in which case
lr(S)/ur(S) = 1 again.

If S = {a, b, c} = X, the bases are {b} and {a, c}. So, lr(S) = 1 and
ur(S) = 2, which implies that lr(S)/ur(S) = 1/2.

Because the rank quotient is the smallest among the ratios calculated
above, we deduce that q(X, I1) = 1/2. ut

8 Yajing Liu 1 et al.

Example 4 As in Example 3, we can similarly check that q(X, I3) = 1. In fact,
the rank quotient of any matroid (X, I) is equal to 1, because for any susbset
S ⊆ X, lr(S) = ur(S) (Edmonds 1966). The rank quotient of an independence
system (X, I) can be regarded as a measure of how much (X, I) differs from
being a matroid. ut

For any independence system (X, I), if there exist matroids (X, Ii) (1 ≤
i ≤ p) such that I = I1∩· · ·∩Ip, then the pair (X, I) is called the intersection
of the matroids (X, Ii) (Hausmann et al. 1980).

Finding the optimal solution to (4) in general is NP-hard. The greedy strat-
egy provides a tractable way to approximately solve the problem, which starts
with the empty set, and incrementally adds an element to the current solu-
tion set giving the largest gain in the objective function under the constraints.
Although the greedy strategy yields an approximate solution, its performance
might be arbitrarily poor. However, when the optimization problem has the
further special structure of being polymatroid, the greedy strategy has prov-
able guarantees. The celebrated results by Fisher et al. (1978) and Nemhauser
et al. (1978) show that the greedy strategy provides a good approximation to
the optimal solution when the objective function is a polymatroid set func-
tion under both general matroid constraints and uniform matroid constraints.
We will review the performance of the greedy strategy for (4) under different
constraints in the following section.

2.3 Performance Bounds for Greedy Strategy

First we introduce definitions of the optimal strategy and the greedy strategy.
Optimal Set: Any set O is called an optimal solution of Problem (4) if

O ∈ argmax
M∈I

f(M),

where argmax denotes the set of actions that maximize f(·).
Greedy Algorithm:
Input: A pair (X, I), a set function f : 2X → R
Output: A subset G ∈ I
G0 ← ∅
For i = 1, 2, . . .,
gi ← argmax

a∈X\Gi−1

Gi−1∪{a}∈I

f(Gi−1 ∪ a). If gi 6= ∅, set Gi = Gi−1 ∪ {gi}; otherwise, stop

and set G = Gi−1.
Any output of the above algorithm is called a greedy solution. Note that

there may exist more than one optimal solution or more than one greedy solu-
tion. How good is a greedy solution compared to an optimal solution in terms
of the objective function? In the following theorems, we review performance
bounds for the greedy strategy under different constraints. These bounds are
worst-case performance bounds, which means that the greedy strategy per-
forms much better than those bounds in many cases.

Submodular Optimization Problems and Greedy Strategies: A Survey 9

Theorem 1 (Hausmann et al. 1980) Let (X, I) be an independence system.
If f is additive on X, i.e., f(S) =

∑
s∈S f({s}) for any subset S ⊆ X, then

any greedy solution G satisfies

f(G)

f(O)
≥ q(X, I), (6)

where q(X, I) is the rank quotient defined in Section 2.2. Furthermore, for
some function f , (6) holds with equality.

Remark 1 When (X, I) is a matroid, q(X, I) = 1. By Theorem 1, the greedy
strategy is optimal when (X, I) is a matroid and the objective function is
additive.

Remark 2 When (X, I) is the intersection of p matroids, then q(X, I) ≥ 1/p
(Hausmann et al. 1980). So when p = 1, i.e., (X, I) is a matroid, the greedy
strategy is optimal, which is consistent with Remark 1.

Example 5 We provide an example2 to demonstrate the performance bound
in Theorem 1. Let X = {s, t, u, v, w, x}, and consider the collection of subsets

I = {∅, {s}, {t}, {s, t}, {u}, {v}, {w}, {x}, {u, v}, {u,w}, {u, x}, {v, w}, {v, x},
{w, x}, {u, v, w}, {u, v, x}, {u,w, x}, {v, w, x}, {u, v, w, x}}.

Define a function f such that f(A) =
∑
a∈A f({a}). Let f({s}) =

1.01, f({u}) = f({v}) = f({w}) = f({x}) = 1, and f({t}) = 0.
It is easy to check that (X, I) is an independence system. If S =

{s, u, v, w, x}, it has bases {s} and {u, v, w, x}, which results in lr(S)/ur(S) =
1/4. Because the maximum cardinality of the maximal independent subsets
of any S ⊆ X is 4, lr(S)/ur(S) ≥ 1/4 for any set S ⊆ X with ur(S) > 0.
Therefore, q(X, I) = 1/4. The greedy solution is G = {s, t} with f(G) = 1.01
and the optimal solution is O = {u, v, w, x} with f(O) = 4, which satisfy the
bound f(G)/f(O) ≥ q(X, I). In fact, the bound holds with equality if we lower
f({s}) to exactly 1. ut

The following theorem bounds the performance of the greedy strategy when
(X, I) is the intersection of p matroids and f is a polymatroid set function.

Theorem 2 (Fisher et al. 1978) Let (X, I) be the intersection of p matroids
and f : 2X → R a polymatroid set function. Then any greedy solution G
satisfies

f(G)

f(O)
≥ 1

1 + p
. (7)

Remark 3 The condition that f is additive in Theorem 1 is stronger than the
condition that f is a polymatroid set function in Theorem 2, so the bound 1/p
in Theorem 1 is stronger than the bound 1/(1 + p) in Theorem 2.

2 We thank the anonymous reviewer for this example.

10 Yajing Liu 1 et al.

Remark 4 The bound 1/(1 + p) can be achieved for any positive integer p.
When p = 1, (X, I) is a matroid, and the bound becomes 1/2, which means
that the greedy strategy yields 1/2-approximation for general matroid con-
straints.

Remark 5 Theorem 2 requires that f(∅) = 0. If f(∅) 6= 0, the following per-
formance bound holds

f(G)− f(∅)
f(O)− f(∅)

≥ 1

1 + p
.

The following theorem provides a performance bound for the greedy strat-
egy when (X, I) is a uniform matroid and f is a polymatroid set function.

Theorem 3 (Nemhauser et al. 1978) Let (X, I) be a uniform matroid and
f : 2X → R a polymatroid set function. Then any greedy solution GK satisfies

f(G)

f(O)
≥ 1−

(
1− 1

K

)K
> 1− 1

e
, (8)

where K is the rank of the uniform matroid and e is the base of the natural
logarithm.

Remark 6 The bound 1 − (1 − 1/K)K is stronger than the bound 1/(1 + p)
when p = 1 in Theorem 2, because the uniform matroid is a special matroid.

Remark 7 The bound 1 − (1 − 1/K)K is decreasing in K and tends to 1 −
1/e when K goes to infinity. When K = 1, the bound becomes 1, which is
consistent with the fact that the greedy strategy chooses the best action at
each stage.

Remark 8 The bound 1 − (1 − 1/K)K is tight, which means that it can be
achieved for each K (Nemhauser et al. 1978).

Remark 9 By Theorem 2, the greedy strategy only achieves a 1/2-
approximation under general matroid constraints. However, Calinescu et al.
(2011) proved that a variant of the greedy strategy yields a (1 − 1/e)-
approximation under general matroid constraints.

2.4 Examples

We introduce two examples – a task scheduling problem and an adaptive
sensing problem – to illustrate polymatroid set functions. In both problems,
(X, I) is a uniform matroid and hence the greedy strategy satisfies a (1−e−1)-
approximation.

Task Assignment Problem: The task scheduling problem was posed by
Streeter and Golovin (2008), and was also analyzed in Zhang et al. (2016)
and Liu et al. (2018d). In this problem, there are n subtasks and a set X of

Submodular Optimization Problems and Greedy Strategies: A Survey 11

N agents. At each stage, a subtask i is assigned to an agent a, who accom-
plishes the task with probability pi(a). Let Xi({a1, a2, . . . , ak}) denote the
Bernoulli random variable that signifies whether or not subtask i has been
accomplished after assigning the set of agents {a1, a2, . . . , ak} over k stages.
Then 1

n

∑n
i=1Xi({a1, a2, . . . , ak}) is the fraction of subtasks accomplished af-

ter k stages by employing agents {a1, a2, . . . , ak}. The objective function f for
this problem is the expected value of this fraction, which can be written as

f({a1, . . . , ak}) =
1

n

n∑
i=1

1−
k∏
j=1

(1− pi(aj))

 . (9)

The aim is to choose a set of agents to maximize this objective function.

Assume that pi(a) > 0 for any a ∈ X. Then it is easy to check that f is
monotone, submodular, and f(∅) = 0, which implies that f is a polymatroid
set function.

Adaptive Sensing: As our second example application, we consider the
adaptive sensing design problem posed in Zhang et al. (2016) and Liu et al.
(2018d). Consider a signal of interest x ∈ IR2 with normal prior distribution
N (0, I), where I is the 2 × 2 identity matrix; our analysis easily generalizes
to dimensions larger than 2. Let B = {Diag(

√
b,
√

1− b) : b ∈ {b1, . . . , bN}},
where bi ∈ [0, 1] for 1 ≤ i ≤ N . At each stage i, we make a measurement yi of
the form

yi = Bix+ wi,

where Bi ∈ B and wi represents i.i.d. Gaussian measurement noise with mean
zero and covariance σ2I, independent of x.

The objective function f for this problem is the information gain, which
can be written as

f({B1, . . . , Bk}) = H0 −Hk.

Here, H0 = N
2 log(2πe) is the entropy of the prior distribution of x and Hk is

the entropy of the posterior distribution of x given {yi}ki=1; that is,

Hk =
1

2
log det(Pk) +

N

2
log(2πe),

where for 1 ≤ j ≤ k

Pj =

(
P−1
j−1 +

1

σ2
BTj Bj

)−1

is the posterior covariance of x given {yi}ji=1. The objective is to choose a set of
measurements to maximize the information gain f({B1, . . . , BK}) = H0−HK .

It is easy to check that f is monotone, submodular, and f(∅) = 0; i.e., f
is a polymatroid set function.

12 Yajing Liu 1 et al.

2.5 Curvature

As we saw in Section 2.1, submodularity is a second-order property by analogy
to concavity. If we can quantify this second order property, then we can get
tighter bounds. One way to quantify the second order property is to use the
total curvature, defined by Conforti and Cornuéjols (1984):

c(f) := max
j∈X:%j(∅) 6=0

{
1− %j(X \ {j})

%j(∅)

}
.

To see that this is a second-order property, rewrite it in terms of differences
of differences:

c(f) := max
j∈X:f({j}) 6=f(∅)

{
(f({j})− f(∅))− (f(X)− f(X \ {j}))

f({j})− f(∅)

}
.

For convenience, we use c to denote c(f) when there is no ambiguity. Note
that 0 ≤ c ≤ 1 when f is a polymatroid set function, and c = 0 when f is
modular. When f is modular, f−f(∅) is additive. If we consider f−f(∅) as the
objective function, then the greedy strategy achieves optimality. Therefore, in
the rest of the paper, when we assume that f is a polymatroid set function,
we only consider c ∈ (0, 1].

Conforti and Cornuéjols (1984) provided performance bounds in terms of
the total curvature for the greedy strategy under independence system, general
matroid, and uniform matroid constraints, which will be reviewed as follows.

Theorem 4 (Conforti and Cornuéjols 1984) If (X, I) is an independence sys-
tem with ur(X) = K and lr(X) = k, and f is is a polymatroid set function
with total curvature c, then any greedy solution GK satisfies

f(GK)

f(O)
≥ 1

c

[
1−

(
1− c

K

)k]
,

and this bound is tight for all 0 < c ≤ 1.

Theorem 5 (Conforti and Cornuéjols 1984) If (X, I) is a matroid and f is
a polymatroid set function with total curvature c, then any greedy solution GK
satisfies

f(GK)

f(O)
≥ 1

1 + c
.

Moreover, if (X, I) is a uniform matroid with rank K, then any greedy solution
GK satisfies

f(GK)

f(O)
≥ 1

c

[
1−

(
1− c

K

)K]
>

1− e−c

c
.

Remark 10 When (X, I) is a matroid, the bound 1/(1 + c) is stronger than
the bound 1/2 in Theorem 2 because c ∈ (0, 1] when f is a polymatroid set
function and 1/(1 + c) is nonincreasing in c.

Submodular Optimization Problems and Greedy Strategies: A Survey 13

Remark 11 The function (1− e−c)/c is nonincreasing in c, and therefore (1−
e−c)/c ∈ [1 − e−1, 1) when f is a polymatroid set function. Also it is easy to
check that (1− e−c)/c ≥ 1/(1 + c) for c ∈ (0, 1], which implies that the bound
(1 − e−c)/c for the uniform matroid constraints is stronger than the bound
1/(1 + c) for the general matroid constraints.

Remark 12 The two bounds in terms of the total curvature c are both tight;
for proofs, see Conforti and Cornuéjols (1984).

Remark 13 There are other notions of curvatures that can be used to char-
acterize the second-order property of the set function f , such as the greedy
curvature defined by Conforti and Cornuéjols (1984) and the elemental cur-
vature defined by Wang et al. (2014). Performance bounds in terms of the
corresponding curvatures were also derived by Conforti and Cornuéjols (1984)
and Wang et al. (2014) under different constraints.

Example: Consider again the task assignment example from Section 2.4.
For convenience, we only consider the special case n = 1; our analysis can be
generalized to any n ≥ 2. For n = 1, we have

f({a1, . . . , ak}) = 1−
k∏
j=1

(1− p(aj)) ,

where p(·) = p1(·).
Let us order the elements of X as a[1], a[2], . . . , a[N] such that

0 < p(a[1]) ≤ p(a[2]) ≤ . . . ≤ p(a[N]) ≤ 1.

Then by the definition of the total curvature c, we have

c = max
j∈X

{
1− f(X)− f(X \ {j})

f({j})− f(∅)

}
= 1−

N∏
l=2

(1− p(a[l])) < 1,

which is consistent with our conclusion that c ∈ [0, 1].

2.6 Improved Bounds

The performance bounds of Conforti and Cornuéjols (1984) reviewed in Sec-
tion 2.5, are the best bounds in terms of the total curvature c for general
matroid constraints and uniform matroid constraints, respectively. However,
the total curvature c depends on function values on sets outside the constraint
matroid. If we are given a function defined only on the matroid, problem (4)
still makes sense, but the bounds involving c do not apply. Liu et al. (2018a,
2019) investigated modified bounds that overcome this drawback. The idea
is first to extend a polymatroid set function defined on the matroid to one
defined on the entire power set, and then apply the results from Conforti and

14 Yajing Liu 1 et al.

Cornuéjols (1984). However, not every polymatroid function defined on the
matroid can be extended to one defined on the entire power set.

In Liu et al. (2019), they first provide necessary and sufficient conditions for
the existence of an incremental extension of a polymatroid set function defined
on the uniform matroid of rank k to one defined on the uniform matroid of
rank k + 1. Whenever a polymatroid objective function defined on a matroid
can be extended to the entire power set, the greedy approximation bounds
involving the total curvature of the extension apply. However, the bounds still
depend on sets outside the matroid. Motivated by this, Liu et al. (2019) defined
a new notion of curvature called partial curvature, involving only sets in the
matroid. They derived necessary and sufficient conditions for an extension of
the function to have a total curvature that is equal to the partial curvature.
Moreover, they proved that the bounds in terms of the partial curvature are
in general improved over the previous ones.

The following theorems state the necessary and sufficient conditions for the
existence of an extension of a polymatroid set function defined on the uniform
matroid of rank k to one defined on the uniform matroid of rank k + 1.

Theorem 6 (Liu et al. 2019) Let f : I → R be a polymatroid function defined
on the uniform matroid of rank k. Then f can be extended to a polymatroid
function g defined on the uniform matroid of rank k+ 1 if and only if for any
A ⊆ X with |A| = k + 1, any B ⊂ A with |B| = k, and any a ∈ B,

f(B)− f(B \ {a}) ≥ f(B∗)− f(A \ {a}), (10)

where B∗ ∈ argmax
B:B⊂A,|B|=k

f(B).

Construction: If f is extendable, then an extension g can be constructed as
follows: For any A with |A| ≤ k, g(A) = f(A); For any A with |A| = k + 1,

g(A) = g(B∗) + dA, (11)

where dA satisfies

0 ≤ dA ≤ min
B:B⊂A,|B|=k

a:a∈B

{f(B)− f(B∗) + f(A \ {a})− f(B \ {a})}. (12)

Note that f : 2X → R is itself an extension of f from I to the entire 2X , and
the extended f : 2X → R is a polymatroid function on 2X . Therefore, we have
that c(f) ≥ d = infg∈Ef c(g), where Ef is the set of all polymatroid functions
g on 2X that agree with f on I. So if a polymatroid set function defined on
the matroid can be extended to one defined on the whole power set, applying
the performance bounds in Theorem 5 results in the following theorem.

Theorem 7 (Liu et al. 2019) Let (X, I) be a matroid of rank K and f : I →
R a polymatroid function. If there exists an extension of f to the entire power
set, then any greedy solution GK to problem (4) satisfies

f(GK)

f(O)
≥ 1

1 + d
, (13)

Submodular Optimization Problems and Greedy Strategies: A Survey 15

where d = infg∈Ef c(g). In particular, when (X, I) is a uniform matroid, any
greedy solution GK to problem (4) satisfies

f(GK)

f(O)
≥ 1

d

[
1−

(
1− d

K

)K]
>

1

d

(
1− e−d

)
. (14)

Remark 14 The bounds 1/(1 + d) and (1 − e−d)/d apply to problems where
the objective function is a polymatroid function defined only for sets in the
matroid and can be extended to one defined on the entire power set. However,
these bounds still depend on sets not in the matroid, because of the way d is
defined.

Then Liu et al. (2019) defined a new curvature called the partial curvature
b(h) as follows:

b(h) := max
j,A:j∈A∈I
h({j})6=h(∅)

{
1− h(A)− h(A \ {j})

h({j})− h(∅)

}
, (15)

and the partial curvature satisfies that b(f) ≤ c(g) when g is an extension
of f from I to 2X . The following theorem provides necessary and sufficient
conditions for the existence of an extension g to have c(g) = b(f).

Theorem 8 (Liu et al. 2019) Let (X, I) be a matroid and f : I → R a
polymatroid function. Let g : 2X → R be a polymatroid function that agrees
with f on I. Then c(g) = b(f) if and only if

g(X)− g(X \ {a}) ≥ (1− b(f))g({a}) (16)

for any a ∈ X, and equality holds for some a ∈ X.

Liu et al. (2019) provided the following improved bounds for the greedy
strategy if there exists an extension g of f such that c(g) = b(f).

Theorem 9 (Liu et al. 2019) Let (X, I) be a matroid of rank K. Let g : 2X →
R be a polymatroid function that agrees with f on I such that g(X) − g(X \
{a}) ≥ (1− b(f))g({a}) for any a ∈ X with equality holding for some a ∈ X.
Then, any greedy solution GK to problem (4) satisfies

f(GK)

f(O)
≥ 1

1 + b(f)
. (17)

In particular, when (X, I) is a uniform matroid, any greedy solution GK to
problem (4) satisfies

f(GK)

f(O)
≥ 1

b(f)

[
1−

(
1− b(f)

K

)K]
>

1

b(f)

(
1− e−b(f)

)
. (18)

16 Yajing Liu 1 et al.

Remark 15 The bounds 1/(1 + b(f)) and (1 − (1− b(f)/K)
K

)/b(f) do not
depend on sets outside the matroid, so they apply to problems where the
objective function is only defined on the matroid, provided that an extension
that satisfies the assumptions in Theorem 8 exists. When f is defined on the
entire power set, b(f) ≤ c(f), which implies that the bounds are stronger than
those from Conforti and Cornuéjols (1984).

Next consider again the task assignment problem from Section 2.4. Liu
et al. (2019) gave an extension g of f defined on the uniform matroid of rank
2 to the whole power set with c(g) = b(f), which is reviewed as follows.

Example: Let X = {a1, a2, a3, a4}, p(a1) = 0.4, p(a2) = 0.6, p(a3) = 0.8,
and p(a4) = 0.9. Then, f(A) is defined as in (9) for any A = {ai, . . . , ak} ⊆ X.
Let K = 2, then I = {S ⊆ X : |S| ≤ 2}. It is easy to show that f : I → R is
a polymatroid function.

The polymatroid function g constructed using (11) while satisfying (12)
and (16) from Liu et al. (2019) is of the following form:

g({a1, a2, a3}) = f({a2, a3}) + d{a1,a2,a3} = 0.96.
g({a1, a2, a4}) = f({a2, a4}) + d{a1,a2,a4} = 1,
g({a1, a3, a4}) = f({a3, a4}) + d{a1,a3,a4} = 1.02,
g({a2, a3, a4}) = f({a3, a4}) + d{a2,a3,a4} = 1.04,
g(X) = g({a2, a3, a4}) + dX = 1.08.
The total curvature c of g : 2X → R is

c(g2) = max
ai∈X

{
1− g(X)− g(X \ {ai})

g({ai})− g(∅)

}
= 0.9 = b(f) < c(f) = 0.992.

By Theorem 9, the greedy strategy for the task scheduling problem satisfies
the bound (1− (1− b(f)/2)2)/b(f) = 0.775, which is better than the previous
bound (1− (1− c(f)/2)2)/c(f) = 0.752.

2.7 Batch Actions

Suppose we batch the selected actions into batches of size k. What results
is the k-batch greedy strategy, which starts with the empty set and iteratively
adds to the current solution set a batch of elements with the largest gain in the
objective function under the constraints. The greedy strategy we considered
in Sections 2.3–2.5 is a special case of the batched greedy with batch size
equal to 1. Intuitively, larger k should result in better performance, albeit at
the expense of increasing computational complexity. But how do the previous
bounds improve as a function of k? In this section, we review performance
bounds for the k-batch greedy strategy.

We start by introducing the k-batch greedy strategy as follows. Consider
again problem (4) and write the maximal cardinality of the sets in I as K =
k(l − 1) + m, where l,m are nonnegative integers and 0 < m ≤ k. Note that
m is not necessarily the remainder of K/k, because m could be equal to k.

Submodular Optimization Problems and Greedy Strategies: A Survey 17

This happens when k divides K. The k-batch greedy strategy is as follows
(Liu et al. 2018c,d):
Step 1: Let S0 = ∅ and t = 0.
Step 2: Select Jt+1 ⊆ X \ St such that |Jt+1| = k, St ∪ Jt+1 ∈ I, and

f(St ∪ Jt+1) = max
J⊆X\St and |J|=k

f(St ∪ J);

then set St+1 = St ∪ Jt+1.
Step 3: If t+ 1 < l − 1, set t = t+ 1, and repeat Step 2.
Step 4: If t+ 1 = l− 1, select Jl ⊆ X \Sl−1 such that |Jl| = m, Sl−1 ∪ Jl ∈ I,
and

f(Sl−1 ∪ Jl) = max
J⊆X\Sl−1 and |J|=m

f(Sl−1 ∪ J).

Step 5: Return the set S = Sl−1 ∪ Jl and terminate.
Any set generated by the above procedure is called a k-batch greedy solu-

tion. For the above strategy, there are l steps in total, and exactly k actions are
selected at each of the first l−1 steps but the final step may select fewer than k
actions. A similar batched greedy strategy is investigated by Hausmann et al.
(1980) called the (≤ k)-greedy strategy, where at most k actions are selected
at each stage.

The performance of the k-batch greedy strategy under uniform matroid
constraints was first investigated by Nemhauser et al. (1978), stated as follows.

Theorem 10 (Nemhauser et al. 1978) If (X, I) is a uniform matroid of rank
K and f is a polymatroid set function, then any k-batch greedy solution S
satisfies

f(S)

f(O)
≥ 1−

(
1− m

kl

)(
1− 1

l

)l−1

.

Remark 16 When m = k, i.e., the batch size k divides the rank K, the bound
is tight; see Nemhauser et al. (1978) for proof.

By introducing the total k-batch curvature

ck := max
I∈X̂

{
1− %I(X \ I)

%I(∅)

}
, (19)

where X̂ = {I ⊆ X : %I(∅) 6= 0 and |I| = k}, Liu et al. (2018d) derived
performance bounds in terms of ck for the k-batch greedy strategy under
both general matroid and uniform matroid constraints, and investigated the
monotoneity of the performance bounds with respect to the batch size k.

Theorem 11 (Liu et al. 2018d) Assume that f is a polymatroid set function.
When (X, I) is a general matroid, then any k-batch greedy solution satisfies

f(S)

f(O)
≥ 1

1 + ck
.

When (X, I) is a uniform matroid, then any k-batch greedy solution satisfies

f(S)

f(O)
≥ 1

ck

[
1−

(
1− ck

l

m

k

)(
1− ck

l

)l−1
]
.

18 Yajing Liu 1 et al.

Remark 17 When k = 1, the bound for general matroid constraint becomes
1/(1 + c) and the bound for uniform matroid constraints becomes (1 − (1 −
c/K)K)/c, which is consistent with the results in Theorem 5.

Remark 18 The total k-batch curvature is nonincreasing in k, i.e., ck2 ≤ ck1
whenever k2 ≥ k1 (Liu et al. 2018d).

Remark 19 Based on Remark 18, we can discuss the monotoneity of the
bounds for both general matroid and uniform matroid constraints. The bound
1/(1 + ck) for general matroid constraints is monotone in k. For uniform ma-
troid constraints, when the batch size k divides K, the bound becomes

1

ck

[
1−

(
1− ck

l

)l]
,

which is monotone in k. Moreover,

1

ck

[
1−

(
1− ck

l

)l]
>

1− e−ck
ck

≥ 1

1 + ck
,

which means that the bound for uniform matroid constraints is better than
the bound for general matroid constraints. However, if k does not divide K,
the exponential bound might be worse than the harmonic bound. For example,
when K = 100, k = 80, and ck = 0.6, the exponential bound is 0.5875, which
is worse than the harmonic bound 0.6250 (Liu et al. 2018d).

Examples: Now consider again the task assignment and adaptive sensing
problems from Section 2.4 to demonstrate that the total curvature ck decreases
in k and the performance bound for a uniform matroid increases in k under
the condition that the batch size k divides the rank K.

Task Assignment Problem: We still order the elements of X as
a[1], a[2], . . . , a[N] such that

0 < p(a[1]) ≤ p(a[2]) ≤ . . . ≤ p(a[N]) ≤ 1.

Then by the definition of the total curvature ck, we have

ck = max
i1,...,ik∈X

{
1− f(X)− f(X \ {i1, . . . , ik})

f({i1, . . . , ik})− f(∅)

}
= 1−

N∏
l=k+1

(1− p(a[l])).

From the expression of ck, we can see that ck is nonincreasing in k, but when
N is large, ck is close to 1 for each k.

To numerically evaluate the relevant quantities here, Liu et al. (2018d)
randomly generated a set {p(ai)}30

i=1. In Fig. 3, they considered K = 20,
and batch sizes k = 1, 2, . . . , 10. Fig. 3 shows that the exponential bound for
k = 3, 6, 8, 9 is worse than that for k = 1, 2, which illustrates our earlier remark
that the exponential bound for the uniform matroid case is not necessarily
monotone in k even though ck is monotone in k. Fig. 3 also shows that the
exponential bound (1−(1−ck/l ·m/k)(1−ck/l)l−1/ck coincides with (1−(1−

Submodular Optimization Problems and Greedy Strategies: A Survey 19

k
1 2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 B
o

u
n

d
 o

r
T

o
ta

l C
u

rv
at

u
re

0.65

0.75

1

Total curvature ck

Exponential bound

Value of
1

ck
(1 ! (1 !

ck

l + 1
)l+1)

Fig. 3 Total curvature/performance bounds for greedy strategy in task assignment problem

ck/l)
l)/ck for k = 1, 2, 4, 5, 10 and it is nondecreasing in k, which illustrates our

remark that the exponential bound is nondecreasing in k under the condition
that k divides K. Owing to the nature of the total curvature for this example,
it is not easy to see that ck is nonincreasing in k (all ck values here are very
close to 1).

Adaptive Sensing: For convenience, set σ = 1. Then, we have

ck = max
Jk⊆X,|Jk|=k

{
1− f(X)− f(X \ Jk)

f(Jk)

}

= max
Jk⊆X,|Jk|=k

1−
log(st)− log

(
s−

∑
i:ei∈Jk

ei

)(
t−

∑
i:ei∈Jk

(1− ei)

)

log

(
1 +

∑
i:ei∈Jk

ei

)(
1 +

∑
i:ei∈Jk

(1− ei)

)
 ,

where X = {B1, . . . , BN}, s = 1 +
∑N
i=1 ei, and t = 1 +

∑N
i=1(1− ei).

We already saw that the exponential bound for the uniform matroid case
is not necessarily monotone in k from the task assignment problem, so we will
only consider the case when the batch size k divides K. Liu et al. (2018d)
considered K = 24 for k = 1, 2, 3, 4, 6, 8 in Fig. 4. The figure shows that the
curvature decreases in k and the exponential bound increases in k since k
divides K for k = 1, 2, 3, 4, 6, 8, which again demonstrates the claim that ck
decreases in k and the exponential bound increases in k under the condition
that k divides K.

20 Yajing Liu 1 et al.

Fig. 4 Total curvature/performance bound for greedy strategy in adaptive sensing problem

2.8 Noncooperative Games

In the previous sections, we reviewed performance bounds for greedy-type
strategies in set submodular optimization problems. It turns out that simi-
lar techniques can be used to bound the performance of Nash equilibria in
noncooperative games–utility maximization problems. The connection to the
game setting is easy to imagine by associating the objective function in set
optimization with a social utility function in games, greedy strategies with
Nash equilibria, and batching with cooperation of subgroups in games. We
first introduce some background on utility maximization problems and Nash
equilibria.

A great number of interesting practical problems can be posed as utility
maximization problems: these include facility location (Ahmed and Atamtürk
2011), traffic routing and congestion management (Arslan et al. 2007; He et al.
2007), sensor selection (Rowaihy et al. 2007; Liu et al. 2014), and network
resource allocation (La and Anantharam 2002; Palomar and Chiang 2007).
In a utility maximization problem, a set of users make decisions according to
their own set of feasible strategies, resulting in an overall social utility value,
such as profit, coverage, achieved data rate, and quality of service. The goal is
to maximize the social utility function. Often, the users do not cooperate in
selecting their strategies.

In general, it is impractical to find the optimal strategy maximizing the
social utility function. However, it is feasible to consider scenarios where indi-
vidual users or groups of users separately maximize their own private objective
functions. The usual framework for studying such scenarios is game theory to-

Submodular Optimization Problems and Greedy Strategies: A Survey 21

gether with its celebrated notion of Nash equilibria. A Nash equilibrium is a set
of strategies (deterministic or randomized) for which no user can improve its
own private utility by changing its strategy unilaterally. Nash (1951) proved
that any finite and non-cooperative game has at least one Nash equilibrium.

The performance of Nash equilibria compared with the optimal solution in
submodular utility maximization problems was investigated by Vetta (2002).
Based on the existing results, Liu et al. (2018b) established bounds for Nash
equilibria when there is “grouping” among users, which is useful in under-
standing the role of cooperation and social ties in games. Before we review
these results, we introduce some notation and terminology from Vetta (2002)
and Liu et al. (2018b).

Suppose we have a set N = {1, 2, . . . , N} of N users. Each element in
Vi (i = 1, . . . , N) represents an act that user i can take. We call a set of
acts an action, and if an action xi ⊆ Vi is available to user i we call it a
feasible action. We denote by Xi the set of all feasible actions for user i, i.e.,
Xi = {xi ⊆ Vi : xi is a feasible action}, with ni = |Xi| the cardinality of
Xi. We call Xi the action space for user i. A pure strategy is one in which
the user takes a specific action. A mixed strategy is one in which the user
takes actions according to some probability distribution. The set of mixed
strategies is called the strategy space. We represent the strategy space for user
i by Si = {si ∈ Rni :

∑ni

j=1 s
j
i = 1, sji ≥ 0}, where si = (s1

i , . . . , s
ni
i) is called a

strategy taken by user i and sji ≥ 0 is the probability with which user i takes

action j. When sji = 1 for some j and sli = 0 for all l 6= j, user i is said to take

a pure strategy. Otherwise, user i takes a mixed strategy. Write S =
∏N
i=1 Si.

The indexed set S = (s1, . . . , sN), with si ∈ Si and i = 1, . . . , N , is called a
strategy set of size N in S.

Given a strategy set S = (s1, . . . , sN) ∈ S, the set S−i =
(s1, . . . , si−1, si+1, . . . , sN) is the subset of S that contains strategies taken
by all users except user i, and (S−i, s

′
i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sN) is the

strategy set that results from S when user i changes its strategy from si to s′i.
The expected social utility function and expected private utility function

for user i from strategies in S to real numbers are denoted by γ̄ and ᾱi,
respectively. Define γ̄si(S−i) = γ̄(S)− γ̄(S−i) for any set S = (s1, . . . , sN) ∈ S
and si (i = 1, . . . , N).

Now we introduce the definition of a Nash equilibrium and a valid system,
then review performance bounds for Nash equilibria under some conditions
from Vetta (2002).

Definition 1 A strategy set S ∈ S is a Nash equilibrium if no user has an
incentive to unilaterally change its strategy, i.e., for any user i,

ᾱi(S) ≥ ᾱi((S−i, s′i)), ∀s′i ∈ Si. (20)

Assumption 1 (Vetta 2002) The private utility of user i (i = 1, . . . , N) is
at least as large as the loss in the social utility resulting from user i dropping

22 Yajing Liu 1 et al.

out of the game. That is, the system (γ̄, {ᾱi}Ni=1) has the property that for any
strategy set S = (s1, . . . , sN) ∈ S,

ᾱi(S) ≥ γ̄si(S−i), ∀i = 1, . . . , N. (21)

Assumption 2 (Vetta 2002) The sum of the private utilities of the system is
not larger than the social utility, i.e., for any strategy set S = (s1, . . . , sN) ∈ S,

N∑
i=1

ᾱi(S) ≤ γ̄(S). (22)

A utility system (γ̄, {ᾱi}Ni=1) satisfying Assumptions 1 and 2 is called a
valid system. We denote by Ω = (ω1, . . . , ωN) the optimal strategy set in
maximizing an expected utility function γ̄, and assume that Ω is composed of
pure strategies ωi ∈ Si, i = 1, . . . , N . For convenience, we also use ωi to denote
the optimal action that user i takes. Consider a strategy set S = (s1, . . . , si)
where i = 1, . . . , N . Suppose that user j (j = 1, . . . , i) uses a mixed strategy
sj that takes actions x1

j , . . . , x
nj

j with probabilities s1
j , . . . , s

nj

j . We use the
notation Ω ∪ S to represent the strategy in which user j (j = 1, . . . , i) takes
the actions ωj ∪ x1

j , . . . , ωj ∪ x
nj

j with probabilities s1
j , . . . , s

nj

j , and user j
(j = i+ 1, . . . , N) takes the action ωj , so Ω ∪ S is well defined.

Theorem 12 (Vetta 2002) For a valid utility system (γ̄, {ᾱi}Ni=1), if the ex-
pected social utility function γ̄ is submodular, then for any Nash equilibrium
S ∈ S we have

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

N∑
i=1

γ̄si(Ω ∪ S−i)

)
. (23)

Remark 20 If γ̄ is monotone, then γ̄si(Ω ∪ S−i) ≥ 0 and the above inequality
shows that any Nash equilibrium achieves at least 1/2 of the optimal social
utility function value.

By defining the curvature c of the expected social utility function γ̄,

c := max
i:γ̄si (∅) 6=0

{
1− γ̄si(Ω ∪ S−i)

γ̄si(∅)

}
,

Vetta (2002) derived the following tighter performance bound in terms of the
curvature for Nash equilibria.

Theorem 13 (Vetta 2002) For a valid utility system (γ̄, {ᾱi}Ni=1), if the ex-
pected social utility function γ̄ is monotone and submodular, then for any Nash
equilibrium S ∈ S we have

γ̄(S)

γ̄(Ω)
≥ 1

1 + c
. (24)

Remark 21 When the expected social utility function γ̄ is monotone and sub-
modular, we have c ∈ [0, 1], which implies that γ̄(S) ≥ γ̄(Ω)/2.

Submodular Optimization Problems and Greedy Strategies: A Survey 23

Next we review performance bounds for group Nash equilibria defined by
Liu et al. (2018b). They considered the case where the set of all users in the
utility maximization system are divided into disjoint groups, and the users
in the same group choose their strategies by maximizing their group utility
function jointly.

Assume that the set of users N = {1, . . . , N} is divided into l disjoint
groups, in which group i (i = 1, . . . , l) has users {mi + 1, . . . ,mi + ki}, where

mi =
∑i−1
j=1 kj , kj is the number of users in group j, and

∑l
j=1 kj = N . Let

si = (smi+1, . . . , smi+ki) denote the group strategy for group i, where si ∈ Si
is the strategy for user i. This includes the strategies taken by all the users in
group i (i = 1, . . . , l). Let S−i denote the set of group strategies taken by all
groups except for group i and (S−i, ti) denote the group strategy set obtained
when group i changes its group strategy from si to ti. Let η̄i denote the
expected group utility function for group i. Define γ̄si(S

−i) = γ̄(S) − γ̄(S−i)
for any S = (s1, . . . , sl) ∈ S and si (i = 1, . . . , l).

Definition 2 A strategy set S = (s1, . . . , sl) ∈ S is a group Nash equilibrium
of a utility system if no group can improve its group utility by unilaterally
changing its group strategy, i.e., for any i = 1, . . . , l,

η̄i(S) ≥ η̄i((S−i, ti)), ∀ti = (tmi+1, . . . , tmi+ki),

where tj ∈ Sj for j = mi + 1, . . . ,mi + ki.

The utility system (γ̄, {η̄i}li=1) is valid if it satisfies the following two as-
sumptions (Liu et al. 2018b).

Assumption 3 The group utility of group i is at least as large as the loss
in the social utility resulting from all the users in group i dropping out of the
game. That is, the system (γ̄, {η̄i}li=1) has the property that for any strategy
set S = (s1, . . . , sl) ∈ S,

η̄i(S) ≥ γ̄si(S−i), ∀i = 1, . . . , l. (25)

Assumption 4 The sum of the group utilities of the system is not larger than
the social utility, i.e., for any strategy set S = (s1, . . . , sl) ∈ S,

l∑
i=1

η̄i(S) ≤ γ̄(S). (26)

Theorem 14 (Liu et al. 2018b) For a valid utility system (γ̄, {η̄i}li=1), if the
expected social utility function γ̄ is submodular, then any group Nash equilib-
rium S = (s1, . . . , sl) ∈ S satisfies

γ̄(S) ≥ 1

2

(
γ̄(Ω) +

l∑
i=1

γ̄si(Ω ∪ S−i)

)
. (27)

24 Yajing Liu 1 et al.

To better characterize the relation of the social utility value of any group Nash
equilibrium and that of the optimal solution Ω, Liu et al. (2018b) defined the
group curvature cki of the social utility function for group i as

cki := max
S∈S,γ̄si (∅)6=0

{
1− γ̄si(Ω ∪ S−i)

γ̄si(∅)

}
.

Theorem 15 (Liu et al. 2018b) For a valid utility system (γ̄, {η̄i}li=1), if the
expected social utility function γ̄ is monotone and submodular, then any group
Nash equilibrium S = (s1, . . . , sl) ∈ S satisfies

γ̄(S) ≥ 1

1 + max
1≤i≤l

cki
γ̄(Ω).

In particular, if X1 = X2 = · · · = XN , we have

γ̄(S) ≥ 1

1 + ck∗
γ̄(Ω),

where k∗ = min1≤i≤l ki.

Remark 22 When the expected group utility function γ̄ is monotone and sub-
modular, it is easy to check that cki ∈ [0, 1], which implies that 1/(1 +
max1≤i≤l cki) ≥ 1/2.

Remark 23 When the expected group utility function γ̄ is monotone and sub-
modular, we have γ̄(S) ≥ γ̄(Ω)/(1+max1≤i≤l cki) ≥ γ̄(Ω)/(1+c). This shows
that the bound for the case with grouping is tighter than that for the case
without grouping. Of course, this is unsurprising, because grouping entails co-
operation. Moreover, under the condition that each user has the same strategy
space, the larger the value of ki, the higher the degree of cooperation, and the
tighter the lower bound.

3 Strings of Actions

In Section 2, we considered the optimization problem where the argument
of the objective function is a set of actions. Suppose the objective function
depends not only on the set of actions but also on the order of actions. We
call the argument of the objective function a string of actions. In this sec-
tion, we introduce notation and terminology for strings and string functions,
string optimization problem, performance bounds for the greedy strategy, and
applications.

Submodular Optimization Problems and Greedy Strategies: A Survey 25

3.1 Notation and Terminology

Let X be a set of all possible actions. We use A = (a1, a2, . . . , ak) (ai ∈ X) to
denote a string of actions taken over k consecutive stages. We define its length
as k, denoted by |A| = k. Note that k = 0 corresponds to the empty string,
denoted by A = ∅.

Let X∗ denote the set of all possible strings of actions. If two strings in X∗

are expressed by M = (am1 , a
m
2 , . . . , a

m
k1

) and N = (an1 , a
n
2 , . . . , a

n
k2

), we write
M = N iff k1 = k2 and ami = ani for each i = 1, 2, . . . , k1. Moreover, we define
string concatenation as M ⊕N = (am1 , a

m
2 , . . . , a

m
k1
, an1 , a

n
2 , . . . , a

n
k2

).
We write M � N if we have N = M ⊕ L for some L ∈ X∗. In this case,

we also say that M is a prefix of N . We write M ≺ N if there exists a set of
strings Li ∈ X∗ such that N = L1⊕(am1 , . . . , a

m
i1

)⊕L2⊕(ami1+1, . . . , a
m
i2

)⊕· · ·⊕
(amik−1+1, . . . , a

m
k1

)⊕ Lk. Note that ≺ is weaker than �, which means M � N
implies M ≺ N , but the converse is not necessarily true.

Similar to the definition of a polymatroid set function in Section 2.1, we
define a function from strings to real numbers, f : X∗ → R, a polymatroid
string function if

i. f(∅) = 0.
ii. f has the prefix-monotone property: ∀M,N ∈ X∗, f(M ⊕N) ≥ f(M).

iii. f has the diminishing-return property: ∀M � N ∈ X∗,∀a ∈ X, f(M ⊕
(a))− f(M) ≥ f(N ⊕ (a))− f(N).

A function f : X∗ → R is postfix monotone if

∀M,N ∈ X∗, f(M ⊕N) ≥ f(N).

Notice the difference between the prefix-monotone property and postfix-
monotone property.

Let I denote a collection of strings from X∗. The pair (X, I) is called a
string matroid (Zhang et al. 2016) if I satisfies the following properties:

i. I is non-empty;
ii. Hereditary : ∀M ∈ I, N ≺M implies that n ∈ I;

iii. Augmentation: ∀M,N ∈ I and |M | < |N |, there exists an element x ∈ X
in the string N such that M ⊕ (x) ∈ I.

The length of the longest string in I is called the rank of (X, I). When I =
{A ∈ X∗ : |A| ≤ K}, the pair (X, I) is called a uniform string matroid of rank
K.

3.2 String Optimization Problem

In this section, we first formulate the string optimization problem and de-
fine the greedy strategy. Then we review performance bounds for the greedy
strategy under uniform string matroid constraints and general string matroid
constraints.

26 Yajing Liu 1 et al.

In a variety of problems in engineering and applied science such as sequen-
tial decision making (Littman 1996; Roijers et al. 2013), adaptive sensing (Liu
et al. 2014; Krause et al. 2008), and adaptive control (Jarvis 1975; Schlegel
et al. 2005), we are faced with optimally choosing a string (ordered set) of
actions over a finite horizon to maximize an objective function under some
constraints. We call this class of optimization problems string optimization.
For set optimization problems, the objective function is not influenced by the
order of actions. However, for string optimization problems, the objective func-
tion depends on the order of actions. Let f : X∗ → R be an objective function.
The goal is to find a string M , with the constraint M ∈ I, to maximize the
objective function:

maximize f(M), subject to M ∈ I, (28)

where X∗ denotes the set of all possible strings of actions and I is a collection
of strings from X∗.

The solution to the string optimization problems can be characterized using
dynamic programming via Bellman’s principle (Bertsekas 2005; Powell 2007).
However, dynamic programming suffers from the curse of dimensionality and
is therefore impractical for many problems of interest. Hence, we often turn to
approximation techniques. One approximation technique is the greedy strat-
egy, which is to find an action at each stage to maximize the step-wise gain
in the objective function. The performance for the greedy strategy in string
optimization problems has been investigated by Streeter and Golovin (2008),
Zhang et al. (2016), and Liu et al. (2015). And these specific results will be
reviewed in this section.

Assume that the rank of (X, I) is K. We now define optimal and greedy
strategies for problem (28) and some related notation.
Optimal String: Any string O is called an optimal solution of Problem (28)
if

O ∈ argmax
M∈I

f(M).

If f is prefix monotone, then there exists at least one optimal string of length
K, denoted by OK = (o1, . . . , oK).

Submodular Optimization Problems and Greedy Strategies: A Survey 27

Greedy Algorithm:
Input: A string matroid (X, I) of rank K, a set function f : X∗ → R, collec-
tion I, size K
Output: A string GK ∈ I
G0 ← ∅
For i = 1, . . . ,K,
1. gi ← argmax

a∈X,Gi−1⊕(a)∈I
f(Gi−1 ⊕ (a))

2. Gi ← Gi−1 ⊕ (gi)
Any output of the above algorithm is called a greedy solution. There may

exist more than one greedy solution.

3.3 Performance Bounds for Greedy Strategy

Streeter and Golovin (2008) first derived performance bounds for the greedy
strategy under uniform string matroid constraints, stated as follows.

Theorem 16 (Streeter and Golovin 2008) Let (X, I) be a uniform string ma-
troid. If f : X∗ → R is a polymatroid string function and postfix monotone,
then any greedy string GK satisfies

f(GK)

f(OK)
≥ 1−

(
1− 1

K

)K
> 1− e−1. (29)

Remark 24 The same bound holds if f satisfies f(Gi ⊕ OK) ≥ f(OK) for
i = 1, . . . ,K − 1, which is weaker than being postfix monotone.

Zhang et al. (2016) investigated performance bounds for the greedy strategy
under both uniform string matroid and general string matroid constraints by
defining the following curvatures.

The total backward curvature of f is defined as (Zhang et al. 2016)

σ := max
a∈X,M∈X∗

f((a)) 6=f(∅)

{
1− f((a)⊕M)− f(M)

f((a))− f(∅)

}
. (30)

When f is postfix monotone and diminishing return, we have 0 ≤ σ ≤ 1. The
total backward curvature is an upper bound on the second-order difference,
over all possible actions a and strings M . Next, Zhang et al. (2016) defined
the total backward curvature of f with respect to the optimal string OK by

σ(OK) := max
N∈X∗,0<|N |≤K

f(N)6=f(∅)

{
1− f(N ⊕OK)− f(OK)

f(N)− f(∅)

}
. (31)

When f is postfix monotone and string submodular, it is easy to prove that
0 ≤ σ(O) ≤ σ ≤ 1.

28 Yajing Liu 1 et al.

Theorem 17 (Zhang et al. 2016) Let (X, I) be a uniform string matroid of
rank K. If f : X∗ → R is a polymatroid string function, then any greedy string
GK satisfies

f(GK)

f(OK)
≥ 1

σ(OK)

[
1−

(
1− σ(OK)

K

)K]
>

1

σ(OK)

(
1− e−σ(OK)

)
. (32)

Moreover, if f is postfix monotone, then any greedy string GK satisfies

f(GK)

f(OK)
≥ 1

σ

[
1−

(
1− σ

K

)K]
>

1

σ

(
1− e−σ

)
. (33)

Remark 25 When f is polymatroid and postfix monotone, we have 0 ≤ σ ≤ 1
by (30). So we have (1−(1− σ/K)

K
)/σ ≥ 1−(1−1/K)K and (1−e−σ)/σ > 1−

e−1, which implies that Theorem 17 provides better bounds than Theorem 16.

Theorem 18 (Zhang et al. 2016) Let (X, I) be a string matroid. If f : X∗ →
R is a polymatroid string function, then any greedy string GK satisfies

f(GK)

f(OK)
≥ 1

1 + σ(OK)
. (34)

Moreover, if f is postfix monotone, then any greedy string GK satisfies

f(GK)

f(OK)
≥ 1

1 + σ
. (35)

From Theorems 16 and 17, we can see that all the sufficient conditions
obtained so far involve strings of length greater than K, even though (28)
involves only strings up to length K. Liu et al. (2015) derived sufficient con-
ditions, which only involve strings of length at most K, to have the same
bounds hold for uniform string matroid constraints, by defining the following
conditions.

A function f : X∗ → R is K-polymatroid if

i. f(∅) = 0.
ii. f is K-monotone: ∀M,N ∈ X∗, and |M |+ |N | ≤ K, f(M ⊕N) ≥ f(M).
iii. f is K-diminishing: ∀M � N ∈ X∗ and |N | ≤ K − 1, ∀a ∈ X, f(M ⊕

(a))− f(M) ≥ f(N ⊕ (a))− f(N).

Let GK = (g1, . . . , gK) and ŌK−i = (oi+1, . . . , oK) for i = 1, . . . ,K. Then,
f is K-GO-concave (Liu et al. 2015) if for 1 ≤ i ≤ K − 1,

f(Gi ⊕ ŌK−i) ≥
i

K
f(Gi) +

(
1− i

K

)
f(OK).

Theorem 19 (Liu et al. 2015) Let (X, I) be a uniform string matroid. If f
is K-polymatroid, then any greedy string satisfies

f(GK)

f(OK)
≥

[
1−

(
1− 1

K

)K]
> (1− e−1).

Submodular Optimization Problems and Greedy Strategies: A Survey 29

By defining the curvature η,

η = max
1≤i≤K−1

{
Kf(Gi)− (Kf(Gi ⊕ ŌK−i)− (K − i)f(OK))

(K − i)f(Gi)

}
,

Liu et al. (2015) derived more general performance bounds in terms of the
curvature.

Theorem 20 (Liu et al. 2015) Let (X, I) be a uniform string matroid. If f
is K-polymatroid and K-GO-concave, then any greedy string satisfies

f(GK)

f(OK)
≥ 1

η

[
1−

(
1− η

K

)K]
>

1

η
(1− e−η).

Remark 26 If f is K-GO-concave, then we have 0 ≤ η ≤ 1.

Examples: We again consider the task assignment problem and adaptive
sensing problem from Section 2.4 to give some sufficient conditions on the
parameters of the problems to achieve the performance bound (1−(1−1/K)K).

Task Assignment Problem: We use pji (a) to denote the probability of
accomplishing subtask i at stage j when it is assigned to agent a ∈ X. Let aj
be the index of the agent selected at stage j, the objective function f becomes

f((a1, . . . , ak)) =
1

n

n∑
i=1

1−
k∏
j=1

(
1− pji (aj)

) .

For simplicity, we consider the case of n = 1 (our results can easily be gener-
alized to the case where n > 1). For n = 1, the objective function f reduces
to

f((a1, . . . , ak)) = 1−
k∏
j=1

(1− pj1(aj)), (36)

and from here on we simply use pj(aj) in place of pj1(aj).
Note that the value of f depends on the order of the agents selected over

time when the probabilities vary from stage to stage. In other words, sup-
pose that we have two agents, Alice and Bob. Then, in general, p1(Alice) 6=
p2(Alice), p1(Bob) 6= p2(Bob), p1(Alice) 6= p1(Bob), and p2(Alice) 6= p2(Bob).
Therefore, f((Alice,Bob)) 6= f((Bob,Alice)).

It is easy to check that f is K-monotone and f(∅) = 0.
Assume that pj(a) ∈ [L(a), U(a)], where L(a) = minj p

j(a) and U(a) =
maxj p

j(a). By Zhang et al. (2016), a sufficient condition for f to be dimin-
ishing return is

p1(g1) ≥ 1− cK , (37)

where

c = min
a∈A

1− U(a)

1− L(a)
.

30 Yajing Liu 1 et al.

Let Û = maxa U(a) and L̂ = mina L(a). By Liu et al. (2015), a sufficient
condition for f to be K-diminishing is

L̂ ≥ (1− L̂)Û , (38)

and a sufficient condition for K-GO-concavity is

L̂ ≥ 1

2
. (39)

When all pj(aj) ≥ 1/2, then (39) and (38) automatically hold, but (37) is
not necessarily satisfied. In that sense, the K-monotone, K-diminishing, and
K-Go concavity conditions of Theorem 19 are weaker sufficient conditions for
achieving the bound (1 − (1 − 1

K)K) than the prefix monotone, diminishing-
return, and postfix monotone conditions of Theorem 16.

Adaptive Sensing: Consider the situation where the additive noise set
is independent but not identically distributed. Assume that wi is a Gaussian
vector with mean zero and covariance σiI, where I denotes the identity matrix.
Recall the problem formulation in Section 2.4. The objective function f for
this problem is as follows:

f((B1, . . . , Bk)) =
1

2
(log det(P0)− log det(Pk)).

where P0 = I and for 1 ≤ j ≤ k − 1,

Pj =

(
P−1
j−1 +

1

σ2
j

BTj Bj

)−1

.

From the expression above, it is easy to check that the order of B1, . . . , Bk
influences the objective function value under the assumption that σ1, . . . , σk
take different values. For example,

f((A,B)) =
1

2
log det

(
I +

1

σ2
1

ATA+
1

σ2
2

BTB

)
and

f((B,A)) =
1

2
log det

(
I +

1

σ2
1

BTB +
1

σ2
2

ATA

)
.

If σ1 6= σ2, then f((A,B)) 6= f((B,A)).
By Liu et al. (2015), some sufficient conditions for f to be K-polymatroid

and K-GO-concave are
σ2
i+1 ≥ σ2

i (40)

for i = 1, . . . ,K − 1.
By Zhang et al. (2016), to achieve the bound (1− (1− 1/K)K), it requires

both (40) and
b−2

a−2 − b−2
≥ (K − 1)2(a−2 + b−2) + 1,

where [a, b] is the interval that contains all the σi’s.
Comparing the sufficient conditions for achieving the same bound (1 −

(1 − 1/K)K) from Liu et al. (2015) and Zhang et al. (2016), we see that the
conditions from Liu et al. (2015) are weaker.

Submodular Optimization Problems and Greedy Strategies: A Survey 31

4 Final Remarks

In this survey, we considered two classes of submodular maximization prob-
lems: set submodular maximization and string submodular maximization. For
set submodular optimization, we reviewed performance bounds for the greedy
strategy under matroid constraints, improved performance bounds, and per-
formance bounds for the batched greedy strategy. There are many important
results about performance of the greedy strategy under some other constraints
and conditions. Wolsey (1982), Sviridenko (2004), and Kulik et al. (2009) de-
rived performance bounds for the greedy strategy in submodular maximiza-
tion problems subject to a knapsack constraint and multiple linear constraints.
Bian et al. (2017) established performance bounds for the greedy strategy in
monotone but nonsubmodular maximization problems under uniform matroid
constraints. People also investigated performance bounds for some variations
of greedy strategies. Calinescu et al. (2011) and Feldman et al. (2011) derived
performance bounds for a randomized continuous greedy algorithm and a uni-
fied continuous greedy algorithm in monotone submodular maximization prob-
lems, respectively. Buchbinder et al. (2012) established performance bounds
for an adaptive greedy algorithm in unconstrained submodular maximization
problems. They also derived performance bounds for randomized greedy al-
gorithms in nonmonotone submodular maximization problems (Buchbinder
et al. 2014). Mirzasoleiman et al. (2016) considered submodular maximization
problems in a distributed fashion, and they derived performance bounds for a
two-stage greedy algorithm under matroid or knapsack constraints. Qu et al.
(2015) proposed a distributed greedy strategy and showed that it has the same
guarantee as the centralized greedy strategy.

For string submodular optimization problems, we reviewed performance
bounds for the greedy strategy under matroid constraints. There are some
related results on performance bounds for greedy strategies in string submod-
ular maximization problems that were not reviewed in this paper. For example,
Golovin and Krause (2001) considered a particular class of partially observ-
able adaptive stochastic optimization problems, and established performance
bounds for the greedy strategy by introducing the notion of adaptive submod-
ularity. Tschiatschek et al. (2017) derived performance bounds for a modified
greedy strategy in submodular string optimization problems under uniform
string matroid constraints.

The scope of this study is limited to the performance of the greedy strate-
gies in deterministic optimization problems where the objective function only
involves actions. Potentially fruitful areas for further research include per-
formance bounds for the greedy strategy in stochastic optimization problems,
where the objective function involves states and control actions, and real-world
applications of the performance bounds in the deterministic and stochastic set-
tings.

32 Yajing Liu 1 et al.

References

Ahmed, S., and A. Atamtürk, 2011: Maximizing a class of submodular utility
functions. Math Program, 128, 149–169.

Arslan, G., J. R. Marden, and J. S. Shamma, 2007: Autonomous vehicle-target
assignment: a game-theoretical formulation. J Dyn Syst Meas Control, 129,
584–596.

Badanidiyuru, A., B. Mirzasoleiman, A. Karbasi, and A. Krause, 2014: Stream-
ing submodular maximization: massive data summarization on the fly. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, 671–680.

Bator, F. M., 1957: The simple analytics of welfare maximization.
Am Econ Rev, 47, 22–59.

Bertsekas, D. P., 2005: Dynamic programming and optimal control. 3rd ed.,
Athena Scientific.

Bian, A. A., J. M. Buhmann, A. Krause, and S. Tschiatschek, 2017: Guarantee
for greedy maximization of non-submodular functions with applications. In:
Proceedings of the 34th International Conference on Machine Learning, 498–
507.

Boros, E., K. Elbassioni, and L. Khachiyan, 2003: An inequality for polyma-
troid functions and its applications. Discrete Appl Math, 131, 255–281.

Buchbinder, N., M. Feldman, J. Naor, and R. Schwartz, 2012: A tight lin-
ear time (1/2)-approximation for unconstrained submodular maximization.
SIAM J Comput, 44, 255–281.

Buchbinder, N., M. Feldman, J. Naor, and R. Schwartz, 2014: Submodular
maximization with cardinality constraints. In: Proceedings of the 25th an-
nual ACM-SIAM symposium on Discrete Algorithms, 1433–1452.

Calinescu, G., C. Chekuri, M. Pál, and J. Vondrák, 2011: Maximizing a sub-
modular set function subject to a matroid constraint. SIAM J Comput, 40,
1740–1766.

Church, R., and C. R. Velle, 1974: The maximal covering location problem.
Pap Reg Sci, 32, 101–118.

Clark, A., and R. Poovendran, 2011: A submodular optimization framework
for leader selection in linear multi-agent systems. In: Proceedings of the 50th
IEEE Conference on Control and Decision and European Control Confer-
ence, 3614–3621.

Cohen, R., L. Katzir, and D. Raz, 2006: An efficient approximation for the
generalized assignment problem. Inf Process Lett, 100, 162–166.

Conforti, M., and G. Cornuéjols, 1984: Submodular set functions, matroids and
the greedy algorithm: tight worst-case bounds and some generalizations of
the Rado-Edmonds theorem. Discrete Appl Math, 7, 251–274.

Cornuéjols, G., M. L. Fisher, and G. L. Nemhauser, 1977: Location of bank
accounts to optimize float: an analytic study of exact and approximate al-
gorithms. Manag Sci, 23, 789–810.

Cunningham, W. H., 1986: Improved bounds for matroid partition and inter-
section algorithms. SIAM J Comput, 15, 948–957.

Submodular Optimization Problems and Greedy Strategies: A Survey 33

Edmonds, J., 1966: Matroids and the greedy algorithm. In: Proceedings of the
International Symposium on Mathematical Programming, 93–117.

Edmonds, J., 1970: Submodular functions, matroids, and certain polyhedra.
Combin Structures and Their Appl, 69–87.

Edmonds, J., and D. R. Fulkerson, 1965: Transversals and matroid partition.
J Res Nat Bur Stand, 69B, 147–153.

Feldman, M., J. Naor, and R. Schwartz, 2011: A unified continuous greedy
algorithm for submodular maximization. In: Proceedings of the 52nd IEEE
Annual Symposium on Foundations of Computer Science, 570–579.

Fisher, M. L., G. L. Nemhauser, and L. A. Wolsey, 1978: An analysis of ap-
proximations for maximizing submodular set functions–II. Math Prog Study,
8, 73–87.

Fleischer, L., M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, 2006: Tight
approximation algorithms for maximum general assignment problems. In:
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithm, 611–620.

Goemans, M. X., and D. P. Williamson, 1995: Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidefinite
programming. J ACM, 42, 1115–1145.

Golovin, D., and A. Krause, 2001: Adaptive submodularity: theory and ap-
plications in active learning and stochastic optimization. J Artif Intell Res,
42, 427–486.

Hausmann, D., B. Korte, and T. A. Jenkyns, 1980: Worst case analysis of
greedy type algorithms for independence systems. Math Program Stud, 12,
120–131.

He, J., M. Bresler, M. Chiang, and J. Rexford, 2007: Towards robust multi-
layer traffic engineering: optimization of congestion control and routing.
IEEE J Sel Area Comm, 25, 868–880.

Jarvis, R. A., 1975: Optimization strategies in adaptive control: a selective
survey. IEEE Trans Syst Man Cybern, SMC-5, 83–94.

Kapralov, M., I. Post, and J. Vondrák, 2013: Online submodular welfare maxi-
mization: greedy is optimal. In: Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, 1216–1225.

Khuller, S., A. Moss, and J. Naor, 1999: The budgeted maximum coverage
problem. Inf Process Lett, 70, 39–45.

Knuth, D. E., 1973: Matroid partitioning. Technical Report, STAN-CS-73-342,
Stanford University.

Korula, N., V. S. Mirrokni, and M. Zadimoghaddam, 2015: Online submodular
welfare maximization: greedy beats 1/2 in random order. In: Proceedings of
the 47th Annual Symposium on Theory of Computing, 889–898.

Krause, A., and D. Golovin, 2012: Submodular function maximization.
Tractability: Practical Approaches to Hard Problems, 3, 19.

Krause, A., A. Singh, and C. Guestrin, 2008: Near-optimal sensor placements
in Gaussian processes: theory, efficient algorithms and empirical studies. J
Mach Learn Res, 9, 235–284.

34 Yajing Liu 1 et al.

Kulik, A., H. Shachnai, and T. Tamir, 2009: Maximizing submodular set func-
tions subject to multiple linear constraints. In: Proceedings of the 20th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 545–554.

La, R. J., and V. Anantharam, 2002: Utility-based rate control in the internet
for elastic traffic. IEEE/ACM Trans Netw, 10, 272–286.

Li, Y., K. L. W., E. K. P. Chong, and K. N. Groom, 2009: Approximate
stochastic dynamic programming for sensor scheduling to track multiple
targets. Digit Signal Process, 19, 533–545.

Lin, H., and J. Bilmes, 2011: A class of submodular functions for document
summarization. In: Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language Technologies, 510–
520.

Littman, M. L., 1996: Algorithms for sequential decision making. Technical
Report, CS–96–09.

Liu, E., E. K. P. Chong, and L. L. Scharf, 2014: Greedy adaptive linear com-
pression in signal-plus-noise models. IEEE Trans Inf Theory, 60, 2269–2280.

Liu, Y., E. K. P. Chong, and A. Pezeshki, 2015: Bounding the greedy strat-
egy in finite-horizon string optimization. In: Proceedings of the 54th IEEE
Conference on Decision and Control, 3900–3905.

Liu, Y., E. K. P. Chong, and A. Pezeshki, 2018a: Extending polymatroid set
functions with curvature and bounding the greedy strategy. In: 2018 IEEE
Statistical Signal Processing Workshop, 318–322.

Liu, Y., E. K. P. Chong, and A. Pezeshki, 2018b: Performance bounds for
Nash equilibria in submodular utility systems with user groups. J Control
Decision, 5, 1–18.

Liu, Y., E. K. P. Chong, and A. Pezeshki, 2019: Improved bounds for the
greedy strategy in optimization problems with curvature. J Comb Optim,
37, 1126–1149.

Liu, Y., Z. Zhang, E. K. P. Chong, and A. Pezeshki, 2018c: Performance
bounds for the k-batch greedy strategy in optimization problems with cur-
vature. In: Proceedings of 2016 American Control Conference, 7177–7182.

Liu, Y., Z. Zhang, E. K. P. Chong, and A. Pezeshki, 2018d: Performance
bounds with curvature for batched greedy optimization. J Optim Theory
Appl, 177, 535–562.

Lovász, L., 1983: Submodular functions and convexity. Math Program, 235–
257.

Mirzasoleiman, B., A. Karbasi, and A. Krause, 2017: Deletion-robust submod-
ular maximization: data summarization with “the right to be forgotten”. In:
Proceedings of the 34th International Conference on Machine Learning, 70,
2449–2458.

Mirzasoleiman, B., A. Karbasi, A. Sarkar, and A. Krause, 2016: Distributed
submodular maximization. J Mach Learn Res, 17 (238), 1–44.

Nash, J., 1951: Non-cooperative games. Ann Math, 54, 286–295.
Nauss, R. M., 2003: Solving the generalized assignment problem: an optimizing

and heuristic approach. INFORMS J Comput, 15, 249–266.

Submodular Optimization Problems and Greedy Strategies: A Survey 35

Nemhauser, G. L., L. A. Wolsey, and M. L. Fisher, 1978: An analysis of ap-
proximations for maximizing submodular set functions–I. Math Program,
14, 265–294.

Paar, C., and J. Pelzl, 2010: Understanding cryptography: a textbook for stu-
dents and practitioners. Springer.

Palomar, D. P., and M. Chiang, 2007: Alternative distributed algorithms for
network utility maximization: framework and applications. IEEE Trans Au-
tom Control, 52, 2254–2269.

Powell, W. B., 2007: Approximate dynamic programming: solving the curses
of dimensionality. New York: Wiley.

Qu, G., D. Brown, and N. Li, 2015: Distributed greedy algorithm for satellite
assignment problem with submodular utility function. IFAC-PapersOnLine,
48, 258–263.

Roijers, D. M., P. Vamplew, S. Whiteson, and R. Dazeley, 2013: A survey of
multi-objective sequential decision-making. J Artif Intell Res, 48, 67–113.

Rowaihy, H., S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy, T. Brown, and
T. L. Porta, 2007: A survey of sensor selection schemes in wireless sensor
networks. In: Proceedings of SPIE 6562, Unattended Ground, Sea, and Air
Sensor Technologies and Applications.

Sahni, S., and T. Gonzalez, 1976: P -complete approximation problems. J
ACM, 23, 555–565.

Schlegel, M., K. Stockmann, T. Binder, and W. Marquardt, 2005: Dynamic
optimization using adaptive control vector parameterization. Comput Chem
Eng, 29, 1731–1751.

Shmoys, D. B., and É. Tardos, 1993: An approximation algorithm for the
generalized assignment problem. Math Program, 62, 461–474.

Streeter, M., and D. Golovin, 2008: An online algorithm for maximizing sub-
modular functions. In: Proceedings of Advances in Neural Information Pro-
cessing Systems 21, 1577–1584.

Sun, X., C. G. Cassandras, and X. Meng, 2017: A submodularity-based ap-
proach for multi-agent optimal coverage problem. In: Proceedings of the 56th
IEEE Conference on Control and Decision, 4082–4087.

Sviridenko, M., 2004: A note on maximizing a submodular set function subject
to a knapsack constraint. Oper Res Lett, 32 (1), 41 – 43.

Tschiatschek, S., A. Singla, and A. Krause, 2017: Selecting sequences of items
via submodular maximization. In: Proceedings of the 31st AAAI Conference
on Artificial Intelligence, 2667–2673.

Vetta, A., 2002: Nash equilibrium in competitive societies, with applications
to facility location, traffic routing and auctions. In: Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, 416–425.

Vondrák, J., 2008: Optimal approximation for the submodular welfare prob-
lem in the value oracle model. In: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, 67–74.

Wang, Z., B. Moran, X. Wang, and Q. Pan, 2014: Approximation for maximiz-
ing monotone non-decreasing set functions with a greedy method. J Comb
Optim, 31, 29–43.

36 Yajing Liu 1 et al.

Wolsey, L. A., 1982: Maximising real-valued submodular functions: primal and
dual heuristics for location problems. Math Oper Res, 7, 410–425.

Zhang, Z., E. K. P. Chong, A. Pezeshki, and W. Moran, 2016: String submod-
ular functions with curvature constraints. IEEE Trans Autom Control, 61,
601–616.

	1 Introduction
	2 Sets of Actions
	3 Strings of Actions
	4 Final Remarks

