Skip to main content

Advertisement

Log in

Contradictions in mathematical modeling with digital technologies

  • Published:
Education and Information Technologies Aims and scope Submit manuscript

Abstract

This article presents an analysis of contradictions expressed by pre-service mathematics teachers when performing two modeling tasks using their own technological devices. The study is based on theoretical aspects of contradictions in the fields of expansive learning and modeling with digital technologies. Technology and modeling tasks were designed and tested with 14 participants in a mathematical modeling course offered to pre-service teachers in a Colombian university. Linguistic cues were used to carry out a thematic analysis for identifying contradictions in discursive manifestations. The results show how specific contradictions in modeling processes with technology are manifested by students and the kind of transformations they promote, as well as the changes that occur in how tasks are performed, and how students develop an idea of technology that goes beyond its traditional conception as a tool. The findings show the influence of other activity systems on the development of these processes and the need for future studies in learning research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Available per request.

Code availability

Not available.

References

  • Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática. Contexto.

  • Blum, W. (2015). Quality teaching ofmathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The Proceedings ofthe 12th International Congress on Mathematical Education (pp. 73–96). Springer International Publishing. https://doi.org/10.1007/978-3-319-12688-3_9

  • de Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking. Springer. https://doi.org/10.1007/b105001

    Book  MATH  Google Scholar 

  • Cifuentes, J. C., & Negrelli, L. (2012). Uma Interpretação Epistemológica do Processo de Modelagem Matemática: implicações para a matemática. Bolema: Boletim de Educação Matemática, 26(43), 791–815. https://doi.org/10.1590/S0103-636X2012000300003

  • Confrey, J. (2007). Epistemology and modelling—overview. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 125–128). Springer. https://doi.org/10.1007/978-0-387-29822-1_10.pdf

  • Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Orienta-Konsultit.

    Google Scholar 

  • Engestrom, Y. (2015). Learning by expanding. Learning by expanding: An activity-theoretical approach to developmental research (Second Edition). Cambridge University Press. https://doi.org/10.1017/CBO9781139814744

  • Engeström, Y. (1999). Communication, discourse and activity. The Communication Review, 3(1–2), 165–185. https://doi.org/10.1080/10714429909368577

    Article  Google Scholar 

  • Engeström, Y. (2000). From individual action to collective activity and back: developmental work research as an interventionist methodology. In P. Luff, J. Hindmarsh, & C. Heath (Eds.), Workplace studies (pp. 150–166). Cambridge University Press. https://doi.org/10.1017/cbo9780511628122.008

    Chapter  Google Scholar 

  • Engeström, Y., Rantavuori, J., & Kerosuo, H. (2013). Expansive learning in a library: Actions, cycles and deviations from instructional intentions. Vocations and Learning, 6(1), 81–106. https://doi.org/10.1007/s12186-012-9089-6

    Article  Google Scholar 

  • Engeström, Y., & Sannino, A. (2010). Studies of expansive learning: Foundations, findings and future challenges. Educational Research Review, 5(1), 1–24. https://doi.org/10.1016/j.edurev.2009.12.002

    Article  Google Scholar 

  • Engeström, Y., & Sannino, A. (2011). Discursive manifestations of contradictions in organizational change efforts: A methodological framework. Journal of Organizational Change Management, 24(3), 368–387. https://doi.org/10.1108/09534811111132758

    Article  Google Scholar 

  • Galleguillos, J., & Borba, M. C. (2018). Expansive movements in the development of mathematical modeling: Analysis from an activity theory perspective. ZDM Mathematics Education, 50(1–2), 129–142. https://doi.org/10.1007/s11858-017-0903-3

  • Gedera, D. S. P. (2016). The application of activity theory in identifying contradictions in a university blended learning course. In D. S. P. Gedera & P. J. Williams (Eds.), Activity theory in education (pp. 53–69). SensePublishers. https://doi.org/10.1007/978-94-6300-387-2_4

    Chapter  Google Scholar 

  • Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling – overview. In G. Kaiser, W. Blum, R. Borromeo Ferri, G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling, ICTMA 14 (pp. 301–304). Springer. https://doi.org/10.1007/978-94-007-0910-2_30

  • Greefrath, G., & Vorhölter, K. (2016). Teaching and learning mathematical modelling: Approaches and developments from German speaking countries (pp. 1–42). Springer International Publishing. https://doi.org/10.1007/978-3-319-45004-9_1

    Book  Google Scholar 

  • Guacaneme-Suárez, E. A., Obando-Zapata, G., Garzón, D., & Villa-Ochoa, J. A. (2017). Colombia: Mathematics education and the preparation of teachers. Consolidating a professional and scientific field. In A. Ruiz (Ed.), Mathematics teacher preparation in central America and the Caribbean (pp. 19–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-44177-1_2

    Chapter  Google Scholar 

  • Souto, D.L.P. (2014). Transformações expansivas na produção matemática online. Cultura Acadêmica. Retrieved from https://repositorio.unesp.br/handle/11449/126237. Accessed 27 Sept 2018

  • Lei, J., Luo, P. H., Wang, Q., Shen, J., Lee, S., & Chen, Y. (2016). Using technology to facilitate modeling-based science education: Lessons learned from a meta-analysis of empirical research. Journal of Educational Technology Development and Exchange (JETDE), 9(2), art.4. https://doi.org/10.18785/jetde.0902.04

  • Lektorsky, V. A. (2009). Mediation as a Means of Collective Activity. In A. Sannino, H. Daniels, & K. D. Gutierrez (Eds.), Learning and Expanding with Activity Theory (pp. 75–87). Cambridge University Press. https://doi.org/10.1017/CBO9780511809989.006

  • Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy (1st ed.). The University of Chicago Press.

    Google Scholar 

  • Molina-Toro, J. F., Rendón-Mesa, P. A., & Villa-Ochoa, J. A. (2019). Research trends in digital technologies and modeling in mathematics education. Eurasia Journal of Mathematics, Science and Technology Education, 15(8), em1736. 

  • Molina-Toro, J. F., Villa-Ochoa, J. A., & Suárez-Téllez, L. (2018). La modelación en el aula como un ambiente de experimentación-con-graficación-y-tecnología. Un estudio con funciones trigonométricas. Revista Latinoamericana de Etnomatemática, 11(1), 87–115. Retrieved from http://revista.etnomatematica.org/index.php/RevLatEm/article/view/506. Accessed 1 Oct 2018

  • Mwalongo, A. I. (2016). Using activity theory to understand student teacher perceptions of effective ways for promoting critical thinking through asynchronous discussion forums. In D. S. P. Gedera & P. J. Williams (Eds.), Activity theory in education (pp. 19–34). SensePublishers. https://doi.org/10.1007/978-94-6300-387-2_2

    Chapter  Google Scholar 

  • Pereira, R., Seki, J., Palharini, B., Neto, J., Silva, A., Damin, W., & Martins, B. (2017). Modelagem matemática e tecnologias digitais educacionais: Possibilidades e aproximações por meio de uma revisão sistemática de literatura. REnCiMa, 8(2), 80–94.

    Article  Google Scholar 

  • Perrenet, J., & Zwaneveld, B. (2012). The many faces of the mathematical modeling cycle. Journal of Mathematical Modelling and Application, 1(6), 3–21.

    Google Scholar 

  • Possani, E., Trigueros, M., Preciado, J. G., & Lozano, M. D. (2010). Use of models in the teaching of linear algebra. Linear Algebra and Its Applications, 432(8), 2125–2140. https://doi.org/10.1016/j.laa.2009.05.004

    Article  MATH  Google Scholar 

  • Rodríguez Gallegos, R., & Quiroz Rivera, S. (2016). El papel de la tecnología en el proceso de modelación matemática para la enseñanza de las ecuaciones diferenciales. Revista Latinoamericana de Investigación En Matemática Educativa, 19(1), 99–124. https://doi.org/10.12802/relime.13.1914

    Article  Google Scholar 

  • Romo-Vázquez, A., Barquero, B., & Bosch, M. (2019). El desarrollo profesional online de profesores de matemáticas en activo: una unidad de aprendizaje sobre la enseñanza de la modelización matemática. Uni-pluriversidad, 19(2), 161–183. https://doi.org/10.17533/udea.unipluri.19.2.09

    Article  Google Scholar 

  • Rosa, M., & Orey, D. C. (2019). Mathematical modelling as a virtual learning environment for teacher education programs. Uni-pluriversidad, 19(2), 80–102. https://doi.org/10.17533/udea.unipluri.19.2.04

  • Siller, H.-St., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (CERME 6), January 28–February 1, 2009, Lyon (France)

  • Soares, D. S., & Borba, M. C. (2014). The role of software Modellus in a teaching approach based on model analysis. ZDM - International Journal on Mathematics Education, 46(4), 575–587. https://doi.org/10.1007/s11858-013-0568-5

  • de Vries, M. J. (2016). Teaching about Technology. An Introduction to the Philosophy of Technology for Non-philosophers. Springer International Publishing. https://doi.org/10.1007/978-3-319-32945-1

  • Villa-Ochoa, J. A., Castrillón-Yepes, A., & Sánchez-Cardona, J. (2017). Tipos de tareas de modelación para la clase de matemáticas. Espaço Plural, 18(36), 219–251.

    Google Scholar 

  • Williams, J., & Goos, M. (2012). Modelling with mathematics and technologies. In M. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 549–569). Springer New York. https://doi.org/10.1007/978-1-4614-4684-2_18

    Chapter  Google Scholar 

  • Yamagata-Lynch, L. C. (2010). Activity systems analysis methods. Springer US. https://doi.org/10.1007/978-1-4419-6321-5

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Daise Lago Pereira Souto, professor Universidade do Estado de Mato Grosso-Brazil for her comments as we were preparing this paper. This research was funded by the doctoral scholarship program of MinCiencias-Colfuturo (announcement 785)-Colombia.

Funding

Doctoral scholarship program of MinCiencias-Colombia (announcement 785).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to the manuscript.

Corresponding author

Correspondence to Jhony Alexander Villa-Ochoa.

Ethics declarations

Conflicts of interest/competing interests

We have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Toro, J.F., Rendón-Mesa, P.A. & Villa-Ochoa, J.A. Contradictions in mathematical modeling with digital technologies. Educ Inf Technol 27, 1655–1673 (2022). https://doi.org/10.1007/s10639-021-10676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10639-021-10676-z

Keywords

Navigation