
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Article scientifique Article 2022 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Game design and didactic transposition of knowledge. The case of progo,

a game dedicated to learning object-oriented programming

Djelil, Fahima; Sanchez, Eric

How to cite

DJELIL, Fahima, SANCHEZ, Eric. Game design and didactic transposition of knowledge. The case of

progo, a game dedicated to learning object-oriented programming. In: Education and information

technologies, 2022. doi: 10.1007/s10639-022-11158-6

This publication URL: https://archive-ouverte.unige.ch//unige:161982

Publication DOI: 10.1007/s10639-022-11158-6

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:161982
https://doi.org/10.1007/s10639-022-11158-6

Vol.:(0123456789)

Education and Information Technologies
https://doi.org/10.1007/s10639-022-11158-6

1 3

Game design and didactic transposition of knowledge.
The case of progo, a game dedicated to learning
object‑oriented programming

Fahima Djelil1 · Eric Sanchez2

Received: 2 December 2021 / Accepted: 1 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Game based-learning have been widely promoted to overcome the difficulties
encountered by beginners to learn programming. However, there are many issues
to address for the implementation of game-based learning. Indeed, game-based
learning is not limited to adding game elements such as rewards to a learning
situation, but it rather consists of transforming the learning situation so that it
becomes playful. This work contributes to computer science education research,
especially to game design for learning programming. We design a novel envi-
ronment dedicated to learning object-oriented programming for beginners called
Progo. It is based on a metaphor of a three-dimensional (3D) construction and
animation game. We present an a priori analysis of the Progo environment on the
basis of a didactic transposition framework. The framework highlights the ludi-
cisation and metaphorisation process by which educational content is integrated
into the game. This allows for the analysis of the transformation of the computing
knowledge by the game design, and to verify whether analogies are maintained
between the knowledge and what the learner should experience through play. This
work contributes to a framework for the integration of educational content during
learning game design.

Keywords Game design · Didactic transposition · Metaphors · Ludicisation ·
Programming Learning · Progo

 * Fahima Djelil
 fahima.djelil@imt-atlantique.fr

 Eric Sanchez
 eric.sanchez@unige.ch

1 IMT Atlantique, Lab-STICC, UMR CNRS 6285, Brest 29238, France
2 TECFA, University of Geneva, 40 Bd du Pont d’Arve, Geneva 1211, Switzerland

http://orcid.org/0000-0001-8449-2062
http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-022-11158-6&domain=pdf

 Education and Information Technologies

1 3

1 Introduction

Learning and teaching programming to beginners is proven to be difficult, it is
considered as one of the major challenges in computer science education (Medei-
ros et al., 2018; Bennedsen, 2008; Piteira & Costa, 2013). Recent works focused
on teaching and learning object-oriented programming, which is one of the most
difficult paradigm for beginners (Abidin & Zawawi, 2020; Abbasi et al., 2017;
Seng & Yatim, 2014; Keung et al., 2018). The main difficulty that students face,
lies in abstract basic concepts, and they struggle to understand more complex
concepts, when they cannot grasp the basics.

Previous research emphasises that a curriculum may focus on the use of con-
crete and visible objects, and games to motivate and engage students to develop
their computing competences (Webb et al., 2017). Many works on introductory
programming teaching are directed towards the use of microworlds (Michaelson,
2018; Woei et al., 2015; Costa & Miranda, 2017; Yukselturk & Altiok, 2017).
Microworlds are visual and interactive environments, that aim to help students to
understand abstract concepts through play and visible objects (Papert, 2020). For
instance, programming microworlds such as Scratch (Resnick et al., 2009), Alice
(Cooper et al., 2000) and Greenfoot (Kölling, 2009) allow students to manipulate
visible and concrete objects and create their own game scenarios, leading to play-
ful and engaging learning activities.

Game-based learning consists of offering the learner to participate in a playful sit-
uation, and to develop reflexivity towards his learning experience (Sanchez, 2019).
The design of such playful situation involves transforming a learning situation in a
way that allows the learner to adopt a playful attitude (Sanchez, 2019). This process,
called ludicisation (Genvo, 2011) is a common implementation of programming
microworlds, in which the concept of metaphor is very apparent (Djelil et al., 2016).
Indeed, metaphors allow to describe abstract concepts in a more comprehensible and
concrete way for beginners, by providing analogies from familiar domains (Lakoff
& Johnson, 2008). Through these two properties, ludicisation and metaphorisation,
microworlds provide learning experiences that aim, on the one hand, to make pro-
gramming concepts concrete to be more easily graspable by beginners, and on the
other hand, to make programming learning attractive to capture students’ attention
and increase their motivation and interest (Papert, 2020; Moskal et al., 2004).

In this paper, ludicisation and metaphorisation are approached from the per-
spective of the didactic transposition framework (Colomb, 1986), as a process
by which academic knowledge is transformed to become learning objects, allow-
ing students to learn through experience. Thus, didactic transposition serves
as a framework for game design. In this framework, ludicisation implies meta-
phorisation to reshape the concepts to be learned. This framework has been dis-
played outside the French-speaking community, and applied for the teaching of
many disciplines (Bosch & Gascón, 2006). However, existing works addressing
the question of didactic transposition relate mainly to the domain of mathemat-
ics and sciences and rarely to the domain of computer science (Hazzan et al.,
2010). Indeed, in the didactics of computer science, existing work (Orange, 1990)

1 3

Education and Information Technologies

focuses more on the analysis of learners’ skills and difficulties, than on the trans-
position of knowledge for designing learning situations.

We, therefore, contribute with this paper to the growing research in the field
of computer science education, raising questions on how to make programming
learning attractive and effective to beginners. Our work relies on the introduction
of object-oriented principles for beginners and on ludicisation for the design of a
new environment called Progo. We refer to beginners by novice students that are
introduced to basic concepts of object-oriented programming instead of advanced
concepts. Based on the didactic transposition framework, we analyse the Progo
game design, to understand how the object-oriented programming concepts are
transformed in a playful situation through a construction game metaphor, and
how the meaning of these concepts is maintained after transformation. Thus, the
research questions we address are the following: 1) How computing knowledge is
transformed by game design ? 2) To what extent analogical relations are maintained
between the computing knowledge and the concrete and visible objects ?

The purpose of this paper is threefold, both theoretical, empirical and policy rel-
evant. First, we present a theoretical model of didactic transposition for the design of
learning situations, leading students to learn through discovery and play. Then, we
apply this model to the case of Progo. This empirical work consists of an a priori
analysis of the game design, and more specifically, of how teaching knowledge is
integrated into the game. Finally, we aim to bring a broader contribution in terms
of implications for learning game design in the filed of computer science education.

In the following sections, we first trace previous work on the learning design
inherent to the objects-first approach for the introduction of object-oriented prin-
ciples for beginners, as well as on game-based programming learning. We describe
the didactic transposition model for game design which is based on the concepts of
ludicisation and metaphorisation. Then, we describe our method used to analyse and
discuss the Progo game with the lenses of the ludicisation framework. The last sec-
tions emphasize the limitations, conclusions and implications of this work.

2 Related work

2.1 Objects‑first approach for teaching object‑oriented programming
to beginners

Programming is what allows a sequence of operations to be executed on a computer.
The goal of any program is to compute and return valid and reliable results. A pro-
gram is defined as a sequence of actions that a computer must perform in a finite
time to resolve a problem (Dabancourt, 2008). These operations are called instruc-
tions and are translated into a programming language. The way a program is con-
structed constitutes a programming style or a programming paradigm.

The concepts of object and class are the basic concepts that govern the object-
oriented paradigm. A class is often defined as a structure representing a mould or
a template for the object, while the object is an embodiment, a reproducible copy
of its class (Bersini, 2017). Different approaches exist for teaching programming

 Education and Information Technologies

1 3

and the object-oriented paradigm (Roberts & et al., 2001). Objects-first approach
focuses on the fundamentals of object-oriented programming and design at the
very beginning of curriculum. It is one of the most quoted approach in the litera-
ture, reflecting its interest in practice and its potential to overcome learning and
teaching difficulties (Bennedsen, 2008; Woei et al., 2015; Michaelson, 2018; Kru-
gel & Hubwieser, 2018). For instance, searching ”objects-first approach” in the
ACM Digital Library returns 561,358 results (October, 2021).

Many authors described their experiences for the introduction of object-oriented
courses with respect to the object-first approach. The approach described by (Woodworth
& Dann, 1999) and (Adams & Frens, 2003), guides the learner for the design and the use
of programming abstractions, by modelling properties of objects used in a previous prob-
lem-solving step. (Buck & Stucki, 2000) argue on an approach that allows the students to
start by changing the computer code and later, designing parts of the object-oriented sys-
tem. Programming language concepts are introduced as needed during the problem-solv-
ing tasks. Similarly, (Becker, 2001) describes a learning scenario that consists of starting
by instantiating and using objects and then extending existing classes. Programming lan-
guage fundamentals are introduced progressively. This learning scenario includes the use
of the microworld Karel (Xinogalos et al., 2006). (Kölling & Rosenberg, 2001) suggest
a set of guidelines for teaching introductory object-oriented programming: Starting with
objects from the beginning instead of a small program in an imperative paradigm, modi-
fying existing code, reading a well-structured code, etc. This approach is implemented in
the Greenfoot microworld (Kolling, 2015).

These experiences are very similar as they do not focus on programming lan-
guages at the beginning of teaching, but rather on Object-Oriented concepts,
through problem-solving tasks using significant learning environments, such as
microworlds. This approach was further conceptualised on the basis of analysis of
more than 200 contents in the literature (Bennedsen & Schulte, 2007), allowing
the definition of three steps through which it is implemented in practice:

1. Using objects: the learner uses objects defined before programming classes. The
focus is on the use of objects before their implementation (objects interaction
introduced before methods implementation). Once the learner masters the concept
of object, he moves onto the concept of classes.

2. Creating classes: the learner defines and implements classes and creates instances of classes
(data fields and methods). The focus is on writing and using classes before algorithms. The
concept of a class is often approached in a concrete and creative programming way.

3. Concepts: the learner learns general principles of the object-oriented paradigm,
through the creation of models. The focus is on the conceptual aspects of object-
orientation. The objective is to learn to model a real world as objects and to map
these objects to classes of code.

It is worthy to consider the learning design (Brousseau, 2006) that defines the
objects-first approach to introduce the object-oriented paradigm to beginners.
Objects-first approach allows for the introduction of object-oriented programming
principles through the embedding of three categories of concepts (Djelil et al.,

1 3

Education and Information Technologies

2020). At each level, the objective is to help the beginner to focuse on a category
of concepts, while the successive ones are temporally hidden. The categories are
embedded since they encapsulate object-oriented concepts that are interdependent
(objects, classes and design principles) (Fig. 1). As a result, beginners are expected
to progressively acquire prerequisites before handling complex concepts, when they
are involved in modelling and coding object-oriented programs for problem-solving.

2.2 Game‑based programming learning

According to (Plass et al., 2015), game-based learning depends on the alignment
between the game characteristics and learning outcomes. However this issue is rela-
tively unaddressed. A meta-analysis published in 2016, highlighted only 8 articles
out of 69 that explicitly addressed this issue (Ke, 2016).

Yet, as soon as 2007, (Habgood, 2007) distinguished between games that are
described as extrinsic games, for which the game content and academic exercises
alternate (the game then appears to be a reward for having succeeded in the exer-
cise), and intrinsic games, for which the targeted knowledge is necessary to deal
with the objectives of the game. Thus, using a game-based approach to teach pro-
gramming leads to integrating educational content with playful aspects. This is what
is referred to intrinsic metaphor for a successful integration (Fabricatore, 2000).

In the field of computer science education, programming microworlds are
designed as intrinsic games, since they are based on playful learning situations
rather than game rewards. In fact popular microworlds such as Scratch (Resnick
et al., 2009), Alice (Cooper et al., 2000) and Greenfoot (Kölling, 2009) are used to
overcome difficulties in learning programming to beginners through play and meta-
phors (Djelil et al., 2016).

Fig. 1 Didactic engineer-
ing defining the objects-first
approach

 Education and Information Technologies

1 3

2.2.1 Ludicisation and programming microworlds

Ludicisation allows for the design of learning situations that foster playful attitude,
leading students to use artefacts that are not necessarily games (Genvo, 2011). Ludi-
cisation differs from gamification, which provides students with engaging activities
through rewards and positive reinforcements (Genvo, 2012). Ludicisation is thus a
way of designing playful and interactive learning situations. It is a common practice
for programming learning (Seralidou & Douligeris, 2021; Combéfis et al., 2016).

Programming microworlds also implement ludicisation, e.g. Scratch (Resnick
et al., 2009), Alice (Cooper et al., 2000) and Greenfoot (Kölling, 2009) aim, from
one hand, to allow students to develop autonomously, through personal discovery
and exploration, complex and abstract knowledge (Papert, 2020; Kafai, 2006). The
learning situation induced using these environments also involves problem-solving.
As a principle of the constructionism paradigm (Harel & Papert, 1991; Perkins,
2013), this allows for exploring a domain in a rich and meaningful way (Rieber,
1996). From another hand, the goal consists of providing students with engaging
learning situations that allow for intrinsically motivating learning activities con-
nected with learners’ expectations through play (Papert, 2020). These environments
provide meaningful experiences for learning programming, by offering students the
opportunity to design and develop their own games. They allow students to create
game scenarios by designing programs, leading to playful learning situations. Ludi-
cisation is therefore an essential design principle for programming microworlds.

2.2.2 Metaphors and programming learning

Programming microworlds use metaphors to make abstract concepts more easily
graspable by beginners (Xinogalos et al., 2006). In such environments, program-
ming concepts are experienced in a graphical scene as a narrative, an animation or
a significant phenomenon (Cooper et al., 2000; Kölling, 2009; Resnick et al., 2009).

In computer science, the most important computing concepts are funded on meta-
phors. Therefore, explicit metaphors are often used to teach beginner students how
to code computer programs (McConnell, 2004). According to (Travers, 1996), com-
putation itself is a structuring metaphor and programming models are built on meta-
phors. This includes the object-oriented paradigm, in which computational objects
are depicted metaphorically in terms of physical and social objects (Travers, 1996):
As physical objects, they have properties and state. As social objects, they commu-
nicate and interact.

Metaphors enable the formalisation and communication of new knowledge in an
understandable way for learners, and provide students with analogies that foster learn-
ing (Carroll & Mack, 1999). Indeed, metaphors make programming tangible and pro-
vide students with means to understand the abstract operations of the computer in terms
borrowed from more familiar domains (Travers, 1996). This is very useful for learning
concepts that cannot be directly perceived. In this sense, a metaphor is defined as a
way to structure and transform the knowledge from one domain through mapping con-
cepts and relations to build another domain that is already familiar. This new domain

1 3

Education and Information Technologies

is expected to enabling learning since the “essence of metaphor is understanding and
experiencing one kind of thing in terms of another” (Lakoff & Johnson, 2008).

This transformation of knowledge consists of didactic transposition. In the follow-
ing, we describe the didactic transposition framework in which programming knowl-
edge is transformed using a metaphor in the game design.

2.3 Didactic transposition and game design

Didactic transposition is defined by a process by which knowledge (academic knowl-
edge) is transformed to become learning objects (knowledge to teach) (Colomb, 1986;
Botet, 2008). The process does not only consist of the simplification of knowledge but
rather to significantly change academic knowledge to be taught and learned. Didactic
transposition is a process of deconstruction and rebuilding of academic knowledge with
the aim of making it teachable (Bosch & Gascón, 2006). This process includes two
main steps, including how the scholarly knowledge is shaped to become knowledge to
be taught, and how the teacher contextualises the knowledge to be taught into meaning-
ful learning situations.

Bonnat et al. (2022) proposed a framework as an alternative to the classical model
of didactic transposition. In this model, didactic transposition is approached from the
perspective of ludicisation and metaphors. A metaphor is an implicit analogy that oper-
ates a transfer of meaning from an abstract target domain to a concrete source domain,
in other words, it allows a target domain to be understood from a source domain. Thus,
the didactic transposition corresponds to a conversion of a target situation into a source
situation (Fig. 2). The target situation is the target abstract learning domain, and the
source situation is the concrete learning situation provided to the learner.

According to this model, learning is defined as the ability for the learner to iden-
tify analogies and relationships between the source and the target situations (Hofstadter
and Sander, 2013). The metaphor is a figurative meaning of the teaching domain. As
a result, there is an isotopy, a common meaning, between the elements of the source
situation (the game) and the elements of the target situation (the concepts to be learnt).
Nevertheless, to perceive this isotopy, the learner must follow an interpretative path that
will allow him to deconstruct the metaphor. This de-metaphorisation takes place during
the debriefing carried out by the instructor after the game session (Bonnat et al., 2022).

3 Method

In this paper, we aim to analyse the didactic transposition by which the academic
computing knowledge is contextualised in a new game-based learning environment
called Progo. This analysis is conducted from two perspectives: (1) the design inher-
ent to the objects-first approach for the introduction of object-oriented principles to
beginners, and (2) the didactic transposition with the metaphorisation and ludicisa-
tion processes that operates in the game design. Our main objective is to charac-
terise how the object-oriented concepts are transformed and reshaped in the Progo
game design and the resulting learning situation. This analysis aims to evaluate the

 Education and Information Technologies

1 3

distance between the target situation (the knowledge to be taught) and the source
situation (the game situation induced by Progo). Although several empirical studies
have been conducted to analyse the use of Progo and its learning effectiveness (Dje-
lil et al., 2015; Djelil et al., 2017; Djelil et al., 2019), we do not focus in this study
on the analysis of the learning experience, but we rather aim to analyse the game
design based on the didactic transposition model.

Our method relies, on the one hand, on an analysis of the curriculum in order
to identify the knowledge to be taught and, on the other hand, on an a priori anal-
ysis of the Progo game. This a priori analysis (Artigue, 1988), consists of deter-
mining in what way the choices made in the design of the game (didactic trans-
position) are expected to impact the learners’ behaviour and the learning process.
The a priori analysis is based on the identification of the different elements of the
game, the tasks they provide with and the knowledge mobilised by these tasks.
This analysis aims to describe the source situation and thus to characterise the
transformation of knowledge during the design of the game (RQ 1) and the ana-
logical relations between the source situation and the target situation (RQ 2).
The a priori analysis has close connections with conjecture mapping (Sandoval,
2014), a design method developed for design-based research. The close analysis
of a learning device allows for the identification of design conjectures i.e. ”con-
jectures about how to support learning in a specific context, that are themselves
based on theoretical conjectures of how learning occurs in particular domains”
(Sandoval & Bell, 2004). Design conjectures are implemented as design elements
that are expected to produce specific effects on the learning process. The a priori
analysis is performed by the authors of this article: a game-based learning scholar
and a computer science education scholar.

Fig. 2 Didactic transposition framework (Bonnat et al., 2022)

1 3

Education and Information Technologies

4 Analysis of the Progo game design

4.1 Analysis of academic curricula for teaching object‑oriented basics

In higher education and more particularly in the French educational system, com-
puter science curricula include object-oriented programming from the beginning
of cycle 1, and often during the core curricula (before specialisation, e.g. object-
oriented design and programming courses in Universities and Engineering Schools
(Roberts & et al., 2001), National Pedagogical Programme of the computer sci-
ence undergraduate degree). Computing curricula generally include courses which
are spread over several weeks, due to a large number of concepts and knowledge
to be taught. Object-oriented programming introduction courses come often after
the course “introduction to programming and algorithms”. Instructors choose to use
programming languages that are widespread in industries, such as Java and C++.
Students therefore have some programming skills, but very often they are beginners
on object-orientation and its programming languages.

According to the didactic transposition framework, the target situation consists
of the object-oriented programming basics as defined in computer science curricula.
We have analysed the academic curricula according to the objects-first approach, to
describe the target situation. We describe the object-oriented basics with respect to
the didactic engineering of the objects-first approach that embeds the fundamental
concepts within the three didactic steps: 1) using objects, 2) creating classes and
3) design principles. Table 1 lists, for each didactic step, the corresponding object-
oriented basics with respect to the academic curricula.

These programming concepts are the target learning concepts, i.e. the knowledge
to be taught (or learning outcomes). In what follows, we analyse how these concepts
are transformed and how their meaning is preserved by the analogical relationships
between the target and the source situations.

4.2 Knowledge transformation in the Progo game design

The didactic transposition framework defines a target situation and a source situa-
tion: In our context, the target situation is the object-oriented programming para-
digm (design and coding principles), the source situation is the Progo environment,
which is based on a metaphor of construction and animation (Fig. 3).

The Progo interface comprises a three-dimensional (3D) scene, which allows
the learner to design his own constructions by assembling, colouring and rotating
3D components. The interface also comprises a code editor, entirely synchronised
with the 3D scene. The learner can interact with the 3D components by viewing and
entering code. Therefore, the game-play consists in building and animating robots or
3D mechanical structures (Fig. 4).

The 3D components visible at the user interface and the interactions they provide allow
to shape object-oriented basics through metaphorisation and ludicisation. The design of
Progo embeds object-oriented concepts through three steps: 1) using objects, 2) creat-
ing classes and 3) design principles. In the following, we describe how ludicisation and

 Education and Information Technologies

1 3

metaphorisation reshape the object-oriented concepts in a meaningful and playful way,
with regard to the three didactic steps (RQ 1). We also describe the analogical relation-
ships between the source situation and the target situation (RQ 2). We first consider the

Table 1 Object-oriented fundamentals embedded within three didactic steps

Didactic step Programming concept

1) Using objects 1.1. Relationship between an object and a class: an object results from a class
instantiation.

1.2. Object characteristics: an object is characterised by attributes and methods.
1.3. Object state: attribute values and method calls.

2) Creating classes 2.1. Class role: a class allows for the description of object properties. It is a new
data type.

2.2. Class encapsulation: hiding internal data and methods from the outside of a
class.

2.3. Class constructor: function of a class that allows creating and initialising new
objects of that class.

3) Design principles 3.1. Association: relationship between classes of objects. Each Object is connected
to another, knowing its reference.

3.2. Aggregation: symmetric association between classes representing a “ensem-
ble/element” relationship. Both the entities can exist individually.

3.3. Composition: form of aggregation in which two entities are highly dependent
on each other, representing a “part-of” relationship. The composed object can not
exist without the other entity.

3.4. Inheritance: represent a relationship between classes, where an inherited class
is a subclass of its parent class or super class. An object created through inherit-
ance acquires all the properties of the super class.

Fig. 3 Didactic transposition model applied to the Progo game

1 3

Education and Information Technologies

analogy between using existing 3D components in the Progo game with the didactic step
using objects. Second, we consider the analogy between the creation of a new 3D con-
struction and the didactic step creating classes. Finally, we consider the analogy between
3D constructions with the didactic step using design principles.

4.2.1 Using existing 3D components

During the first didactic step, the learner starts with manipulating objects. As a result, he expe-
riences the following concepts: 1) The relationship between an object and its class, 2) The set-
ting object attributes, 3) The modification of attribute values and method calls (Table 1).

The Progo interface makes visible the concept of a class through a 3D graphical
model. Each time a model is instantiated, an interactive object is created. When an
object is created, its visual appearance is similar to its class.

The characteristics of an object are expressed through its appearance and behav-
iour. The appearance includes the object position (its location relatively to another
object), its colour and its rotation angle. These characteristics are the object attrib-
utes. The behaviour of an object includes the ability to be assembled with another
object to build a more complex structure, the ability to change its colour and/or the
ability to rotate for a given duration. These characteristics are object methods.

The learner can change an object appearance by modifying the values of its
attributes or making method calls. This is what defines an object state.

The learner experiences these concepts both with the 3D scene and the code edi-
tor (Fig. 5). Once the learner has finished his construction, he is invited to create a
new class with his realisation in a second phase.

4.2.2 Creating a new 3D construction

During the second didactic step, the learner moves to the concept of class, com-
prising: 1) the class role, 2) the class encapsulation, and 3) the class constructor
(Table 1).

Fig. 4 3D constructions realised by students when playing with Progo

 Education and Information Technologies

1 3

With the Progo interface, the learner can name and save each new 3D construction as
a new class which can be instantiated and visualised in the 3D scene. This new graphical
model gathers all the properties and behaviours of the objects chosen beforehand by the
learner during the previous didactic step. Therefore, the player experiences the class role.

Once a new class is created, the learner can visualise new tabs displaying two codes
in C++ programming language, the declaration of the new class (“*.hpp” file), and the
definition of this class (“*.cpp” file) in the code editor. The learner can therefore experi-
ence the concept of encapsulation by observing the codes and by trying to manipulate
new instances of this new class in a new “main()” function. The learner may notice
that some of the attributes and methods of the new class are “private” (preceded by the
keyword “private”) and others are “public” (preceded by the keyword “public”). The
learner also has the opportunity to make calls to the public methods in the “main()”
function as well as in the 3D scene, but not in the private ones.

The new class also has a constructor which allows an object to be initialised as soon it
is created. When observing the constructor code, the learner may notice that the construc-
tor is preceded by the keyword “public”, has the same name as its class, and does not have
a return type (Fig. 6).

4.2.3 3D constructions as object‑oriented systems

During the third didactic step, the learner is introduced to the design principles of
the object-oriented paradigm. In the academic curricula, this mainly comprises the
principles of association, aggregation, composition and inheritance (Table 1).

Fig. 5 Modifying attribute values and making method calls, both in the 3D scene and in the code editor

1 3

Education and Information Technologies

In the Progo environment, the building of each 3D construction uses classes of
objects which are connected to each others. Therefore, relationships between classes
of objects manipulated by students when playing, are consistent with the object-ori-
ented design principles. In this didactic step, the instructor can ask students to ana-
lyse the design principles that are illustrated in the 3D constructions.

Regarding the object-oriented paradigm, each 3D construction is an object-ori-
ented system, that can be modelled using the Unified Modeling Language (UML)
(Muller & Gaertner, 2000), which is a very widespread formalism used in the french
academic curricula to introduce object-oriented design principles. UML allows to
describe in a formal way the object-oriented relationships between the different
classes used to build a 3D construction in Progo (Fig. 7).

The classes of objects in the Progo construction game are modelled as follows:

1. The “3DConstruction” class: This class is a model of the final realisation of a
student. It is a composition (part-of relationship) of all the classes used by the
students during the game. It defines two main methods: the method “animate()”
that gathers all the animation operations programmed by the student, and the
method “reinitialise()”, that allows to set a 3D construction to its initial state.

2. Abstract classes that are not visible at the interface, but allow to model the visible ones
as graphical components having some characteristics. They are modelled as follows:

• The “3DComponent” class: models all the graphical components, having the
attribute “color”, and the methods “connect()”, and “colorForaDuration()”,
allowing respectively to connect an object to another, and to colour an object
during a period of time (animation effect).

• The class “ActiveComponent”: This class models all the graphical compo-
nents, having additional characteristics comparatively with the precedent

Fig. 6 Generated declaration code of a new class called Robot

 Education and Information Technologies

1 3

class. They are called active components since they are able to perform a
movement as a result of a rotation during a period of time. This leads to
animation effect. This class is inherited from the ”3DComponent” class,
and defines the new attribute “rotationAngle”, and the method “turnFora-
Duration()”.

3. Visible classes at the interface are classes that the students can directly manipulate
when playing (Fig 8). They are inherited from the abstract classes, either from
the class “3DComponent” such as “Base”, “Cube”, “YBifurcation” and “Spring”,
or from the class “ActiveComponent”, such as “Wheel” and “Gear”. The class
“Base” has a unique instance as a construction basis. It is visible in the 3D scene
when launching the Progo environment, inviting students to start playing.

Fig. 7 UML Class diagram modelling a Progo 3D construction

1 3

Education and Information Technologies

Finally, in addition to these different classes, the Progo construction game ena-
bles the introduction of three distinct design principles from the academic curricula
(see Table 1) :

1. Inheritance: relationships between each of the classes,

• “Base”, “Cube”, “YBifurcation”, “Spring” and “ActiveComponent” with the
class “3DComponent”.

• “Wheel” and “Gear”, with the class “ActiveComponent”.

2. Aggregation: the ensemble/element relationship between all the instances of the
class “3DComponents”, since each component is connected to each other, but
removing some components doesn’t impact others.

3. Composition: relationship between the “3DConstruction” class with the “3DCom-
ponent” class from one hand, and the “Base” class from another hand. The com-
posed 3D construction cannot exist without the composing entities.

5 Discussion

The concept of ludicisation, as a form of didactic transposition (Balacheff, 1994;
Bonnat et al., 2022), allows to distinguish between a target situation (in the sense of
a learning target), which integrates the knowledge to be taught, and a source situa-
tion (in the sense of a learning source), that refers to the learning situation in which
this knowledge is contextualised in the form of playful problems to be solved, tasks
to be carried out or even objects to be manipulated.

In our work, knowledge is integrated into a learning situation through a meta-
phor of a construction game dedicated to the creation and animation of 3D objects.
This metaphor transforms the characteristics of object-oriented programming con-
cepts (target situation), into graphical 3D objects to be manipulated in a construction
game (source situation).

The process of didactic transposition has captured the essence of the target sit-
uation similarly to a literary metaphor. Indeed, the metaphor is a refined form of
the target situation, aiming to allow learners focusing their attention on the core
concepts of this situation. In our case, the core situation comprises key concepts
of object-oriented programming (e.g. the concepts of objects, class and relationship

Fig. 8 3D graphical components representing classes of objects

 Education and Information Technologies

1 3

between the object and class are represented by visible and interactive 3D graph-
ics, which are instances of 3D graphical models, setting attribute values and making
method calls are illustrated by colouring, rotating or connecting graphics).

The construction metaphor embedded in the game is a well known and intui-
tive conceptual domain (the source situation), which is projected on the concep-
tual domain to be learned (the target situation). This allows the learner to move
from concrete and visible concepts (3D graphics and their characteristics) to more
abstract and opaque concepts (objects, classes, methods, etc.) (Botet, 2008). In other
words, the learner moves from the experience of the construction game to the com-
puting concepts to be learned.

There is an analogical relationship between the situation implied by the Progo envi-
ronment (source situation) and the object-oriented concepts (target situation). Indeed,
the construction metaphor embedded in the Progo game allows the description of
object-oriented basics in a reliable and accurate way (objects, classes and design prin-
ciples). This is in line with (Hofstadter & Sander, 2013), who assumes that learning
does not result from a purely interpretative logic, but rather from a process that leads
the learner to identify analogical relationships between different situations.

Therefore, the analysis we have carried out allow us to answer the research ques-
tions (RQ 1 and RQ 2). Contextualisation of computing knowledge in the game
Progo is a result of a transformation process, that maintained an analogical relation-
ship between the knowledge concerned and the game metaphor.

6 Limitations

This work highlights how didactic transposition operates on the design of the Progo
environment through metaphorisation and ludicisation. However, our analysis doesn’t
take into consideration the reverse process, which consists of de-metaphorisation. In
practice, this takes the form of a debriefing conducted by the teacher, also referred to
as knowledge institutionalisation (Brousseau & Balacheff, 1998). A student who plays
with Progo develops knowledge which needs to become communicable and transfer-
able to other situations. Indeed, the French language recognises a difference between
“situational knowledge” (connaissance) and “institutional knowledge” (savoir) (Plu-
mettaz-Sieber et al., 2019). A student who plays Progo develops knowledge which
is implicit, subjective and situated. For example, the concept of object is not explicit
within the Progo environment. This concept is only reflected through the tasks per-
formed by the player. It means that, although the player learns how to use an object
by playing Progo, he is not able to explain what an object is, in computing terms.
Warfield (2013) uses the expression “to be familiar with” to describe the knowledge
gained by students involved in an autonomous activity such as Progo. This situational
knowledge is not formalised and tied to a specific context (i.e, the learning context).
The transfer of this knowledge implies a transformation called institutionalisation
(Brousseau, 1997), and this occurs during debriefing (Plumettaz-Sieber et al., 2019).
Institutionalisation, relates to the change of the status of knowledge. The implicit, sub-
jective and situated knowledge becomes explicit, objective and context-free (institu-
tional knowledge). (Warfield, 2013) uses the expression “to know a fact” to stress that

1 3

Education and Information Technologies

institutionalisation consists of a metacognitive process. This transformation of knowl-
edge is under the responsibility of the teacher. During debriefing the game is over, the
players become learners, and, through questions and discussions, the concepts experi-
enced when playing the game are named, explained and validated. In addition, future
usages of the knowledge are considered. Thus, institutionalisation of knowledge and
debriefing are the counter parts of metaphorisation and ludicisation. While metaphori-
sation and ludicisation occur on the design of the game, institutionalisation occurs
during the debriefing which follows the time dedicated to play the game. However,
both processes are essential.

7 Conclusions and implications

In this paper we performed an a priori analysis of the game Progo, a new environ-
ment dedicated to learning object-oriented programming basics to beginners. Our
analysis relies on the didactic transposition framework, which allows, on the one
hand, to highlight how computing knowledge is transformed and reshaped to be
“played” as more intuitive and graspable objects, and from another hand, to verify
whether analogies between the computing knowledge and the manipulated objects
are maintained during this transformation process. The didactic transposition frame-
work allows to distinguish between a target situation (target knowledge, abstract and
opaque concepts, i.e. the object-oriented programming basics) and a source situation
(concrete and visible objects, i.e. the game play induced by Progo), and highlights
a transformation process between these two situations as a result of metaphorisation
and ludicisation process (i.e. the Progo construction and animation game metaphor).

Moreover, in order to be able to describe the target situation in a comprehensi-
ble way, we based our analysis on the objects-first approach. This approach embeds
object-oriented concepts in three didactic steps that help beginners to progressively
master the targeted concepts. This approach is part of the Progo game design and
provides a means for the description of the programming concepts as defined in
computer science curricula. An a priori analysis of the game, allowed to describe
in an effective way, how each programming concept is transformed in the game,
through a construction and animation metaphor, in terms of 3D objects and learner’s
interactions fostered by this transformation (e.g. a visible and interactive 3D com-
ponent is a metaphor of a computing object, colouring or rotating a 3D component
is a metaphor of a method call, ...). The choices made through this metaphor, aim to
trigger a play situation when learners interact with the construction game (i.e. the
source situation). This analysis showed clear analogies between the source and tar-
get situations, and the meaning of the considered concepts is maintained.

This work is a contribution to computer science didactic and game design.
Indeed, didactic transposition approached from the perspective of metaphorisation
and ludicisation, revealed a powerful tool for game design analysis in the case of
object-oriented programming learning. In addition, debriefing was identified as an
essential element in the didactic transposition process. Indeed, debriefing is the
reverse process of metaphorisation. It provides students with a means to take a step
backward after the game session and to identify the knowledge embedded in the

 Education and Information Technologies

1 3

metaphor, and, by doing so, to be able to transfer the gained knowledge to other situ-
ations. Indeed, if this paper describes the process of contextualising knowledge in
a metaphorical and playful learning situation, this process needs to be reversed by
another process that allows the conversion of subjective and implicit knowledge into
explicit knowledge. Both processes consist of important and needed transformations
of knowledge that educators should take into consideration.

This work open new perspectives for understanding how game-based learning
occurs. In particular, it motivate future work about the role of debriefing to help-
ing students to understand the analogical relationships between the source and the
target situation. For example, it could be relevant to study whether students establish
links between the object-oriented programming concepts and the properties of the
graphical objects they see and manipulate with the Progo interface, and how this
can be enhanced by debriefing. It would be also interesting to analyse to what extent
students are able to transfer what they learn to other similar situations. Indeed, we
consider that game-based learning does not only results from gaming. Game-based
learning results from a metacognitive process on the gaming experience which
allows for the transfer of knowledge.

References

Abbasi, S., Kazi, H., & Khowaja, K. (2017). A systematic review of learning object oriented program-
ming through serious games and programming approaches. In 2017 4th IEEE International Confer-
ence on Engineering Technologies and Applied Sciences (ICETAS), (pp. 1–6).

Abidin, Z. Z., & Zawawi, M. A. A. (2020). Oop-ar: Learn object oriented programming using augmented
reality. International Journal of Multimedia and Recent Innovation, 2(1), 60–75.

Adams, J., & Frens, J. (2003). Object centered design for java: teaching ood in cs-1. In Proceedings of the
34th SIGCSE technical symposium on Computer science education, (pp. 273–277).

Artigue, M. (1988). Ingénierie didactique. Recherches en didactique des mathématiques, 9(3), 281–308.
Balacheff, N. (1994). La transposition informatique. note sur un nouveau problème pour la didactique.

Vingt ans de didactique des mathématiques en France, 2, 132–138.
Becker, B. W. (2001). Teaching cs1 with karel the robot in java. In Proceedings of the thirty-second

SIGCSE technical symposium on Computer Science Education, (pp. 50–54).
Bennedsen, J. (2008). Teaching and learning introductory programming: a model-based approach.
Bennedsen, J., & Schulte, C. (2007). What does” objects-first” mean? an international study of teach-

ers’ perceptions of objects-first. In Proceedings of the Seventh Baltic Sea Conference on Computing
Education Research-Volume 88, (pp. 21–29).

Bersini, H. (2017). La programmation orientée objet. Editions Eyrolles.
Bonnat, C., Sanchez, E., Paukovics, E., & Kramar, N. (2022). Didactic transposition and learning game

design. proposal of a model integrating ludicization, and test in a school visit context in a museum.
In Didactics in a Changing World. European Perspectives on Teaching, Learning and the Curricu-
lum: EERA Book Series.

Bosch, M., & Gascón, J (2006). Twenty-five years of the didactic transposition. ICMI bulletin, 58(58),
51–65.

Botet, S. (2008). Petit traité de la métaphore, un panorama des théories modernes de la métaphore.
Presses universitaires de Strasbourg.

Brousseau, G. (1997). Theory of didactical situations in mathematics (n. balacheff, m. cooper, r. suther-
land & v. warfield: Eds. and trans). Dordrecht: Kluwer.

Brousseau, G. (2006). Theory of didactical situations in mathematics: Didactique des mathématiques,
1970–1990 (Vol. 19). Springer Science & Business Media.

Brousseau, G., & Balacheff, N. (1998). Théorie des situations didactiques: Didactique des mathématiques
1970-1990. La pensée sauvage Grenoble.

1 3

Education and Information Technologies

Buck, D., & Stucki, D. J. (2000). Design early considered harmful: graduated exposure to complexity and
structure based on levels of cognitive development. ACM SIGCSE Bulletin, 32(1), 75–79.

Carroll, J. M., & Mack, R. L. (1999). Metaphor, computing systems, and active learning. International
Journal of Human-Computer Studies, 51(2), 385–403.

Colomb, J. (1986). Chevallard (yves).la transposition didactique: du savoir savant au savoir enseigné.
Revue française de pédagogie, 76(1), 89–91.

Combéfis, S, Beresnevičius, G, & Dagienė, V (2016). Learning programming through games and con-
tests: overview, characterisation and discussion. Olympiads in Informatics, 10(1), 39–60.

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-d tool for introductory programming concepts.
Journal of Computing Sciences in Colleges, 15 (5), 107–116.

Costa, J. M., & Miranda, G. L. (2017). Relation between alice software and programming learning: A
systematic review of the literature and meta-analysis. British Journal of Educational Technology,
48(6), 1464–1474.

Dabancourt, C. (2008). Apprendre à programmer: algorithmes et conception objet. Editions Eyrolles.
Djelil, F., Albouy-Kissi, A., Albouy-Kissi, B., Sanchez, E., & Lavest, J-M. (2016). Microworlds for learn-

ing object-oriented programming: Considerations from research to practice. Journal of Interactive
Learning Research, 27(3).

Djelil, F., Albouy-Kissi, B., Albouy-Kissi, A., Sanchez, E., & Lavest, J.-M. (2015). Towards a 3d virtual
game for learning object-oriented programming fundamentals and c++ language theoretical consid-
erations and empirical results. International Conference on Computer Supported Education.

Djelil, F., Montesinos, M. T. S., & Gilliot, J.-M. (2020). Une approche didactique pour l’introduction de
la programmation orientée-objet en classe. DIDAPRO-8.

Djelil, F., Muller, P.-A., & Sanchez, E. (2019). Investigating learners’ behaviours when interacting with
a programming microworld. In D Passey, R Bottino, C Lewin, & E Sanchez (Eds.) Empowering
Learners for Life in the Digital Age (pp. 67–76). Cham: Springer International Publishing.

Djelil, F., Sanchez, E., Albouy-Kissi, B., & Albouy-Kissi, A. (2017). Acquisition de connaissances de
programmation en fonction des stratégies d’apprentissage: une étude empirique du micromonde
progo. EIAH 2017, (pp. 41–52).

Fabricatore, C. (2000). Learning and videogames: An unexploited synergy.
Genvo, S. (2011). Penser les phénomènes de ludicisation du numérique: pour une théorie de la jouabilité.

Revue des sciences sociales (Strasbourg) (45).
Genvo, S. (2012). La théorie de la ludicisation: une approche anti-essentialiste des phénomènes ludiques.

Journée d’études Jeu et jouabilité à l’ère numérique.
Habgood, M. P. J. (2007). The effective integration of digital games and learning content (Unpublished

doctoral dissertation). University of Nottingham Nottingham.
Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.
Hazzan, O., Dubinsky, Y., & Meerbaum-Salant, O. (2010). Didactic transposition in computer science

education. ACM Inroads, 1(4), 33–37.
Hofstadter, D. R., & Sander, E. (2013). Surfaces and essences: Analogy as the fuel and fire of thinking.

Basic books.
Kafai, Y. B. (2006). Playing and making games for learning: Instructionist and constructionist perspec-

tives for game studies. Games and culture, 1(1), 36–40.
Ke, F. (2016). Designing and integrating purposeful learning in game play: A systematic review. Educa-

tional Technology Research and Development, 64(2), 219–244.
Keung, J., Xiao, Y., Mi, Q., & Lee, V. C. (2018). Bluej-uml: Learning object-oriented programming par-

adigm using interactive programming environment. In 2018 International Symposium on Educa-
tional Technology (ISET), (pp. 47–51).

Kölling, M. (2009). Introduction to programming with greenfoot. Pearson Education, Upper Saddle
River, New Jersey, USA.

Kolling, M. (2015). Introduction to programming with greenfoot: Object-oriented programming in java
with games and simulations. Pearson.

Kölling, M, & Rosenberg, J. (2001). Guidelines for teaching object orientation with java. ACM SIGCSE
Bulletin, 33(3), 33–36.

Krugel, J., & Hubwieser, P. (2018). Strictly objects first: A multipurpose course on computational think-
ing. In Computational Thinking in the STEM Disciplines, (pp. 73–98). Springer.

Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago press.
McConnell, S. (2004). Code complete. Pearson Education.

 Education and Information Technologies

1 3

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching and learning
introductory programming in higher education. IEEE Transactions on Education, 62(2), 77–90.

Michaelson, G. (2018). Microworlds, objects first, computational thinking and programming. In Compu-
tational Thinking in the STEM Disciplines, (pp. 31–48). Springer.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new instructional approach. In
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education, (pp. 75–79).

Muller, P-A, & Gaertner, N. (2000). Modélisation objet avec uml. (Vol 514) Eyrolles Paris.
Orange, C. (1990). Didactique de l’informatique et pratiques sociales de référence. Bulletin de l’EPI

(Enseignement Public et Informatique). (60) 151–161.
Papert, S. A. (2020). Mindstorms: Children, computers, and powerful ideas. Basic books.
Perkins, D. N. (2013). Knowledge as design. Routledge.
Piteira, M., & Costa, C. (2013). Learning computer programming: study of difficulties in learning pro-

gramming. In Proceedings of the 2013 International Conference on Information Systems and
Design of Communication, (pp. 75–80).

Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of game-based learning. Educational
Psychologist, 50(4), 258–283.

Plumettaz-Sieber, M., Bonnat, C., & Sanchez, E. (2019). Debriefing and knowledge processing an
empirical study about game-based learning for computer education. In International Conference on
Games and Learning Alliance, (pp. 32–41).

Resnick, M., Maloney, J., Monroy-Hernández, A, Rusk, N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., Silver, J., Silverman, B., & et al. (2009). Scratch: programming for all. Communica-
tions of the ACM, 52(11), 60–67.

Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on
the blending of microworlds, simulations, and games. Educational Technology Research and Devel-
opment, 44(2), 43–58.

Roberts, E., et al. (2001). Computing curricula 2001.
Sanchez, E. (2019). Game-based learning. In A Tatnall (Ed.) Encyclopedia of Education and Information

Technologies. https:// doi. org/ 10. 1007/ 978-3- 319- 60013-0_ 39-2 (pp. 1–9). Cham: Springer Interna-
tional Publishing.

Sandoval, W. (2014). Conjecture mapping: An approach to systematic educational design research. Jour-
nal of the Learning Sciences, 23(1), 18–36.

Sandoval, W. A., & Bell, P. (2004). Design-based research methods for studying learning in context:
Introduction. Educational Psychologist, 39(4), 199–201.

Seng, W. Y., & Yatim, M. H. M. (2014). Computer game as learning and teaching tool for object oriented
programming in higher education institution. Procedia-Social and Behavioral Sciences, 123, 215–224.

Seralidou, E., & Douligeris, C. (2021). Learning programming by creating games through the use of
structured activities in secondary education in greece. Education and Information Technologies,
26(1), 859–898.

Travers, M. D. (1996). Programming with agents new metaphors for thinking about computation (Unpub-
lished doctoral dissertation). Massachusetts Institute of Technology.

Warfield, V. M. (2013). Invitation to didactique (Vol 30). Springer Science & Business Media.
Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M. M. (2017). Com-

puter science in k-12 school curricula of the 2lst century: Why, what and when?. Education and
Information Technologies, 22(2), 445–468.

Woei, L. S., Othman, I. H., & Man, C. K. (2015). Learning programming using objects-first approach
through folktales. Jurnal Teknologi 75(3).

Woodworth, P., & Dann, W. (1999). Integrating console and event-driven models in cs1. ACM SIGCSE
Bulletin, 31(1), 132–135.

Xinogalos, S., Satratzemi, M., & Dagdilelis, V. (2006). An introduction to object-oriented programming
with a didactic microworld: objectkarel. Computers & Education, 47(2), 148–171.

Yukselturk, E., & Altiok, S. (2017). An investigation of the effects of programming with scratch on the
preservice it teachers self-efficacy perceptions and attitudes towards computer programming. British
Journal of Educational Technology, 48 (3), 789–801.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-60013-0_39-2

	Game design and didactic transposition of knowledge. The case of progo, a game dedicated to learning object-oriented programming
	Abstract
	1 Introduction
	2 Related work
	2.1 Objects-first approach for teaching object-oriented programming to beginners
	2.2 Game-based programming learning
	2.2.1 Ludicisation and programming microworlds
	2.2.2 Metaphors and programming learning

	2.3 Didactic transposition and game design

	3 Method
	4 Analysis of the Progo game design
	4.1 Analysis of academic curricula for teaching object-oriented basics
	4.2 Knowledge transformation in the Progo game design
	4.2.1 Using existing 3D components
	4.2.2 Creating a new 3D construction
	4.2.3 3D constructions as object-oriented systems

	5 Discussion
	6 Limitations
	7 Conclusions and implications
	References

